
New Weaknesses in the Keystream Generation Algorithms of the

Stream Ciphers TPy and Py∗

Gautham Sekar Souradyuti Paul Bart Preneel

Katholieke Universiteit Leuven, Dept. ESAT/COSIC,
Kasteelpark Arenberg 10,

B–3001, Leuven-Heverlee, Belgium
{gautham.sekar, souradyuti.paul, bart.preneel}@esat.kuleuven.be

Abstract

The stream ciphers Py, Py6 designed by Biham and Seberry were promising candidates in
the ECRYPT-eSTREAM project because of their impressive speed. Since their publication in
April 2005, a number of cryptanalytic weaknesses of the ciphers have been discovered. As a
result, a strengthened version Pypy was developed to repair these weaknesses; it was included
in the category of ‘Focus ciphers’ of the Phase II of the eSTREAM competition. However,
even the new cipher Pypy was not free from flaws, resulting in a second redesign. This led to
the generation of three new ciphers TPypy, TPy and TPy6. The designers claimed that TPy
would be secure with a key size up to 256 bytes, i.e., 2048 bits. In February 2007, Sekar et al.
published an attack on TPy with 2281 data and comparable time. This paper shows how to build
a distinguisher with 2268.6 key/IVs and one outputword for each key (i.e., the distinguisher can
be constructed within the design specifications); it uses a different set of weak states of the TPy.
Our results show that distinguishing attacks with complexity lower than the brute force exist if
the key size of TPy is longer than 268 bits. Therefore, for longer keys, our attack constitutes an
academic break of the cipher. Furthermore, we discover a large number of similar bias-producing
states of TPy and provide a general framework to compute them. The attacks on TPy are also
shown to be effective on Py.

1 Introduction

Timeline: the Py-family of Ciphers

• April 2005. The ciphers Py and Py6, designed by Biham and Seberry, were submitted to
the ECRYPT project for analysis and evaluation in the category of software based stream
ciphers [2]. The impressive speed of the cipher Py in software (about 2.5 times faster than
the RC4) made it one of the fastest and most attractive contestants. The cipher is designed
to be used with a key of size 32 bytes (the key size may vary between 1 byte and 256 bytes)
and an IV of size 16 bytes (the IV size can vary between 1 and 64 bytes).

• March 2006 (at FSE 2006). Paul, Preneel and Sekar reported distinguishing attacks with
289.2 data and comparable time against the cipher Py [7]. Crowley [4] later reduced the
complexity to 272 by employing a Hidden Markov Model.

∗The first author is supported by an IWT SoBeNeT project. The second author is funded by the IBBT
(Interdisciplinary Institute for BroadBand Technology), a research institute founded by the Flemish Gov-
ernment in 2004. This is a revised version of the paper published in the proceedings of ISC 2007.

1

• March 2006 (at the Rump session of FSE 2006). A new cipher, namely Pypy, was
proposed by the designers to rule out the aforementioned distinguishing attacks on Py [3].

• May 2006 (presented at Asiacrypt 2006). Distinguishing attacks were reported against
Py6 with 268.6 data and comparable time by Paul and Preneel [8].

• October 2006 (to be presented at Eurocrypt 2007). Wu and Preneel showed key
recovery attacks against the ciphers Py, Pypy, Py6 with chosen IVs [10]. This attack was
subsequently improved by Isobe et al. [5].

• January 2007. Three new ciphers TPypy, TPy, TPy6 were proposed by the designers [1].
These three ciphers can very well be viewed as the strengthened versions of the previous
ciphers Py, Pypy and Py6 where the above attacks do not apply. The ciphers are designed
to be secure for any key size between 1 byte and 256 bytes.

• February 2007. Sekar et al. published an attack on TPy which requires 2281 data and
comparable time [9].

In this paper, we show distinguishing attacks on the ciphers TPy and Py with data complexity
2268.6 each. These results outperform the most recent attack on TPy which requires 2281 data [9].
However, it is worth noting that the attacks described in [7] can also be applied to TPy. In the
design specifications, the TPy and the Py are claimed to be compatible with key size ranging from
8 bits to 2048 bits. If the ciphers are used with key size longer than 268 bits then our attacks are
better than exhaustive search. It is also worth noting that the distinguisher can be built within the
design specifications of the ciphers. To derive the distinguisher, 2268.6 randomly chosen key/IVs
are used and for each of them one outputword is collected. Note that, according to the design
specification, TPy can run for 261 rounds (note that each round generates 8 bytes as output) per
key where our distinguisher requires only 8 rounds per key.

In addition to the above distinguisher, we detect biases in a large number of outputs at rounds
r, r + 2, t and u where r > 0; t, u ≥ 5; t 6∈ {r, r + 2, u}; u 6∈ {r, r + 2, t}. We provide a general
framework to compute the biases due to the presence of arbitrarily many weak states. However, we
were unable to combine those biases into a more efficient attack. Combining multiple distinguishers
into a single and more efficient one is still an alluring open problem.

2 The Round Function of TPy

The round functions of the TPy and the Py are identical. Here, we analyze only the round function
of TPy and hence do not describe the key setup and IV setup. Algorithm 1 describes a single
round of the TPy. Array P (which is a permutation of [0, 1, ..., 255]), array Y (which contains
260 32-bit elements) and the 32-bit variable s are the inputs to the algorithm. Here, ‘rotate(A)’
denotes a cyclic rotation of the elements of array A by one position. The ‘ROTL32(s, k)’ operation
means that the 32-bit variable s is rotated to the left by k positions. The output generated in line
5 of the algorithm is labeled ‘first output-word’ and the output-word of line 6 is labeled ‘second
output-word’.

3 Notation and Convention

• Oa(b) denotes the bth bit (b = 0 denotes the least significant bit or lsb) of the first output-word
generated at round a. We do not use the second output-word anywhere in our analysis.

• Pa, Ya+1 and sa are the inputs to the algorithm at round a. It is easy to see that when
this convention is followed, Oa = (ROTL32(sa, 25) ⊕ Ya[256]) + Ya[Pa[26]]- the index ‘a’ is
maintained throughout the expression.

