A new paradigm of chosen ciphertext secure public key
encryption scheme

Xianhui Lu!, Xuejia Lai?, Dake He!
Email:luxianhui@gmail.com

1: Lab. of Information Security & National Computing Grid, SWJTU, Chengdu, China
2: Dept. of Computer Science and Engineering, SJTU, Shanghai, China

Abstract. For all current adaptive chosen ciphertext(CCA) secure public key encryption schemes in
standard model there are two operations in the decryption algorithm, “validity check” and decryption.
The decryption algorithm returns the corresponding plaintext if the ciphertext is valid otherwise it
returns a rejection symbol L. We call this paradigm “invalid ciphertext rejection”. However the “validity
check” is not necessary for an encryption scheme. Also in this case the adversary will get the information
that the ciphertext is ”invalid” which he may not know before the decryption query. We propose a new
paradigm for constructing CCA secure public key encryption schemes which combines “validity check”
and decryption together. The decryption algorithm will execute the same operation regardless of the
ciphertext’s validity. We call this new paradigm “uniform decryption”. Compared with the ”invalid
ciphertext rejection” paradigm, the decryption oracle of schemes in the new paradigm will reveal less
information. The attacker even can not get whether the queried ciphertext is “valid” or not. Moreover
the combination of “validity check” and the decryption will yield more efficient schemes.

Using the new paradigm we construct an efficient public key encryption scheme. Our scheme is more
efficient than CS98 in both computation and bandwidth. Compered with KD04 and HKO7 the new
scheme is more efficient in bandwidth and the same efficient in computation. The new scheme is as
efficient as Kiltz07 both in computation and bandwidth. However the new scheme is CCA secure based
on DDH assumption which is more flexible than GHDH assumption that Kiltz07 based on.

Kurosawa and Desmedt proposed an efficient hybrid scheme named as KD04[14]. Although the key
encapsulation part of KD04(KD04-KEM) is not CCA secure [20], the whole scheme can be proved to
be CCA secure. We show that if the key derivation function(KDF) of KD04-KEM is a non-malleable
hash function it will be a CCA secure KEM in the new paradigm.

Keywords: PKE,KEM,IND-CCA2

1 Introduction

Security against adaptive chosen ciphertext attacks (CCA security) [1-3] is a strong and useful
notion of security for public key encryption schemes, and it is commonly accepted as the security
notion of choice for encryption schemes that are to be plugged into a protocol running in an arbitrary
setting [4, 5]. However CCA security is hard to achieve because of the existence of the active attacks.
Achieving provable CCA security for public key encryption has been one of the main challenges for
cryptographic research. The random oracle model is a useful tool in constructing CCA secure public
key encryption schemes, but it does not rule out all possible attacks [6]. Schemes that can be proven
to be CCA secure in the standard model (without the use of heuristics such as random oracles)
are more practical. Three main techniques have been proposed for constructing CCA secure public
key encryption schemes in standard model. The first follows the paradigm of Naor and Yung [7],
as extended by Dolev, Dwork, and Naor [2] and later simplified by Sahai [8] and Lindell [9]. This
technique uses as building blocks any CPA secure public key encryption scheme (any scheme that is

secure against chosen plaintext attacks) as well as any non-interactive zero-knowledge proof system
(ZIZK). The resulting scheme is highly inefficient because of the using of ZIZK proof. The second
technique is due to Cramer and Shoup [10], and is based on the “smooth hash proof systems” , and
has led to a variety of constructions [18,11,13,14,23]. Cramer and Shoup’s work yields the first
provably secure practical public key encryption scheme in the standard model. The third method
constructs a CCA secure encryption scheme from any semantically secure (CPA secure) identity-
based encryption (IBE) scheme. It is first proposed by Ran Canetti, Shai Halevi and Jonathan Katz
(CHK) [15], improved by Dan Boneh and Jonathan Katz (BK)[16], and later simplified by Qixiang
Mei [17] and Kiltz[22].

