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Abstract

The approach adopted by all current adaptively chosen ciphertext secure public key encryp-
tion schemes in standard model is well-formed checking. By rejecting all ill-formed ciphertext
these schemes are able to resist adaptively chosen ciphertext attacks. A new paradigm of adap-
tively chosen ciphertext security public key encryption scheme is proposed which returns a
random result instead of a rejecting symbol ⊥ when the ciphertext is ill-formed. We named
this as probabilistic decryption. The adaptively chosen ciphertext security of the new paradigm
is based on probabilistic encryption and probabilistic decryption.Using the new paradigm we
can get an efficient key encapsulation mechanism(KEM) from our basic public key encryption
scheme. Although the basic KD04-KEM(the key encapsulation part of the Kurosawa-Desmedt
scheme) is not chosen ciphertext secure,while using our new praradigm with an one-way and uni-
form hash function KD04-KEM can be proved to be secure against adaptively chosen ciphertext
attacks.

Keywords: PKE, IND-CCA2, probabilistic decryption

1 Introduction

Security against adaptively chosen ciphertext attacks (CCA security) [1, 2, 3] is a strong and
very useful notion of security for public-key encryption schemes. This notion is known to suffice for
many applications of encryption in the presence of active attackers, including secure communication,
auctions, voting schemes, and many others. CCA security is commonly accepted as the security
notion of choice for encryption schemes that are to be plugged in to a protocol running in an
arbitrary setting [4, 5]. The random oracle model is a useful tool in constructing CCA security
public-key encryption schemes, but it does not rule out all possible attacks [6]. Schemes that can
be proven to be CCA-secure in the standard model (without the use of heuristics such as random
oracles) is more practical. There are three main techniques have been proposed for constructing
such cryptosystems. The first follows the paradigm of Naor and Yung [7], as extended by Dolev,
Dwork, and Naor [2] and later simplified by Sahai [8] and Lindell [9]. This technique used as
building block any CPA-secure public-key encryption scheme (any scheme that is secure against
chosen plain-text attacks) as well as any non-interactive zero-knowledge proof system (ZIZK). The
resulting scheme is highly inefficient because the using of ZIZK proof. The second technique is
based on the ”smooth hash proof systems” of Cramer and Shoup [10], and has led to a variety of
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constructions [11, 13, 14]. That’s the first provably secure practical public-key encryption scheme
in the standard model. The third method constructs a CCA-secure encryption scheme from any
semantically secure (CPA-secure) identity-based encryption (IBE) scheme. It is first proposed by
Ran Canetti, Shai Halevi and Jonathan Katz (CHK) [15], improved by Dan Boneh and Jonathan
Katz (BK)[16], and later simplified by Qixiang Mei [17].

One important advance in hybrid cryptography is the development of the KEM/DEM model for
hybrid encryption algorithms [12]. This model splits a hybrid encryption scheme into two distinct
components: an asymmetric key encapsulation mechanism (KEM) and a symmetric data encap-
sulation mechanisms (DEM). In order to obtain a CCA-secure hybrid encryption, it is sufficient
that both KEM and DEM are CCA-secure. (Accordingly, we refer the framework of [12, 19] as
CCA KEM/DEM framework in this paper). Recently in [14], Kurosawa and Desmedt introduced
a hybrid encryption scheme which is a modification of the hybrid scheme presented in [18]. Their
scheme is interesting from both a theoretical and a practical point of view. When one looks at it
as a KEM/DEM scheme, we do not know if their KEM is CCA-secure, yet the resulting scheme
is CCA-secure and more efficient than the one in [18] both in computation and bandwidth. Thus
the Kurosawa-Desmedt scheme points out that to obtain CCA-secure hybrid encryption, requiring
both KEM/DEM to be CCA-secure, while being a sufficient condition, may not be a necessary one,
and might indeed be an overkill. Later, the hybrid encryption paradigm for asymmetric encryption
has been generalized. This new framework, presented by Abe et al. [20], makes use of a new
object called a ”tag-KEM”.Abe et al. define an independent security criteria for the tag-KEM.
The security criteria that they propose for the tag-KEM is stricter than for a KEM (a secure KEM
will not be a secure tag-KEM) but allows for the use of a DEM that is only secure against passive
attacks.