2

Algorithm 1 A Step of TPy

Require: Y [−3, ..., 256], P [0, ..., 255], a 32-bit variable s

Ensure: 64-bit random output
/*Update and rotate P*/

1: swap (P [0], P [Y [185]&255]);
2: rotate (P);

/* Update s*/
3: s+ = Y [P [72]] − Y [P [239]];
4: s = ROTL32(s, ((P [116] + 18)&31));

/* Output 8 bytes (least significant byte first)*/
5: output ((ROTL32(s, 25) ⊕ Y [256]) + Y [P [26]]);
6: output ((s ⊕Y [−1]) + Y [P [208]]);

/* Update and rotate Y */
7: Y [−3] = (ROTL32(s, 14) ⊕ Y [−3]) + Y [P [153]];
8: rotate(Y);

• Ya[b], Pa[b] denote the bth elements of array Ya and Pa respectively.

• Ya[b]i, Pa[b]i denote the ith bit (i = 0 denotes the lsb) of Ya[b], Pa[b] respectively.

• The operators ‘+’ and ‘−’ denote addition modulo 232 and subtraction modulo 232 respectively,
except when used with expressions which relate two elements of array P . In this case they
denote addition and subtraction over Z.

• The symbol ‘⊕’ denotes bitwise exclusive-or and
⋂

denotes set intersection.

• In Oa(i), sa(i) and Ya[Pb[X]]i, the index representing bit position, i.e., i denotes i mod 32.

• Y c
a [Pb[X]]i denotes the complement of Ya[Pb[X]]i.

• The pseudorandom bit generation algorithm of a stream cipher is denoted by PRBG.

4 Motivational Observations

Our major observation is the detection of a relation between the elements of the internal state
and the outputs of the TPy which can, eventually, be used to build a distinguishing attack on the
cipher. The relation is outlined in the following theorem.

Theorem 1 O1(i)⊕O3(i+7)⊕O7(i+7)⊕O8(i+7) = 0 if the following 17 conditions are simultaneously
satisfied.

1. P1[116] ≡ −18 mod 32 (event E1),

2. P2[116] ≡ 7 mod 32 (event E2),

3. P3[116] ≡ −4 mod 32 (event E3),

4. P7[116] ≡ 3 mod 32 (event E4),

5. P8[116] ≡ 3 mod 32 (event E5),

6. P1[72] = P2[239] + 1 (event E6),

7. P1[239] = P2[72] + 1 (event E7),

3

8. P7[72] = P8[72] + 1 (event E8),

9. P7[239] = P8[239] + 1 (event E9),

10. P3[72] = 254 (event E10),

11. P1[26] = P3[239] + 2 (event E11),

12. P1[72] = 3 (event E12),

13. P3[26] = 0 (event E13),

14. P1[239] = P7[26] + 6 (event E14),

15. P7[153] = 252 (event E15),

16. P6[153] = P8[26] + 2 (event E16),

17. d7(i−7) ⊕ d8(i−7) ⊕ c1(i) ⊕ d3(i) ⊕ d1(i+7) ⊕ c3(i+7) ⊕ c7(i+7) ⊕ e7(i+7) ⊕ c8(i+7) ⊕ e8(i+7) = 0 (event
E17).

1

Proof. First, we state and prove two lemmata which will be used to establish the theorem.

Lemma 1 If

1. P1[116] ≡ −18 mod 32,

2. P3[116] ≡ −4 mod 32,

3. P7[116] ≡ 3 mod 32,

4. P8[116] ≡ 3 mod 32

then the following equations are satisfied:

1. O1(i) = s0(i+7) ⊕ Y1[P1[72]]i+7 ⊕ Y c
1 [P1[239]]i+7 ⊕ Y1[256]i ⊕ Y1[P1[26]]i ⊕ c1(i) ⊕ d1(i+7),

2. O3(i+7) = s2(i) ⊕ Y3[P3[72]]i ⊕ Y c
3 [P3[239]]i ⊕ Y3[256]i+7 ⊕ Y3[P3[26]]i+7 ⊕ c3(i+7) ⊕ d3(i),

3. O7(i+7) = Y7[P7[72]]i−7 ⊕ Y c
7 [P7[239]]i−7 ⊕ Y6[−3]i+7 ⊕ Y7[P7[26]]i+7 ⊕ Y6[P6[153]]i+7 ⊕ c7(i+7)

⊕ d7(i−7) ⊕ e7(i+7),

4. O8(i+7) = Y8[P8[72]]i−7 ⊕ Y c
8 [P8[239]]i−7 ⊕ Y7[−3]i+7 ⊕ Y8[P8[26]]i+7 ⊕ Y7[P7[153]]i+7 ⊕ c8(i+7)

⊕ d8(i−7) ⊕ e8(i+7).

Proof. From Figure 1, we get

Yn[i] = Yn+1[i − 1] (1)

when −2 ≤ i ≤ 256. When i = −3,

Yn+1[256] = (ROTL32(si, 14) ⊕ Yn[−3]) + Yn[Pn[153]].

Generalizing (1), we have

Yn[i] = Yn+k[i − k] (2)

when −3 ≤ i − k ≤ 255. Line 5 of Algorithm 1 gives

1The terms c, d, e are the carries generated in certain expressions, the descriptions of which can be found in the
proof of Theorem 1.

4

A
B
C

X
Y A1

Y

B
C

C

D

D

E

A1
B1

Y YY
n n+1 n+2

−3
−2
−1

255
256

Figure 1: The figure shows the update of the S-box Y . Yn[i] = Yn+1[i − 1] when −2 ≤ i ≤ 256.
Yn+1[256] = A1 when i = −3 and A1 = (ROTL32(sn, 14) ⊕ A) + Yn[Pn[153]]. Generalizing the
above, we can write Yn[i] = Yn+k[i − k] when −3 ≤ i − k ≤ 255.