CCA security is hard to achieve because the adversary has access to a decryption oracle that
decrypts (almost) arbitrary ciphertexts. This can in principle reveal information about the secret
decryption key of the scheme. All of the existing techniques construct CCA-secure encryption
schemes by letting the scheme reject certain “invalid” ciphertexts. Hence the adversary can get no
information from such “invalid” ciphertexts other than that they are “invalid”. We call this skill
“invalid ciphertext rejection”. In this paradigm the decryption algorithm returns the corresponding
plaintext if the ciphertext is valid otherwise it returns a rejection symbol L. It turns out that there
are two operations in the decryption algorithm, “validity check” and decryption. However the
“validity check” is not necessary for an encryption scheme. Also in this case the adversary will
get the information that the ciphertext is “invalid” which he may not know before the decryption

query.

1.1 Owur Contributions

We propose a new paradigm for constructing CCA secure public key encryption schemes which
combines “validity check” and decryption together. The decryption algorithm will execute the same
operation regardless of the ciphertext’s validity. We call this new paradigm “uniform decryption”.
In this new paradigm the adversary can not even get the information of whether the ciphertext is
“valid” or not. Compared with the “invalid ciphertext rejection” paradigm, the decryption oracle of
schemes in the new paradigm reveals less information. Since the “validity check” and the decryption
are combined together, the new paradigm will yield more efficient schemes.

Using the new paradigm we construct an efficient public key encryption scheme which can be
seen as a combination of a tag-KEM][19] and a DEM(data encapsulation mechanism). Our scheme
is more efficient than CS98 in both computation and bandwidth. Compered with KD04 and HK07
the new scheme is more efficient in bandwidth and the same efficient in computation. The new
scheme is as efficient as Kiltz04 both in computation and bandwidth. However the new scheme is
CCA secure based on DDH assumption which is more flexible than GHDH assumption that Kiltz04
based on.

Although the key encapsulation part of KD04(KD04-KEM) is not CCA secure [20], the whole
scheme can be proved to be CCA secure. We show that if the key derivation function(KDF) of
KDO04-KEM is a non-malleable hash function it will be a CCA secure KEM in the new paradigm.

We remark that there is subtle difference between the new paradigm and the skill of “implicit
consistency check” used by Kiltz [21] . When an attacker queries the decryption oracle with an
“invalid” ciphertext several times, schemes with implicit consistency check will return different
values each time, while schemes in our new paradigm will return the same value. If an attacker
queries the decryption oracle twice with the same ciphertext it will know whether the ciphertext

is “valid” or not. Thus the skill of “implicit consistency check” is actually the same as “invalid
ciphertext rejection” from the attacker’s view.

1.2 Related work

Implicit consistency check: Eike Kiltz and David Galindo [21] presented a direct chosen cipher-
text secure identity based key encapsulation mechanism(IBKEM) without random oracles. To get
a more efficient IBKEM, they use a skill called implicit consistency check. The idea is to make
the Diffie-Hellman consistency check implicit in the computation of the key. Thus it will return
the right key when the encapsulation is consistent and a random group element otherwise. The
alternative decapsulation algorithm roughly saves two pairing operation.

Construction of hybrid encryption schemes: In order to obtain a CCA secure hybrid en-
cryption scheme, it is sufficient that both KEM and DEM are CCA secure. Kurosawa and Desmedt
proposed an efficient hybrid scheme named as KD04[14]. Although the key encapsulation part of
KD04(KD04-KEM) is not CCA secure, the whole scheme can be proved to be CCA secure. Kuro-
sawa and Desmedt’s work points out that to obtain CCA-secure hybrid encryption, requiring both
KEM/DEM to be CCA-secure, while being a sufficient condition, may not be a necessary one, and
might indeed be an overkill. After that, Masayuki Abe, Rosario Gennaro and Kaoru Kurosawa
proposed a novel framework for generic construction of hybrid encryption schemes which makes use
of a new object called “tag-KEM”. Abe showed that CCA secure hybrid encryption scheme can be
constructed from a CCA secure tag-KEM and DEM secure against passive attacks. Abe pointed
out that KDO04 belongs to this new frame work. Recently, Dennis Hofheinz and Eike Kiltz proposed
a new paradigm for building hybrid encryption schemes from constrained chosen-ciphertext secure
(CCCA) key-encapsulation mechanisms (KEMs) plus authenticated symmetric encryption. CCCA
has less demanding security requirements than standard chosen ciphertext (CCA) security (since it
requires the adversary to have a certain plaintext- knowledge when making a decapsulation query)
yet Dennis Hofheinz and Eike Kiltz proved that CCCA is sufficient for secure hybrid encryption.
Dennis Hofheinz and Eike Kiltz proposed a new KEM which is IND-CCCA secure under the DDH
assumption and can be viewed as a dual of KD04-KEM.