Recently, Kiltz proposed a practical KEM(Key Encapsulation Mechanism) with simple and
intuitive design concept [25]. Security against chosen-ciphertext attacks can be proved in the
standard model under a new assumption, the Gap Hashed Diffie-Hellman(GHDH) assumption.
Compared to the previously most efficient scheme by Kurosawa and Desmedt [14] it has 128 bits
shorter ciphertexts, between 25-50% shorter public/secret keys, and it is slightly more efficient in
terms of encryption/decryption speed.

1.1 Related work

Implicit consistency check:Eike Kiltz and David Galindo [24] presented a direct chosen ci-
phertext secure identity based key encapsulation(IBKEM) without random oracles. To get more
efficient IBKEM, they use a skill called implicit consistency check. The idea is to make the Diffie-
Hellman consistency check implicit in the computation of the key K. Thus it will return the right
key when the encapsulation is consistent and a random group element otherwise. The alternative
decapsulation algorithm roughly saves two pairing operation.

Chosen ciphertext attack on KD04-KEM:Javier Herranz, Dennis Hofheinz and Eike Kiltz
[23] proposed a chosen ciphertext attack on the key encapsulation part of the Kurosawa-Desmedt
scheme [14]. The point is that the hash function KDF only has to satisfy relatively weak secu-
rity properties, namely KDF(K) has to be uniformly distributed over {0, 1}k if K is uniformly
distributed over G. In particular, a hash function that is efficiently invertible may satisfy this
property. In that case the attacker can reconstruct K from KDF(K). Thus the attacker can get
enough information to reconstruct the challenge key K.
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1.2 Our Contributions

Most of the existing techniques for constructing CCA-secure encryption schemes can be viewed as
a single paradigm. In this general paradigm, CCA-secure is obtained by rejecting all ill-formed
ciphertext in the decryption. We proposed a new paradigm, which return a random result instead
of a rejecting symbol ⊥ when the ciphertext is ill-formed. We call this probabilistic decryption.
Our basic scheme can be proved to be CCA-secure in standard model. Based on the concepts of
probabilistic encryption and probabilistic decryption the security of the new scheme is natural and
easy to understand.

Hybrid encryption is an important technique. Using the new paradigm we can get an efficient
KEM from our basic public key encryption scheme. Although the basic KD04-KEM is not chosen
ciphertext secure [23], using a one-way and uniform hash function we can prove that the KD04-KEM
is adaptive chosen ciphertext secure in our new paradigm.

We remark that there is subtle difference between the new paradigm and the skill used by Kiltz
[24] named as implicit consistency check. When an attacker queries the decryption oracle with an
ill-formed ciphertext several times, schemes with implicit consistency check will return different
values each time, while schemes in our new paradigm will return the same value. If an attacker
queries the decryption oracle twice with the same ciphertext it will know whether the ciphertext
is well-formed. Thus implicit consistency check used by Kiltz is actually the same as return a
rejection symbol at the attacker’s view.

Compared with the general ill-formed rejection paradigm, the decryption oracle of schemes in
the new paradigm will reveal less information. The attacker even can not get whether the queried
ciphertext is well-formed or not.

2 Definitions

We describe the definitions of public-key encryption scheme and KEM. Our definitions of public-
key encryption scheme and KEM are slightly different with that in [12]. This is followed by the
definition of the Diffie-Hellman decision problem (DDH).

In describing probabilistic processes, we write x R← X to denote the action of assigning to the
variable x a value sampled according to the distribution X. If S is a finite set, we simply write
s

R← S to denote assignment to s of an element sampled from uniform distribution on S. If A is a
probabilistic algorithm and x an input, then A(x) denotes the output distribution of A on in put
x. Thus, we write y R← A(x) to denote of running algorithm A on input x and assigning the output
to the variable y.