O7 = (ROTL32(s7, 25) ⊕ Y7[256]) + Y7[P7[26]]. (3)

Let the c7 denote the carry in the above equation. Since ROTL32(s7, 25)i = s7(i−25 mod 32),

O7(i) = s7(i−25 mod 32) ⊕ Y7[256]i ⊕ Y7[P7[26]]i ⊕ c7(i). (4)

Lines 3 and 4 of Algorithm 1 give us

s7 = ROTL32(s6 + Y7[P7[72]] − Y7[P7[239]], P7[116] + 18 mod 32) (5)

⇒ s7(j) = s6(j−k mod 32) ⊕ Y7[P7[72]]j−k mod 32 ⊕ Y c
7 [P7[239]]j−k mod 32 ⊕ d7(j−k mod 32) (6)

where k = P7[116] + 18 mod 32, d7(i) = f7(i) ⊕ g7(i) and d7(0) = 1 (f7 and g7 are the carry terms
in (5) which are explained in Sect. 5.2). For simplicity, henceforth we denote X(i mod 32) by X(i).
Thus (6) becomes,

s7(j) = s6(j−k) ⊕ Y7[P7[72]]j−k ⊕ Y c
7 [P7[239]]j−k ⊕ d7(j−k). (7)

If j = i − 25 mod 32, then (7) becomes

s7(i−25) = s6(i−k−25) ⊕ Y7[P7[72]]i−k−25 ⊕ Y c
7 [P7[239]]i−k−25 ⊕ d7(i−k−25). (8)

Substituting (8) in (4), we get,

O7(i) = s6(i−k−25) ⊕ Y7[P7[72]]i−k−25 ⊕ Y c
7 [P7[239]]i−k−25 ⊕ Y7[256]i ⊕ Y7[P7[26]]i ⊕ c7(i) ⊕ d7(i−k−25). (9)

Next, we have

Y7[256] = (ROTL32(s6, 14) ⊕ Y6[−3]) + Y6[P6[153]], (10)

Y7[256]i = s6(i−14) ⊕ Y6[−3]i ⊕ Y6[P6[153]]i ⊕ e7(i) (11)

where e7 is the carry term in (10). Substituting (11) in (9), we get,

O7(i) = s6(i−k−25) ⊕ s6(i−14) ⊕ Y7[P7[72]]i−k−25 ⊕ Y c
7 [P7[239]]i−k−25 ⊕ Y6[−3]i

⊕Y7[P7[26]]i ⊕ Y6[P6[153]]i ⊕ c7(i) ⊕ d7(i−k−25) ⊕ e7(i). (12)

Now, if k = −11 (i.e., k ≡ −11 mod 32 ⇒ P7[116] + 18 ≡ −11 mod 32 ⇒ P7[116] ≡ 3 mod 32)
then s6(i−k−25) ⊕ s6(i−14) = 0. Hence, when P7[116] ≡ 3 mod 32, (12) becomes

O7(i) = Y7[P7[72]]i−14 ⊕ Y c
7 [P7[239]]i−14 ⊕ Y6[−3]i ⊕ Y7[P7[26]]i

⊕Y6[P6[153]]i ⊕ c7(i) ⊕ d7(i−14) ⊕ e7(i). (13)

5

By similar arguments, when P8[116] ≡ 3 mod 32,

O8(i) = Y8[P8[72]]i−14 ⊕ Y c
8 [P8[239]]i−14 ⊕ Y7[−3]i ⊕ Y8[P8[26]]i

⊕Y7[P7[153]]i ⊕ c8(i) ⊕ d8(i−14) ⊕ e8(i). (14)

From (9), we get

O1(i) = s0(i−k−25) ⊕ Y1[P1[72]]i−k−25 ⊕ Y c
1 [P1[239]]i−k−25 ⊕ Y1[256]i

⊕Y1[P1[26]]i ⊕ c1(i) ⊕ d1(i−k−25). (15)

When k = 0 (i.e., P1[116] ≡ −18 mod 32), the above equation reduces to

O1(i) = s0(i+7) ⊕ Y1[P1[72]]i+7 ⊕ Y c
1 [P1[239]]i+7 ⊕ Y1[256]i ⊕ Y1[P1[26]]i ⊕ c1(i) ⊕ d1(i+7). (16)

Similarly, when P3[116] ≡ −4 mod 32, we have

O3(i+7) = s2(i) ⊕ Y3[P3[72]]i ⊕ Y c
3 [P3[239]]i ⊕ Y3[256]i+7 ⊕ Y3[P3[26]]i+7 ⊕ c3(i+7) ⊕ d3(i). (17)

From (13) and (14), we derive the following results:

O7(i+7) = Y7[P7[72]]i−7 ⊕ Y c
7 [P7[239]]i−7 ⊕ Y6[−3]i+7 ⊕ Y7[P7[26]]i+7 ⊕ Y6[P6[153]]i+7 ⊕ c7(i+7)

⊕ d7(i−7) ⊕ e7(i+7), (18)

O8(i+7) = Y8[P8[72]]i−7 ⊕ Y c
8 [P8[239]]i−7 ⊕ Y7[−3]i+7 ⊕ Y8[P8[26]]i+7 ⊕ Y7[P7[153]]i+7 ⊕ c8(i+7)

⊕ d8(i−7) ⊕ e8(i+7). (19)

This completes the proof. �

Now we state the second lemma.

Lemma 2 s0(i+7) = s2(i) if the following conditions are simultaneously satisfied,

1. P1[116] ≡ −18 mod 32,

2. P2[116] ≡ 7 mod 32,

3. P1[72] = P2[239] + 1,

4. P1[239] = P2[72] + 1.

Proof. Equation (5) gives us:

s1 = ROTL32(s0 + Y1[P1[72]] − Y1[P1[239]], P1[116] + 18 mod 32).

The first condition (P1[116] ≡ −18 mod 32) reduces this to

s1 = s0 + Y1[P1[72]] − Y1[P1[239]].

Therefore,

s2 = ROTL32(s0 + Y2[P2[72]] − Y2[P2[239]] + Y1[P1[72]] − Y1[P1[239]], P2[116] + 18 mod 32).