Adaptive chosen ciphertext attack on KD04-KEM: Javier Herranz, Dennis Hofheinz
and Eike Kiltz [20] proposed an adaptive chosen ciphertext attack on the key encapsulation part of
the Kurosawa-Desmedt scheme [14]. The point is that the hash function KDF only has to satisfy
relatively weak security properties, namely KDF(K) has to be uniformly distributed over {0, 1}* if
K is uniformly distributed over . In particular, a hash function that is efficiently invertible may
satisfy this property. In that case the attacker can reconstruct K from KDF(K). Thus the attacker
can get sufficient information to reconstruct the challenge key K.

1.3 Outline of paper

In section 2 we review the basic definitions of public key encryption, KEM, SKE and DDH as-
sumption, our definitions of public key encryption scheme and KEM are slightly different from
the previous definitions. The decryption algorithm will always return a value, while in the previous
definitions the decryption will return a rejection symbol L when the ciphertext is invalid. In section
3 we propose the new paradigm and show the advantages of it compared with “invalid ciphertext
rejection”. In section 4 we describe a new public key encryption scheme, and prove that the new

public key encryption scheme is CCA secure in standard model based on DDH assumption. In
section 5 we give a modified KD04-KEM and prove that it is CCA secure. In section 6 we compare
our schemes with the previous schemes. Finally we give the conclusion in section 7.

2 Definitions

We describe the definitions of public key encryption scheme and KEM. Our definitions of public-
key encryption scheme and KEM are slightly different from that in [12]. This is followed by the
definition of the SKE and Diffie-Hellman decision problem (DDH). Finally we give the definition
of non-malleable hash function.

In describing probabilistic processes, we write x £ X to denote the action of assigning to the
variable x a value sampled according to the distribution X. If S is a finite set, we simply write
s & S to denote assignment to s of an element sampled from uniform distribution on S. If A is a
probabilistic algorithm and x an input, then A(x) denotes the output distribution of A on input x.

Thus, we write y & A(z) to denote of running algorithm A on input x and assigning the output
to the variable y.

2.1 Public Key Encryption

A public key encryption scheme consists the following algorithms:

— PKE.KeyGen(1¥): A probabilistic polynomial-time key generation algorithm takes as input a
security parameter (1) and outputs a public key /secret key pair (PK,SK). We write (PK,SK) «—
PKE.KeyGen(1%)

— PKE.Encrypt(PK,m): A probabilistic polynomial-time encryption algorithm takes as input a
public key PK and a message m, and outputs a ciphertext C. We write C' «+ PKE.Encrypt(PK, m)

— PKE.Decrypt(SK,C): A decryption algorithm takes as input a ciphertext C' and secret key SK,
and outputs a plaintext m. We write m <+ PKE.Decrypt(SK, C).

We require that for all PK,SK output by PKE.KeyGen(1¥), all m € {0,1}*, and all C output by
PKE.Encrypt(PK,m) we have PKE.Decrypt(SK,C) =m .

A public key encryption scheme is secure against adaptive chosen ciphertext attacks if the
advantage of any adversary in the following game is negligible in the security parameter k:

1. The adversary queries a key generation oracle. The key generation oracle computes (PK,SK) «
PKE.KeyGen(1*) and responds with PK.

2. The adversary makes a sequence of calls to the decryption oracle. For each decryption or-
acle query the adversary submits a ciphertext C, and the decryption oracle responds with
PKE.Decrypt(SK, C).

3. The adversary submits two messages mg, m; with |mg| = |m1|. On input mg, m; the encryption
oracle computes:

b & {0,1}; C* «— PKE.Encrypt(PK, my)

and responds with C*.

4.

5.

The adversary continues to make calls to the decryption oracle except that it may not request
the decryption of C*.
Finally, the adversary outputs a guess b'.

We say the adversary succeeds if b = b, and denote the probability of this event by Pr p [Succ].

The adversary’s advantage is defined as AdVCCAPKE, A = | Prp[Succ] —1/2].