We write

Pr[x1
R← X1, x2

R← X2, . . . , xn
R← Xn : φ(x1, . . . , xn)]

to denote the probability that when x1 is drawn from a certain distribution X1, and x2 is drawn
from a certain distribution X2(x1), possibly depending on the particular choice of x1, and so on, all
the way to xn, the predicate φ(x1, ..., xn) is true. We allow the predicate φ to involve the execution
of probabilistic algorithms.
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2.1 Public-Key Encryption

Definition 1 A public-key encryption scheme PKE is a triple of PPT (probabilistic polyno-
mial time) algorithms (G, E ,D)

• G(1k): The randomized key generation algorithm G takes as input a security parameter (1k)
and outputs a public key PK and secret key SK. We write (PK,SK)← G(1k)

• EPK(m): The randomized encryption algorithm takes as input a public key PK and a message
m, and outputs a ciphertext C. We write C ← EPK(m)

• DSK(C): The decryption algorithm D takes as input a ciphertext C and secret key SK. It
returns a message or random element in the message space. We write m← DSK(C).

We require that for all PK,SK output by G, all m ∈ {0, 1}∗, and all C output by EPK(m) we have
DSK(C) = m .

We recall the standard definition of security for public-key encryption schemes against adap-
tively chosen ciphertext attacks.

Definition 2 A PKE scheme is secure against adaptively chosen ciphertext attacks if the
advantage of any PPT adversary A in the following game is negligible in the security parameter k:

1. G(1k) outputs PK,SK. Adversary A is given 1k and PK.

2. The adversary may make polynomial queries to a decryption oracle DSK(·).

3. At some point, A outputs two messages m0,m1 with |m0| = |m1|. A bit b is randomly chosen
and the adversary is given a ”challenge ciphertext” C∗ ← EPK(mb).

4. A may continue to query its decryption oracle DSK(·) except that it may not request the
decryption of C∗.

5. Finally, A outputs a guess b′ .

We say A succeeds if b′ = b , and denote the probability of this event by PrA,PK [Succ]. The
adversary’s advantage is defined as AdvCCAA = |PrA,PK [Succ]− 1/2|.

2.2 Key Encapsulation Mechanism

Definition 3 A key encapsulation mechanism KEM is a triple of PPT (probabilistic polyno-
mial time) algorithms:

• KEM.KeyGen(1k): The key generation algorithm takes as input a security parameter (1k)
and outputs a public key PK and secret key SK. We write (PK,SK)← KEM.KeyGen(1k)

• KEM.Encrypt(PK): The encryption algorithm takes as input the public key PK , and
outputs a pair (K,ψ), where K ∈ KD(KD is the key space) is a key and ψis a ciphertext. We
write (K,ψ)← KEM.Encrypt(PK)

• KEM.Decrypt(SK,ψ): The decryption algorithm takes as input a ciphertext ψ and the secret
key SK. It returns a key K or a random value. We write K ← KEM.Decrypt(SK,ψ).
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We require that for all PK,SK output by KEM.KeyGen(1k), all (K,ψ) ∈ [KEM.Encrypt(PK)],
we have KEM.Decrypt(SK,ψ)=K.

We recall the standard definition of security for public-key encryption schemes against adap-
tively chosen ciphertext attacks and chosen plaintext attacks.

Definition 4 A KEM scheme is secure against adaptively chosen ciphertext attacks if the
advantage of any PPT adversary A in the following game is negligible in the security parameter k:

1. KEM.KeyGen(1k) outputs PK,SK. Adversary A is given 1k and PK.

2. The adversary may make a sequence of queries to a decryption oracle. For each decryption
oracle query, the adversary submits a ciphertext ψ, and the decryption oracle responds with
KEM.Decrypt(SK,ψ).

3. At some point, A queries an encryption oracle. The encryption oracle computes:

(K0, ψ
∗)←KEM.Encrypt(PK)

K1
R← KD; b R← {0, 1}

Finally the encryption oracle responds with the pair (Kb, ψ
∗)

4. A may continue to query its decryption oracle except that it may not request the decryption
of ψ∗.

5. Finally, A outputs a guess b′ ∈ {0, 1} .

We call the game above IND-CCA2 game of KEM. Define AdvCCAKEM,A(k) to be |Pr[b = b′]−
1/2| in the IND-CCA2 game. We say that KEM is secure against adaptive chosen ciphertext attack
if for all probabilistic, polynomial-time oracle query machines A, the function AdvCCAKEM,A(k)
grows negligibly in k.

2.3 The Diffie-Hellman Decision Problem

There are several equivalent formulations of the Diffie-Hellman decision problem. The one that we
shall use is the following.