Conditions 3 and 4 reduce the above equation to

s2 = ROTL32(s0, P2[116] + 18 mod 32).

6

Table 1: Terms generated in O1(i)⊕O3(i+7)⊕O7(i+7)⊕O8(i+7), when events E1 to E7 simultaneously
occur, grouped by their bit positions

Bit position: i − 7 Bit position: i Bit position: i + 7

Y7[P7[72]] Y1[256] Y1[P1[72]]

Y7[P7[239]] Y1[P1[26]] Y1[P1[239]]

Y8[P8[72]] Y3[P3[72]] Y3[256]

Y8[P8[239]] Y3[P3[239]] Y3[P3[26]]

Carries Carries Y6[P6[153]]

Y6[−3]

Y7[P7[26]]

Y7[P7[153]]

Y7[−3]

Y8[P8[26]]

Carries

Finally, with condition 2 (i.e., P2[116] ≡ 7 mod 32), the previous equation becomes

s2 = ROTL32(s0, 25)

⇒ s2(i) = ROTL32(s0, 25)i = s0(i−25)

= s0(i+7). (20)

This completes the proof. �

Now we observe that, when the conditions listed under (i) Lemma 1 (i.e., events E1, E3, E4 and E5)
and (ii) Lemma 2 (i.e., events E1, E2, E6 and E7) are simultaneously satisfied, then the expression
O1(i) ⊕ O3(i+7) ⊕ O7(i+7) ⊕ O8(i+7) is the XOR of the terms which are listed in Table 1 (grouped
according to the bit positions).2 Similarly, the ‘carries’ in Table 1 are elaborated in Table 2.

Table 2: Carry terms generated in O1(i) ⊕O3(i+7) ⊕O7(i+7) ⊕O8(i+7) grouped by their bit positions

Bit position: i − 7 Bit position: i Bit position: i + 7

d7 c1 d1

d8 d3 c3

c7

e7

c8

e8

If the Y -terms in Table 1 are pairwise equated (this is achieved when the events E8 through to
E16 occur) then we get

O1(i) ⊕ O3(i+7) ⊕ O7(i+7) ⊕ O8(i+7) = d7(i−7) ⊕ d8(i−7) ⊕ c1(i) ⊕ d3(i) ⊕ d1(i+7) ⊕ c3(i+7) ⊕ c7(i+7) ⊕ e7(i+7)

⊕ c8(i+7) ⊕ e8(i+7). (21)

2Note that none of the terms listed in Table 1 is of the form A
c because we used the fact that A

c
⊕ B

c = A ⊕ B

in (16), (17), (18) and (19).

7

Now, when the RHS of (21) equals zero (i.e., E17 occurs) we get

O1(i) ⊕ O3(i+7) ⊕ O7(i+7) ⊕ O8(i+7) = 0.

This completes the proof. �

5 Computation of the Bias

In this section, we quantify the bias in the outputs of TPy induced by the fortuitous events similar
to the one described in Sect. 4. Now it is important to note that there may be more than one set of
17 conditions possible, where each of them results in O1(i) ⊕O3(i+7) ⊕O7(i+7) ⊕O8(i+7) = 0 (let us
assume that there are n such sets). In Theorem 1, we listed one such set. Our experiments suggest
that these n sets are mutually independent, however, a formal proof of that is nontrivial.

Each of the events E1 to E5 occurs with approximate probability 1
32 and each of the events

E6 to E16 occurs with probability which is approximately 1
256 . Let p denote the probability that

condition 17 is satisfied. Let F denote the event
⋂16

j=1 Ej . Therefore,

P [F] = (
1

32
)5 · (

1

256
)11.

We see that there are n F -like events (i.e., the intersection of 16 conditions). Let Fn denote the
union of these n events. Since, each event occurs with approximately the same probability,

P [Fn] ≈ n · P [F]

≈ n · (
1

32
)5 · (

1

256
)11

= n ·
1

2113
.

From Table 1, we get the maximum number of ways that terms of a particular column can be
pairwise equated and hence the upper bound on n can be calculated to be 2 · 2 · 945 = 3780, that
is, n < 3780.

5.1 Formulating the Bias

Now, we establish a formula to compute P [O1(i) ⊕ O3(i+7) ⊕ O7(i+7) ⊕ O8(i+7) = 0], under the
assumption of a perfectly random key/IV setup and the uniformity of bits when Fn does not
occur.Our experiments suggest that it is infeasible to find a set of conditions such that the overall
bias (computed on the basis of the aforementioned assumption of randomness in the event that Fn

does not occur) is canceled or reduced in magnitude. Therefore, this assumption is reasonable. Let
T denote O1(i) ⊕ O3(i+7) ⊕ O7(i+7) ⊕ O8(i+7). Then using Bayes’ rule we get

P [T = 0] = P [T = 0|Fn ∩ E17] · P [Fn ∩ E17] + P [T = 0|F c
n ∪ Ec

17] · P [F c
n ∪ Ec

17]

= P [T = 0|Fn ∩ E17] · P [Fn ∩ E17] + P [T = 0|F c
n ∩ E17] · P [F c

n ∩ E17]

+ P [T = 0|Fn ∩ Ec
17] · P [Fn ∩ Ec

17] + P [T = 0|F c
n ∩ Ec

17] · P [F c
n ∩ Ec

17]

= 1 · (n · p ·
1

2113
) +

1

2
· (1 − n ·

1

2113
) · p + 0 · P [Fn ∩ Ec

17] +
1

2
· (1 − n ·

1

2113
) · (1 − p)

=
1

2
+ n · (2p − 1) ·

1

2114
. (22)

Hence, we see that the distribution of the outputs (O1(i), O3(i+7), O7(i+7), O8(i+7)) is biased. The

bias is equal to n · (2p − 1) · 1
2114 . In the following section, we provide formulas to compute p, i.e.,

the probability that E17 occurs; or more generally, the probability that the 17th condition of each
of the n F -like events occurs, i.e., P [d7(i−7) ⊕ d8(i−7) ⊕ c1(i) ⊕ d3(i) ⊕ d1(i+7) ⊕ c3(i+7) ⊕ c7(i+7) ⊕
e7(i+7) ⊕ c8(i+7) ⊕ e8(i+7)] = 0.