2.2 Key Encapsulation Mechanism

A key encapsulation mechanism consists the following algorithms:

— KEM.KeyGen(1¥): A probabilistic polynomial-time key generation algorithm takes as input a

security parameter (1¥) and outputs a public key PK and secret key SK. We write (PK,SK) «
KEM.KeyGen(1¥)

— KEM.Encrypt(PK): A probabilistic polynomial-time encryption algorithm takes as input the

public key PK, and outputs a pair (K1), where K € Kp(Kp is the key space) is a key and
is a ciphertext. We write (K, 1) « KEM.Encrypt(PK)

— KEM.Decrypt(SK, ©): A decryption algorithm takes as input a ciphertext ¢ and the secret key

SK. It returns a key K. We write K < KEM.Decrypt(SK, v).

We require that for all (PK,SK) output by KEM.KeyGen(1*¥), all (K,) € [KEM.Encrypt(PK)],
we have KEM.Decrypt(SK, ¢)=K.

A KEM scheme is secure against adaptive chosen ciphertext attacks if the advantage of any

adversary in the following game is negligible in the security parameter k:

1.

The adversary queries a key generation oracle. The key generation oracle computes (PK,SK) «
KEM.KeyGen(1¥) and responds with PK.

The adversary makes a sequence of calls to the decryption oracle. For each decryption or-
acle query the adversary submits a ciphertext 1, and the decryption oracle responds with
KEM.Decrypt(SK,).

The adversary queries an encryption oracle. The encryption oracle computes:

b & 10,1}; (Ko, v*) «— PKE.Encrypt(PK, my); K1 & Kp;

and responds with (Kj, ™).

The adversary continues to make calls to the decryption oracle except that it may not request
the decryption of ¥*.

Finally, the adversary outputs a guess b’.

The adversary’s advantage in the above game is AdvCCAyg\ 4(k) = [Pr[b =b"] — 1/2].

2.3 Symmetric key encryption scheme

A symmetric key encryption scheme SKE consists of two algorithms:

— SKE.Encrypt(k, m): The deterministic, polynomial-time encryption algorithm takes as input a

key k, and a message m, and outputs a ciphertext y. We write x <« SKE.Encrypt(k,m)

— SKE.Decrypt(k, x): The deterministic, polynomial-time decryption algorithm takes as input a
key k, and a ciphertext x, and outputs a message m or the special symbol reject. We write
m «— SKE.Decrypt(k, x)

We require that for all kLen € N, for all k € {0,1}%¢" kLen denotes the length of the key of
SKE, and for all m € {0,1}* ,we have:

SKE.Decrypt(k, SKE.Encrypt(k,m)) = m.

A SKE scheme is secure against passive attacks if the advantage of any probabilistic, polynomial-
time adversary A in the following game is negligible in the security parameter kLen:

1. The challenger randomly generates an appropriately sized key k € {0, 1}“6”.

2. A queries an encryption oracle with two messages mg, m1 , |mg| = |m1]. A bit b is randomly
chosen and the adversary is given a ”challenge ciphertext” x* « SKE.Encrypt(k, mp).

3. Finally, A outputs a guess b’ .

The adversary’s advantage in the above game is defined as AdvPAgkp a(kLen) = |Pr[b =
b'] —1/2|. If a SKE is secure against passive attack we say it is IND-PA secure.

2.4 The Diffie-Hellman Decision Problem

There are several equivalent formulations of the Diffie-Hellman decision problem. The one that we
shall use is the following.

Let G be a group of large prime order ¢, and consider the following two distributions:

The distribution R of random quadruples (g1, g2, u1,u2) € G*

The distribution D of quadruples (g1, g2,u1,u2) € G*, where g1,go are random, and u; =
g1, u2 = g5 for random r € Z.

An algorithm that solves the Diffie-Hellman decision problem is a statistical test that can
effectively distinguish these two distributions. That is, given a quadruple coming from one of the
two distributions, it should output 0 or 1, and there should be a non-negligible difference between
(a) the probability that it output a 1 given an input from R, and (b) the probability that it
output a 1 given an input from D. The Diffie-Hellman decision problem is hard if there is no such
polynomial-time statistical test.

2.5 Non-malleable hash function

A hash function H is said to be non-malleable if it is infeasible for an adversary to find two
functions f and g that H(z) =y, H(f(z)) = ¢g(y). Non-malleable hash function is a stronger notion
than one-way hash function. It is clear that if we can reverse a hash function then we can get

g(y) = H(f(H™'(y))) for any function f.