Let G be a group of large prime order q, and consider the following two distributions:
The distribution R of random quadruples (g1, g2, u1, u2) ∈ G4

The distribution D of quadruples (g1, g2, u1, u2) ∈ G4, where g1, g2 are random, and u1 =
gr
1, u2 = gr

2 for random r ∈ Zq.
An algorithm that solves the Diffie-Hellman decision problem is a statistical test that can

effectively distinguish these two distributions. That is, given a quadruple coming from one of the
two distributions, it should output 0 or 1, and there should be a non-negligible difference between
(a) the probability that it output a 1 given an input from R, and (b) the probability that it
output a 1 given an input from D. The Diffie-Hellman decision problem is hard if there is no such
polynomial-time statistical test.
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3 The Basic Scheme

Our basic scheme can be described as follow:

• G(1k): Assume that G is group of order q where q is a large prime number.

g, h
R← G;x1, x2, y1, y2

R← Zq;

c← gx1hx2 ; d← gy1hy2 ;

PK = (g, h, c, d,H, TCR);SK = (x1, x2, y1, y2)

Where TCR is a target collision resistant hash function, see [12] for detail. LetH : G→ {0, 1}l
where l is the length of message. We assume that H is a one-way hash function and H(v) is
uniformly distributed over {0, 1}l if v is uniformly distributed over G.

• EPK(m): Given a message m ∈ G, the encryption algorithm runs as follows.

r
R← Zq

u← gr; e← H(hr)⊕m; a← TCR(u, e); v ← crdra

C ← (u, e, v)

• DSK(C): Given a ciphertext C = (u, e, v), the decryption algorithm runs as follows.

a← TCR(u, e),m← e⊕H
(

v

ux1+ay1

1
x2+ay2

)

return m

We first verify that this is an encryption scheme, in the sense that the decryption of an encryp-
tion of message yields the message. We have:

e⊕H
(

v

ux1+ay1

1
x2+ay2

)
= H(hr)⊕m⊕H

ux1+ay1hr(x2+ay2)

ux1+ay1

1
x2+ay2

 = m

Now we give some intuition as to why our scheme is secure against adaptively chosen ciphertext
attacks.First, we can see that our scheme is probabilistic encryption. So the encryption oracle will
not leak the information about the plaintext. When the ciphertext is ill-formed, the decryption
oracle will return a random value. That’s the concept of probabilistic decryption. So, the decryption
will not leak further information of the plaintext. Now we have that ,our scheme is secure against
chosen ciphertext attack. A formal proof is given in bellow.
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4 Proof of Security

In this section, we prove the following theorem.

Theorem 1 The above cryptosystem is secure against adaptive chosen ciphertext attack as-
suming that (1) hash function TCR is chosen from target collision resistant hash function fam-
ily,(2)hash function H is one-way and uniform and (3) Diffie-Hellman decision problem is hard in
the group G.

To prove the theorem, we will assume that there is an adversary that can break the cryptosystem,
and TCR is a target collision resistant hash function,H is one-way and uniform hash function and
show how to use this adversary to construct a statistical test for the DDH problem.

For the statistical test, we are given (g, h, u, T ) coming from either the distribution R or D.
At a high level, our construction works as follows. We build a simulator that simulates the joint
distribution consisting of adversary’s view in its attack on the cryptosystem, and the hidden bit b
generated by the generated oracle (which is not a part of the adversary’s view). We will show that
if the input comes from D, the simulation will be nearly perfect, and so the adversary will have a
non-negligible advantage in guessing the hidden bit b. We will also show that if the input comes
from R, then the adversary’s view is essentially independent of b, and therefore the adversary’s
advantage is negligible. This immediately implies a statistical test distinguishing R from D: run
the simulator and adversary together, and if the simulator outputs b and the adversary outputs b′,
the distinguisher outputs 1 if b = b′, and 0 otherwise.

We now give the details of the simulator. The input to the simulator is (g, h, u, T ). The simulator
runs the following key generation algorithm, using the given (g, h). The simulator chooses

x1, x2, y1, y2
R← Zq

and computes

c← gx1hx2 ; d← gy1hy2 ;

The simulator also choose a target collision resistant hash function TCR and a one-way uniform
hash function H at random. The public key that the adversary sees is (g, c, d, h, TCR,H). The
simulator knows (x1, x2, y1, y2).