8

5.2 Biases in the Carry Terms

In this section, we provide formulas to calculate the bias in the carry terms. The carry terms c and
e are generated in expressions of the form (S ⊕ X) + Z. We now proceed to calculate P [cl(i) = 0]
assuming that S, X and Z are uniformly distributed and independent. Under this assumption,
P [Si = 0] = P [Xi = 0] = P [Zi = 0] = 1

2 , that is, the probability that the carry bit at position
i equals zero depends only on i. Stated otherwise, P [c(i) = 0] = P [e(i) = 0]. Let P [c(i) = 0] be
denoted by pi. Since there is no carry on the lsb, p0 = 1. We now have Table 3.

Table 3: Truth table for computing pi (NR=Not Required)

c(i−1) S(i−1) X(i−1) Z(i−1) c(i) Probability

0 0 0 0 0 pi−1

8

0 0 0 1 0 pi−1

8

0 0 1 0 0 pi−1

8

0 0 1 1 0 pi−1

8

0 1 0 0 0 pi−1

8

0 1 0 1 1 NR

0 1 1 0 1 NR

0 1 1 1 0 pi−1

8

1 0 0 0 0 1−pi−1

8

1 0 0 1 1 NR

1 0 1 0 1 NR

1 0 1 1 0 1−pi−1

8

1 1 0 0 1 NR

1 1 0 1 1 NR

1 1 1 0 1 NR

1 1 1 1 1 NR

From Table 3, using Bayes’ rule we get

pi =
pi−1

2
+

1

4
.

Solving this recursion, given p0 = 1, we get

pi =
1

2
+

1

2i+1
. (23)

Now, the carry terms f and g are generated in expressions of the form S + X − Z. This can be
rewritten as S + X + Zc + 1 since the additions in these two expressions are modulo 232. The
presence of two carries in S + X + Z is demonstrated using the Figure 2. The carries generated in
S + X + Zc + 1 can be thought of as carries generated in S + X + A where A = Zc and the carries
on the lsb f(0) = 1, g(0) = 0. Let qi denote P [f(i) = 0] and ri denote P [g(i) = 0]. Hence, q0 = 0,
r0 = 1 and r1 = 1. Now we have Table 4.

From Table 4, using Bayes’ rule we get

qi =
1

2
+

5 · qi−1 · ri−1

8
−

qi−1

4
−

ri−1

4
, (24)

ri+1 =
1

2
−

qi−1 · ri−1

4
+

3 · qi−1

8
+

3 · ri−1

8
. (25)

Using the initial conditions, q0 = 0, r0 = 1 and r1 = 1, qi and ri are computed recursively. Since
dm(i) denotes fm(i) ⊕ gm(i) for any m > 0,

9

Table 4: Truth table for computing qi and ri+1 using qi−1 and ri−1 (NR=Not Required)

f(i−1) g(i−1) S(i−1) X(i−1) Z(i−1) f(i) g(i+1) Probability

0 0 0 0 0 0 0 qi−1·ri−1

8

0 0 0 0 1 0 0 qi−1·ri−1

8

0 0 0 1 0 0 0 qi−1·ri−1

8

0 0 0 1 1 1 0 NR

0 0 1 0 0 0 0 qi−1·ri−1

8

0 0 1 0 1 1 0 NR

0 0 1 1 0 1 0 NR

0 0 1 1 1 0 0 qi−1·ri−1

8

0 1 0 0 0 0 0 qi−1·(1−ri−1)
8

0 1 0 0 1 1 0 NR

0 1 0 1 0 1 0 NR

0 1 0 1 1 1 0 NR

0 1 1 0 0 1 0 NR

0 1 1 0 1 1 0 NR

0 1 1 1 0 1 0 NR

0 1 1 1 1 0 1 qi−1·(1−ri−1)
8

1 0 0 0 0 0 0 (1−qi−1)·ri−1

8

1 0 0 0 1 1 0 NR

1 0 0 1 0 1 0 NR

1 0 0 1 1 1 0 NR

1 0 1 0 0 1 0 NR

1 0 1 0 1 1 0 NR

1 0 1 1 0 1 0 NR

1 0 1 1 1 0 1 (1−qi−1)·ri−1

8

1 1 0 0 0 1 0 NR

1 1 0 0 1 1 0 NR

1 1 0 1 0 1 0 NR

1 1 0 1 1 0 1 (1−qi−1)·(1−ri−1)
8

1 1 1 0 0 1 0 NR

1 1 1 0 1 0 1 (1−qi−1)·(1−ri−1)
8

1 1 1 1 0 0 1 (1−qi−1)·(1−ri−1)
8

1 1 1 1 1 0 1 (1−qi−1)·(1−ri−1)
8

10

g

f

0 0 1 1 1 1 0 1

1

1

01

1

110

0

1

1

1

0 1 0 1

+

+

0

0

1

0

1

0

1+1+1=(3)
10

=(0 1 1)
2

0

1 0

1

0

0+0+

0

1

0

0

1

Carries

10001110

(modulo 256)

S= 61

X = 221

SUM = 113

Z =87

Figure 2: An example showing how the carries are generated when three 8-bit variables S = 61,
X = 221 and Z = 87 are added

1. P [d7(i−7) = 0] = P [d8(i−7) = 0] = qi−7 mod 32 · ri−7 mod 32

+ (1 − qi−7 mod 32) · (1 − ri−7 mod 32),

2. P [c1(i) = 0] = 1
2 + 1

2i+1 ,

3. P [d3(i) = 0] = qi · ri + (1 − qi) · (1 − ri),

4. P [d1(i+7) = 0] = qi+7 mod 32 · ri+7 mod 32

+ (1 − qi+7 mod 32) · (1 − ri+7 mod 32),

5. P [c3(i+7) = 0] = P [c7(i+7) = 0] = P [e7(i+7) = 0] = P [c8(i+7) = 0]

= P [e8(i+7) = 0] = 1
2 + 1

2(i+7 mod 32)+1 .

Using the above formulas, the value of p can be computed for any given i. Running simulation,
we find that the maximum bias in the chosen outputs occurs when i = 25 which corresponds to
p = 0.5 − 2−34.2. Hence, (22) gives us

P [T = 0] =
1

2
−

n

2147.2

⇒ P [T = 1] =
1

2
+

n

2147.2
,

when i = 25. Substituting n = 3780 in the above equation, we get:

P [T = 1] =
1

2
+

1

2135.3
. (26)

This is an upper bound on the probability that the outputs (O1(i), O3(i+7), O7(i+7), O8(i+7)) of TPy
are biased. From Sect. 4, we found that n ≥ 1. From the previous discussion, we see that n < 3780.
Hence, 1 ≤ n < 3780. If n = 1, then P [T = 1] = 1

2 + 1
2147.2 . Thus,

1

2
(1 +

1

2146.2
) ≤ P [T = 1] ≤

1

2
(1 +

1

2134.3
). (27)

6 The Distinguisher

A distinguisher is an algorithm which distinguishes a given stream of bits from a stream of bits
generated by a perfect PRBG. The distinguisher is constructed by collecting sufficiently many
outputs (O1(25), O3(0), O7(0), O8(0)) generated by as many key/IVs. To compute the minimum
number of samples required to establish the distinguisher, we use the following corollary of a
theorem from [6].

11

Corollary 1 If an event e occurs in a distribution X with probability p and in Y with probability
p(1 + q) then, if p = 1

2 , O(1
q2) samples are required to distinguish X from Y with non-negligible

probability of success.

In the present case, e is the event O1(25) ⊕ O3(0) ⊕ O7(0) ⊕ O8(0) = 0, X is the distribution of the
outputs O1, O3, O7 and O8 produced by a perfectly random keystream generator and Y is the
distribution of the outputs produced by TPy. From (27), p = 1

2 and the highest value of q = 1
2134.3 .

Hence O(1
(2−134.3)2

) = O(2268.6) output samples are needed to construct the best distinguisher with

a non-negligible probability of success. Note that this is an improvement by a factor of 212.4 over
the data complexity of 2281 obtained in [9].

7 A Family of Distinguishers

In Sect. 4 we found that the outputs at rounds 1, 3, 7 and 8 are biased allowing us to build a
distinguisher. It is found that there exist plenty of 4-tuples of biased outputs. The generalization
is presented in the following theorem.

Theorem 2 The distribution of the outputs (Or(i), Or+2(i+7), Ot(i+7), Ou(i+7)) of the TPy are
biased for many suitably chosen (r, t, u)’s where r > 0; t, u ≥ 5; t 6∈ {r, r + 2, u}; u 6∈ {r, r + 2, t}.

The proof is similar to the proof furnished for Theorem 1, however, a detailed proof has been
provided in the Appendix A. This allows us to construct a family of distinguishers for the cipher
TPy. It seems possible to combine these huge number of distinguishers in order to construct one
single efficient distinguisher; however, any concrete mathematical model to combine them is still
an interesting open problem. Another major implication of the above generalization theorem is the
fact that the TPy outputs will remain always biased no matter how many initial outputwords are
discarded from the keystream.

8 Attacks on Py

The PRBG of the cipher Py is identical with that of TPy. The attacks described in the previous
sections exploit the weaknesses in the PRBG of TPy only. Therefore, all the attacks are applicable
to Py also.

9 Conclusions and Open Problems

The paper develops a family of distinguishers from the outputs (Or(i), Or+2(i+7), Ot(i+7), Ou(i+7))
of TPy (and Py), where r > 0; t, u ≥ 5; t 6∈ {r, r + 2, u}; u 6∈ {r, r + 2, t}. Note that the TPy is
one of the strongest members of the Py-family of ciphers. The best distinguisher works with data
complexity 2268.6 which records an improvement of a factor of 5404 over the previous attack. In
addition, we detect a large number of bias-producing states of TPy and compute them in a general
framework. It is reasonable to assume that these weak states can be combined to mount a more
efficient attack on TPy; however, methods to combine many distinguishers into a single yet more
efficient one is still an open problem. We were unable to find the exact value of the bias in the
distribution of the outputs (O1(25), O3(0), O7(0), O8(0)). We leave this as an open problem.

References

[1] E. Biham, J. Seberry, “Tweaking the IV Setup of the Py Family of Ciphers
– The Ciphers Tpy, TPypy, and TPy6,” Published on the author’s webpage at
http://www.cs.technion.ac.il/ biham/, January 25, 2007.

12

[2] E. Biham, J. Seberry, “Py (Roo): A Fast and Secure Stream Cipher using Rolling Arrays,”
ecrypt submission, 2005.

[3] E. Biham, J. Seberry, “Pypy (Roopy): Another Version of Py,” ecrypt submission, 2006.

[4] P. Crowley, “Improved Cryptanalysis of Py,” Workshop Record of SASC 2006 - Stream Ciphers
Revisited, ECRYPT Network of Excellence in Cryptology, February 2006, Leuven (Belgium),
pp. 52-60.

[5] T. Isobe, T. Ohigashi, H. Kuwakado M. Morii, “How to Break Py and Pypy by a Chosen-IV
Attack,” eSTREAM, ECRYPT Stream Cipher Project, Report 2006/060.

[6] I. Mantin, A. Shamir, “A Practical Attack on Broadcast RC4,” Fast Software Encryption 2001
(M. Matsui, ed.), vol. 2355 of LNCS, pp. 152-164, Springer-Verlag, 2001.

[7] S. Paul, B. Preneel, G. Sekar, “Distinguishing Attacks on the Stream Cipher Py,” Fast Software
Encryption 2006 (M. Robshaw, ed.), vol. 4047 of LNCS, pp. 405-421, Springer-Verlag, 2006.