First we describe the simulation of the encryption oracle. Given m0,m1, the simulator chooses
b ∈ {0, 1} at random, and computes

e← H(T )⊕mb, a← TCR(u, e), v ← ux1+y1aT x2+y2a

and outputs

(u, e, v)

We now describe the simulation of the decryption oracle. Given (ui, ei, vi), the simulator calcu-
late:

ai ← TCR(ui, ei),mi ← ei ⊕H
(

vi

ui
x1+aiy1

1
x2+aiy2

)
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The simulator return mi.
That completes the description of the simulator. As we will see, when the input to the simulator

comes from D, the output of the encryption oracle is a perfectly well-formed ciphertext; however,
when the input to the simulator comes from R, the output of the encryption oracle will not be
legitimate, in the sense that loggu 6= logcdav, a = TCR(u, e). This is not a problem, and indeed, it
is crucial to the proof of security.

The theorem now follows immediately from the following two lemmas.

Lemma 1 When the simulator’s input comes from D, the joint distribution of the adversary’s
view and the hidden bit b is is statistically indistinguishable from that in the actual attack.

Consider the joint distribution of the adversary’s view and the bit b when the input comes from
the distribution D. Say u = gr and T = hr.

It is clear in this case that the output of the encryption oracle has the right distribution, since
u = gr, e = H(hr)⊕mb, a = TCR(u, e), v = ux1+y1aT x2+y2a = gr(x1+y1a)hr(x2+y2a) = crdra;

To complete the proof, we need to argue that the output of the decryption oracle has the
right distribution. Let us call (ui, ei, vi) a valid ciphertext if ui = gri , ei = H(hri) ⊕ mi, a

′
i =

TCR(ui, ei) = ai, vi = cridriai .
Note that if a ciphertext is valid then

ei ⊕H
(

vi

ui
x1+aiy1

1
x2+aiy2

)
= H(hri)⊕mi ⊕H

ui
x1+aiy1hri(x2+aiy2)

ui
x1+aiy1

1
x2+aiy2

 = mi

therefore, the decryption oracle outputs mi just as it should. Consequently, the lemma follows
immediately from the following:

Claim 1 The decryption oracle in both an actual attack against the cryptosystem and in an
attack against the simulator return a random value when the ciphertext is invalid.

When the ciphertext is invalid with a′i = H(ui, ei) 6= ai, we have:

ei ⊕H
(

vi

ui
x1+a′

iy1

1
x2+a′

i
y2

)
= H(hri)⊕mi ⊕H

gri(x1+aiy1)hri(x2+aiy2)

gri(x1+a′
iy1)

1
x2+a′

i
y2



= H(hri)⊕mi ⊕H
(

(griy1(ai−a′
i)hri(x2+aiy2))

1
x2+a′

i
y2

)

Let ε =
(
griy1(ai−a′

i)hri(x2+aiy2)
1

x2+a′
i
y2

)
, w = logg h,consider the distribution of (x1, x2, y1, y2):

logg c = x1 + wx2 (1)

logg d = y1 + wy2 (2)

logg v = r(x1 + ay1) + wr(x2 + ay2) (3)
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logg ε =
riy1(ai − a′i) + wri(x2 + aiy2)

x2 + a′iy2
(4)

It clear that (4) is linear independent to (1)(2) and (3),therefore, the decryption oracle of both
the simulator and an actual attack outputs random value at the adversary’s view.

Lemma 2 When the simulator’s input comes from R, the distribution of the hidden bit b is
(essentially) independent from the adversary’s view.

Let logg u = r, logh T = r+, logcda v = r′, a = TCR(u, e). The lemma follows immediately from
the following two claim.

Claim 2 If the decryption oracle return random value when the ciphertext is not legitimate
during the attack, then the distribution of the hidden bit b is independent of the adversary’s view.

When (g, h, u, T ) ∈ R ,e = H(T )⊕mb is independent to b at the adversary’s view conditioning
on u. Consider:

logg v = r(x1 + ay1) + wr+(x2 + ay2) (5)

It is clear that (5) and (1)(2) are linear independent. So e = H(T ) ⊕mb is independent to b
at the adversary’s view conditioning on v. If the decryption oracle return random value when the
ciphertext is not legitimate it will not leak any information about T to the adversary. Finally we
have that b is independent of the adversary’s view.

Claim 3 The decryption oracle will return random value except with negligible probability
when the ciphertext is not legitimate.