[8] S. Paul, B. Preneel “On the (In)security of Stream Ciphers Based on Arrays and Modular
Addition,” Asiacrypt 2006 (X. Lai and K. Chen, eds.), vol. 4047 of LNCS, pp. 69-83, Springer-
Verlag, 2006.

[9] G. Sekar, S. Paul, B. Preneel, “Weaknesses in the Pseudorandom Bit Generation Algorithms of
the Stream Ciphers TPypy and TPy,” available at http://eprint.iacr.org/2007/075.pdf.

[10] H. Wu, B. Preneel, “Differential Cryptanalysis of the Stream Ciphers Py, Py6 and Pypy,”
Eurocrypt 2007 (to appear).

A Proof of the Theorem 2

Claim 1 The distribution of the outputs (Or(i), Or+2(i+7), Ot(i+7), Ou(i+7)) of the TPy are biased
for many suitably chosen (r, t, u)’s where r > 0; t, u ≥ 5; t 6∈ {r, r + 2, u}; u 6∈ {r, r + 2, t}.

Proof. First, we state and prove two lemmata which will be used to establish the theorem.

Lemma 3 If

1. Pr[116] ≡ −18 mod 32,

2. Pr+2[116] ≡ −4 mod 32,

3. Pt[116] ≡ 3 mod 32,

4. Pu[116] ≡ 3 mod 32

then the following equations are satisfied:

1. Or(i) = sr−1(i+7) ⊕ Yr[Pr[72]]i+7 ⊕ Y c
r [Pr[239]]i+7 ⊕ Yr[256]i ⊕ Yr[Pr[26]]i ⊕ cr(i) ⊕ dr(i+7),

2. Or+2(i+7) = sr+1(i) ⊕ Yr+2[Pr+2[72]]i ⊕ Y c
r+2[Pr+2[239]]i ⊕ Yr+2[256]i+7 ⊕ Yr+2[Pr+2[26]]i+7

⊕ cr+2(i+7) ⊕ dr+2(i),

3. Ot(i+7) = Yt[Pt[72]]i−7⊕Y c
t [Pt[239]]i−7⊕Yt−1[−3]i+7⊕Yt[Pt[26]]i+7⊕Yt−1[Pt−1[153]]i+7⊕ct(i+7)

⊕ dt(i−7) ⊕ et(i+7),

4. Ou(i+7) = Yu[Pu[72]]i−7⊕Y c
u [Pu[239]]i−7⊕Yu−1[−3]i+7⊕Yu[Pu[26]]i+7⊕Yu−1[Pu−1[153]]i+7⊕

cu(i+7)

⊕ du(i−7) ⊕ eu(i+7).

13

Proof. Line 5 of Algorithm 1 gives

Ot = (ROTL32(st, 25) ⊕ Yt[256]) + Yt[Pt[26]], (28)

Let ct denote the carry in the above equation. Since ROTL32(st, 25)i = st(i−25),

Ot(i) = st(i−25) ⊕ Yt[256]i ⊕ Yt[Pt[26]]i ⊕ ct(i). (29)

Lines 3 and 4 of Algorithm 1 give us

st = ROTL32(st−1 + Yt[Pt[72]] − Yt[Pt[239]], Pt[116] + 18 mod 32), (30)

⇒ st(j) = st−1(j−k) ⊕ Yt[Pt[72]]j−k ⊕ Y c
t [Pt[239]]j−k ⊕ dt(j−k) (31)

where k = Pt[116] + 18 mod 32, dt(i) = ft(i) ⊕ gt(i) and dt(0) = 1 (ft and gt are the carry terms
in (30). If j = i − 25 mod 32, then (31) becomes

st(i−25) = st−1(i−k−25) ⊕ Yt[Pt[72]]i−k−25 ⊕ Y c
t [Pt[239]]i−k−25 ⊕ dt(i−k−25). (32)

Substituting (32) in (29), we get,

Ot(i) = st−1(i−k−25) ⊕ Yt[Pt[72]]i−k−25 ⊕ Y c
t [Pt[239]]i−k−25 ⊕ Yt[256]i ⊕ Yt[Pt[26]]i ⊕ ct(i) ⊕ dt(i−k−25).(33)

Next, we have

Yt[256] = (ROTL32(st−1, 14) ⊕ Yt−1[−3]) + Yt−1[Pt−1[153]], (34)

Yt[256]i = st−1(i−14) ⊕ Yt−1[−3]i ⊕ Yt−1[Pt−1[153]]i ⊕ et(i) (35)

where et is the carry term in (34). Substituting (35) in (33), we get,

Ot(i) = st−1(i−k−25) ⊕ st−1(i−14) ⊕ Yt[Pt[72]]i−k−25 ⊕ Y c
t [Pt[239]]i−k−25 ⊕ Yt−1[−3]i

⊕Yt[Pt[26]]i ⊕ Yt−1[Pt−1[153]]i ⊕ ct(i) ⊕ dt(i−k−25) ⊕ et(i). (36)

Now, if k = −11 (i.e., k ≡ −11 mod 32 ⇒ Pt[116]+18 ≡ −11 mod 32 ⇒ Pt[116] ≡ 3 mod 32) then
st−1(i−k−25) ⊕ st−1(i−14) = 0. Hence, when Pt[116] ≡ 3 mod 32, (36) becomes

Ot(i) = Yt[Pt[72]]i−14 ⊕ Y c
t [Pt[239]]i−14 ⊕ Yt−1[−3]i ⊕ Yt[Pt[26]]i

⊕Yt−1[Pt−1[153]]i ⊕ ct(i) ⊕ dt(i−14) ⊕ et(i). (37)

By similar arguments, when Pu[116] ≡ 3 mod 32,

Ou(i) = Yu[Pu[72]]i−14 ⊕ Y c
u [Pu[239]]i−14 ⊕ Yu−1[−3]i ⊕ Yu[Pu[26]]i

⊕Yu−1[Pu−1[153]]i ⊕ cu(i) ⊕ du(i−14) ⊕ eu(i). (38)