Now assume that the adversary submits a ciphertext (ui, ei, vi) 6= (u, e, v)which is not legitimate
with logg ui = ri, logg vi = ri(x1 + aiy1) + wri(x2 + aiy2), ai 6= TCR(ui, ei). There are three cases
we consider.

Case1: (ui, ei) = (u, e), vi 6= v. In this case we have ri = r, ai 6= a. Consider the return value:

ei ⊕H
(

vi

ui
x1+aiy1

1
x2+aiy2

)
= H(hr+

)⊕mi ⊕H

gr(x1+aiy1)hr+(x2+aiy2)

gr(x1+ay1)

1
x2+ay2



= H(hr+
)⊕mi ⊕H

(
(gry1(ai−a)hr+(x2+aiy2))

1
x2+ay2

)

Let εi = (gry1(ai−a)hr+(x2+aiy2))
1

x2+ay2 , we have:

logg εi =
ry1(ai − a) + wr+(x2 + aiy2)

x2 + ay2
(6)

It is clear that (6) and (1)(2)(5) are linear independent. Thus, the decryption oracle will
return random value except with negligible probability at the adversary’s view.
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Case2: (ui, ei) 6= (u, e) and ai 6= a, ai 6= TCR(ui, ei) = a′i. Consider the return value:

ei ⊕H
(

vi

ui
x1+aiy1

1
x2+aiy2

)
= H(hri)⊕mi ⊕H

gri(x1+aiy1)hri(x2+aiy2)

gri(x1+a′
iy1)

1
x2+a′

i
y2



= H(hri)⊕mi ⊕H
(

(griy1(ai−a′
i)hr(x2+aiy2))

1
x2+a′

i
y2

)

Let ε′i = (griy1(ai−a′
i)hr(x2+aiy2))

1
x2+a′

i
y2 , we have:

logg ε
′
i =

ry1(ai − a′i) + wr(x2 + aiy2)
x2 + a′iy2

(7)

It is clear that (7) and (1)(2)(5) are linear independent. Thus, the decryption oracle will
return random value except with negligible probability at the adversary’s view.

Case3: (ui, ei) 6= (u, e) and ai = a. In this case it will be a target collision attack on TCR(see [10] for
detail). Since we assume that TCR is secure against target collusion attack, the probability
of this case is negligible.

5 Key Encapsulation Mechanism

From our basic scheme we can get an efficient KEM describes as follow:

• KEM.KeyGen(1k): Assume that G is group of order q where q is a large prime number.

g, h
R← G;x1, x2, y1, y2

R← Zq;

c← gx1hx2 ; d← gy1hy2 ;

PK = (g, h, c, d,H, TCR);SK = (x1, x2, y1, y2)

Where TCR is a target collision resistant hash function, see [12] for detail. Let H : G →
{0, 1}k where k is the length of symmetric key K. We assume that H(v) is one-way and
uniformly distributed over {0, 1}k if v is uniformly distributed over G.

• KEM.Encrypt(PK): Given PK, the encryption algorithm runs as follows.

r
R← Zq

u← gr; a← TCR(u); v ← crdra;K ← H(hr);

C ← (u, v)
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• KEM.Decrypt(SK,C): Given a ciphertext C = (u, v) and SK, the decryption algorithm runs
as follows.

a← TCR(u),K ← H

(
v

ux1+ay1

1
x2+ay2

)
return K

It is clear that the KEM above can be proved to be IND-CCA2 secure. The secure proof is
similar with that of the basic public key encryption scheme.

6 Security of KD04-KEM

Now we describe the KD04-KEM in our new paradigm:

• KEM.KeyGen(1k): Assume that G is group of order q where q is a large prime number.

g1, g2
R← G;x1, x2, y1, y2

R← Zq;

c← gx1
1 gx2

2 ; d← gy1
1 g

y2
2

PK = (g1, g2, c, d,H, TCR);SK = (x1, x2, y1, y2)

Where TCR is a target collision resistant hash function, see [12] for detail. Let H : G →
{0, 1}k where k is the length of symmetric key K. We assume that H(v) is one-way and
uniformly distributed over {0, 1}k if v is uniformly distributed over G.