From (33), we get

Or(i) = sr−1(i−k−25) ⊕ Yr[Pr[72]]i−k−25 ⊕ Y c
r [Pr[239]]i−k−25 ⊕ Yr[256]i

⊕Yr[Pr[26]]i ⊕ cr(i) ⊕ dr(i−k−25). (39)

When k = 0 (i.e., Pr[116] ≡ −18 mod 32), the above equation reduces to

Or(i) = sr−1(i+7) ⊕ Yr[Pr[72]]i+7 ⊕ Y c
r [Pr[239]]i+7 ⊕ Yr[256]i ⊕ Yr[Pr[26]]i

⊕ cr(i) ⊕ dr(i+7). (40)

14

Similarly, when Pr+2[116] ≡ −4 mod 32, we have

Or+2(i+7) = sr+1(i) ⊕ Yr+2[Pr+2[72]]i ⊕ Y c
r+2[Pr+2[239]]i ⊕ Yr+2[256]i+7

⊕Yr+2[Pr+2[26]]i+7 ⊕ cr+2(i+7) ⊕ dr+2(i). (41)

From (37) and (38), we derive the following results:

Ot(i+7) = Yt[Pt[72]]i−7 ⊕ Y c
t [Pt[239]]i−7 ⊕ Yt−1[−3]i+7 ⊕ Yt[Pt[26]]i+7

⊕Yt−1[Pt−1[153]]i+7 ⊕ ct(i+7) ⊕ dt(i−7) ⊕ et(i+7), (42)

Ou(i+7) = Yu[Pu[72]]i−7 ⊕ Y c
u [Pu[239]]i−7 ⊕ Yu−1[−3]i+7 ⊕ Yu[Pu[26]]i+7

⊕Yu−1[Pu−1[153]]i+7 ⊕ cu(i+7) ⊕ du(i−7) ⊕ eu(i+7). (43)

This completes the proof. �

Now we state the second lemma.

Lemma 4 For r > 0, sr−1(i+7) = sr+1(i) if the following conditions are simultaneously satisfied,

1. Pr[116] ≡ −18 mod 32,

2. Pr+1[116] ≡ 7 mod 32,

3. Pr[72] = Pr+1[239] + 1,

4. Pr[239] = Pr+1[72] + 1.

Table 5: Terms generated in Or(i) ⊕Or+2(i+7) ⊕Ot(i+7) ⊕Ou(i+7), when the conditions listed under
Lemma 3 and Lemma 4 are simultaneously satisfied, grouped by their bit positions

Bit position: i − 7 Bit position: i Bit position: i + 7

Yt[Pt[72]] Yr[256] Yr[Pr[72]]

Yt[Pt[239]] Yr[Pr[26]] Yr[Pr[239]]

Yu[Pu[72]] Yr+2[Pr+2[72]] Yr+2[256]

Yu[Pu[239]] Yr+2[Pr+2[239]] Yr+2[Pr+2[26]]

Carries Carries Yt−1[Pt−1[153]]

Yt−1[−3]

Yt[Pt[26]]

Yu−1[Pu−1[153]]

Yu−1[−3]

Yu[Pu[26]]

Carries

Proof. Equation (30) gives us:

sr = ROTL32(sr−1 + Yr[Pr[72]] − Yr[Pr[239]], Pr[116] + 18 mod 32).

The first condition (Pr[116] ≡ −18 mod 32) reduces this to

sr = sr−1 + Yr[Pr[72]] − Yr[Pr[239]].

Therefore,

sr+1 = ROTL32(sr−1 + Yr+1[Pr+1[72]] − Yr+1[Pr+1[239]] + Yr[Pr[72]] − Yr[Pr[239]], Pr+1[116] + 18 mod 32).

15

Conditions 3 and 4 reduce the above equation to

sr+1 = ROTL32(sr−1, Pr+1[116] + 18 mod 32).

Finally, with condition 2 (i.e., Pr+1[116] ≡ 7 mod 32), the previous equation becomes

sr+1 = ROTL32(sr−1, 25)

⇒ sr+1(i) = ROTL32(sr−1, 25)i = sr−1(i−25) = sr−1(i+7). (44)

This completes the proof. �

Now we observe that, when the conditions listed under Lemma 3 and Lemma 4 are simultane-
ously satisfied, then the expression Or(i) ⊕ Or+2(i+7) ⊕ Ot(i+7) ⊕ Ou(i+7) is the XOR of the terms
which are listed in Table 5 (grouped according to the bit positions).3 Similarly, the ‘carries’ in
Table 5 are elaborated in Table 6. If the Y -terms in Table 5 are pairwise equated, we get

Table 6: Carry terms generated in Or(i)⊕Or+2(i+7)⊕Ot(i+7)⊕Ou(i+7) grouped by their bit positions

Bit position: i − 7 Bit position: i Bit position: i + 7

dt cr dr

du dr+2 cr+2

ct

et

cu

eu

Or(i) ⊕ Or+2(i+7) ⊕ Ot(i+7) ⊕ Ou(i+7) = dt(i−7) ⊕ du(i−7) ⊕ cr(i) ⊕ dr+2(i) ⊕ dr(i+7)

⊕ cr+2(i+7) ⊕ ct(i+7) ⊕ et(i+7) ⊕ cu(i+7) ⊕ eu(i+7). (45)

Now, when the RHS of (45) equals zero, we get

Or(i) ⊕ Or+2(i+7) ⊕ Ot(i+7) ⊕ Ou(i+7) = 0.

For a particular set of (r, t, u), we can have a set of 17 conditions similar to the set of conditions
listed under Theorem 1, where r = 1, t = 7 and u = 8. In this way we can generate arbitrarily
many (r, t, u)’s such that the outputs at rounds r, r + 2, t and u are biased. This completes the
proof. �

3Note that none of the terms listed in Table 5 is of the form A
c because we used the fact that A

c
⊕ B

c = A ⊕ B

in (40), (41), (42) and (43).

16