• KEM.Encrypt(PK): Given PK, the encryption algorithm runs as follows.

r
R← Zq

u1 ← gr
1;u2 ← gr

2; a← TCR(u1, u2);K ← H(crdra);

C ← (u1, u2)

• KEM.Decrypt(SK,C): Given a ciphertext C = (u1, u2) and SK, the decryption algorithm
runs as follows.

a← TCR(u1, u2);K ← H(ux1+ay1
1 ux2+ay2

2 );

return K

Note that, in [14], the hash function H is only need to be uniform. While we need a one-way
and uniform hash function H. Now we prove that KD04-KEM is IND-CCA2 secure:

Theorem 2 The KD04-KEM above is secure against adaptive chosen ciphertext attack as-
suming that (1)hash function TCR is chosen from target collision resistant hash function fam-
ily,(2)hash function H is one-way and uniform and (3) Diffie-Hellman decision problem is hard in
the group G.
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To prove the theorem, we will assume that there is an adversary that can break the KEM, and
TCR is a target collision resistant hash function,H is an one-way and uniform hash function, and
show how to use this adversary to construct a statistical test for the DDH problem.

For the statistical test, we are given (g1, g2, u1, u2) coming from either the distribution R or
D. We will show that if the input comes from D, the simulation will be nearly perfect, and so
the adversary will have a non-negligible advantage in guessing the hidden bit b, if the input comes
from R, then the adversary’s view is essentially independent of b, and therefore the adversary’s
advantage is negligible. This immediately implies a statistical test distinguishing R from D.

The input to the simulator is (g1, g2, u1, u2). The simulator runs the following key generation
algorithm, using the given (g1, g2). The simulator chooses

x1, x2, y1, y2
R← Zq

and computes

c← gx1
1 gx2

2 ; d← gy1
1 g

y2
2 ;

The simulator also choose a target collision resistant hash function TCR and a one-way uniform
hash functionH at random. The public key that the adversary sees is (g1, g2, c, d,H). The simulator
knows (x1, x2, y1, y2).

First we describe the simulation of the encryption oracle. Given PK, the simulator chooses
b ∈ {0, 1} at random, and computes

K0 ← H(ux1+ay1
1 ux2+ay2

2 ), a← TCR(u1, u2), C ← (u1, u2),K1
R← {0, 1}k

and outputs

(C,Kb)

We now describe the simulation of the decryption oracle. Given (u1i, u2i), the simulator calcu-
late:

ai ← TCR(u1i, u2i),Ki ← H(ux1+aiy1
1i ux2+aiy2

2i )

The simulator return Ki.
That completes the description of the simulator. As we will see, when the input to the simulator

comes from D, the output of the encryption oracle is a perfectly well-formed ciphertext; however,
when the input to the simulator comes from R, the output of the encryption oracle will be invalid,
in the sense that logg1u1 6= logg2u2. This is not a problem, and indeed, it is crucial to the proof of
security.

The theorem now follows immediately from the following two lemmas.

Lemma 3 When the simulator’s input comes from D, the joint distribution of the adversary’s
view and the hidden bit b is is statistically indistinguishable from that in the actual attack.
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Consider the joint distribution of the adversary’s view and the bit b when the input comes from
the distribution D. Say u1 = gr

1 and u2 = gr
2.

It is clear in this case that the output of the encryption oracle has the right distribution, since
u1 = gr

1, u2 = gr
2, a = TCR(u1, u2),K = ux1+y1a

1 ux2+y2a
2 = crdra;

To complete the proof, we need to argue that the output of the decryption oracle has the right
distribution. Let us call (u1i, u2i) a valid ciphertext if u1i = gri

1 , u2i = gri
2 . It is clear that if a

ciphertext is valid the decryption oracle outputs Ki just as it should. Consequently, the lemma
follows immediately from the following:

Claim 4 The decryption oracle in both an actual attack against the cryptosystem and in an
attack against the simulator return a random value when the ciphertext is invalid.

When the ciphertext is invalid with u1i = gri
1 , u2i = g

r′
i

2 , ri 6= r′i, we have:

Ki = H(gri(x1+aiy1)
1 g

r′
i(x2+aiy2)

2 )

Let vi = g
ri(x1+aiy1)
1 g

r′
i(x2+aiy2)

2 , w = logg1
g2,consider the distribution of (x1, x2, y1, y2):

logg1
c = x1 + wx2 (8)

logg1
d = y1 + wy2 (9)

logg1
vi = ri(x1 + ay1) + wr′i(x2 + ay2) (10)

It clear that (10) is linear independent to (8) and (9),therefore, the decryption oracle of both
the simulator and the actual attack outputs random value at the adversary’s view.

Lemma 4 When the simulator’s input comes from R, the distribution of the hidden bit b is
(essentially) independent from the adversary’s view.

The lemma follows immediately from the following two claim.

Claim 5 If the decryption oracle return random value when the ciphertext is invalid during
the attack, then the distribution of the hidden bit b is independent of the adversary’s view.

When (g1, g2, u1, u2) ∈ R with u1 = gr
1, u

r′
2 , r 6= r′,let v = g

r(x1+ay1)
1 g

r′(x2+ay2)
2 , we have:

logg1
v = r(x1 + ay1) + wr′(x2 + ay2) (11)

It is clear that (11) and (8)(9) are linear independent. So H(v) is uniform at the adversary’s
view conditioning on u1, u2. Finally we have that b is independent of the adversary’s view.

Claim 6 The decryption oracle will return random value except with negligible probability
when the ciphertext is invalid.

Now assume that the adversary submits a ciphertextWhen the ciphertext (u1i, u2i) 6= (u1, u2)
which is invalid with u1i = gri

1 , u2i = g
r′
i

2 , ri 6= r′i. There are two cases we consider.
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Case1: (u1i, u2i) 6= (u1, u2) and ai 6= a. Consider the return value:

Ki = H(gri(x1+aiy1)
1 g

r′
i(x2+aiy2)

2 )

Let v′i = g
ri(x1+aiy1)
1 g

r′
i(x2+aiy2)

2 , we have:

logg1
v′i = ri(x1 + aiy1) + wr′i(x2 + aiy2) (12)

It is clear that (12) and (8)(9) are linear independent. Thus, the decryption oracle will return
random value at the adversary’s view except with negligible probability.

Case2: (u1i, u2i) 6= (u1, u2) and ai = a. In this case it will be a target collision attack on TCR. Since
we assume that TCR is secure against target collusion attack, the probability of this case is
negligible.

7 Efficiency Analysis

The efficiency of our schemes , CS98 , KD04 and Kiltz07 is list in table 1.

Table 1: Efficiency comparison
Encryption(exp) Decryption(exp) Ciphertext overhead(bit) Assumption

CS98 4.5(3exp+1mexp) 2.5(1exp+1mexp) 3|q| DDH
KD04 3.5(2exp+1mexp) 1.5(1mexp) 2|q|+ |a| DDH
Kiltz07 3.5(2exp+1mexp) 1.5(1mexp) 2|q| GHDH

NEW-PKE 3.5(2exp+1mexp) 1.5(1mexp) 2|q| DDH
NEW-Hyb 3.5(2exp+1mexp) 1.5(1mexp) 2|q| DDH

Where NEW-PKE is our new public key encryption scheme,NEW-Hyb is the hybrid scheme
construct with our new KEM, CS98 is the scheme in [10], KD04 is the scheme in [14], Kiltz07
is the first scheme in [25] . When tabulating computational efficiency hash function and block
cipher evaluations are ignored, multi-exponentiation (mexp) is counted as 1.5 exponentiations (exp).
Ciphertext overhead represents the difference between the ciphertext length and the message length,
and |q| is the length of a group element, |a| is the length of tag in SKE.

8 Conclusion

The current public-key schemes against chosen ciphertext attack share the same approach to resist
the active attack. The well-formed checking is used to reject ill-formed ciphertext. We proposed
a kind of public-key encryption that does not lie on rejecting ill-formed ciphertext. Instead, it
gives out a random result when the ciphertext is ill-formed. That’s a new approach to against
adaptively chosen ciphertext attacks, which we call it probabilistic decryption. Using the concept
of probabilistic decryption the security of our scheme is natural and easy to understand. Our
schemes are more efficient than CS98, and nearly the same as KD04 in computation while more
efficient in bandwidth. Compared with Kiltz’s scheme, our scheme is the same efficient in encryption
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and decryption while our scheme is based on the DDH assumption which is more flexible than
GHDH(Gap Hashed Diffie-Hellman).
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