3 The New Paradigm

In an adaptive chosen ciphertext attack the adversary has access to a decryption oracle that decrypts
(almost) arbitrary ciphertexts. This can in principle reveal information about the secret decryption

key of the scheme. It yields that achieving provable CCA security for public key encryption has been
one of the main challenges for cryptographic research. Up to now three main techniques have been
proposed for constructing CCA secure public key encryption schemes in standard model, while all
of these techniques construct CCA secure encryption schemes by letting the scheme reject certain
“invalid” ciphertexts. Hence the adversary can get no information from such “invalid” ciphertexts
other than that they are “invalid”. We call this skill “invalid ciphertext rejection”.

In this paradigm the decryption algorithm returns the corresponding plaintext if the ciphertext
is valid otherwise it returns a rejection symbol L. It turns out that there are two operations in
the decryption algorithm, “validity check” and decryption. However the “validity check” is not
necessary for an encryption scheme. Also in this case the adversary will get the information that
the ciphertext is ”invalid” which he may not know before the decryption query.

We proposed a new paradigm name as “uniform decryption” which combines “validity check”
and decryption together. The decryption algorithm will execute the same operation regardless of the
ciphertext’s validity. When the ciphertext is “invalid” the decryption algorithm returns a random
result instead of a rejecting symbol L . In this new paradigm the adversary can not even get
the information of whether the ciphertext is “valid” or not. Compared with the general “invalid
ciphertext rejection” paradigm, the decryption oracle of schemes in the new paradigm reveals less
information. Most importantly, since the validity check and the decryption are combined together,
the new paradigm will yield more efficient schemes.

Now we give the definition of our new paradigm:

Definition 1. A public key encryption scheme or a KEM is called a uniform decryption scheme
if its decryption algorithm satisfies: (1) returns the right plaintext when the ciphertext is valid, (2)
returns a random value from the adversary’s view when the ciphertext is invalid, (3) returns the
same value if the ciphertext is the same.

It is clear that we can change the existing CCA secure schemes to return a random value when
the ciphertext is invalid. The only thing we need to do is to select a random value and return it as
the output of the decryption algorithm when the ciphertext is invalid. Another way to achieve this is
using random numbers in the decryption operation. An example of this is the “implicit consistency
check” skill proposed in [21]. While these two techniques will return different value when we ask
the decryption oracle several times with the same invalid ciphertext. So the above techniques can
not yield a scheme in the new paradigm.

The landmark technical idea of Cramer and Shoup was to “information-theoretically” hide a
part of the secret decryption key by letting the scheme reject certain “invalid” ciphertexts. Hence
the adversary can get no information from such invalid ciphertexts other than that they are invalid.
However, exactly this hidden part of the decryption key determines how the challenge ciphertexts
decrypt. We find that with the help of non-malleable hash function the output of the decryption
algorithm will not leak the information of the hidden part of the decryption key. That will make the
output of the decryption algorithm random from the adversary’s view. Finally we can get schemes
in the new paradigm using the technique of information-theoretically hiding a part of the secret
decryption key and non-malleable hash function.

4 New Scheme

Our basic scheme can be described as follow:

— PKE.KeyGen(1¥): Assume that G is group of order ¢ where ¢ is a large prime number.
[pidyet R o« T2, g Yipy2.
g, — aﬂfl,9327?/1,y2‘—Zq,C<—9 @< 4g)

PK = (g,h,C,d,H,TCR,SKE),SK = (m1,$273/17y2)

Where TCR is a target collision resistant hash function[12]. Let H : G — {0, 1} where [is the
length of message. We assume that H is a non-malleable hash function. SKF is a symmetric
key encryption scheme secure against passive attack.

— PKE.Encrypt(PK,m): Given a message m € G, the encryption algorithm runs as follows.

r& Zysu gk — H(h");e « SKE.Encrypt(k,m);a < TCR(u,e);v « c"d™

C — (u,e,v)

— PKE.Decrypt(SK,C): Given a ciphertext C = (u, e, v), the decryption algorithm runs as follows.

v
uritayl

1
a«— TCR(u,e);k — H (”ﬁ“”) ;m «— SKE.Decrypt(k,e)

First we verify that when the ciphertext is valid with v = ¢",v = ¢"d"*,a = TCR(u,e) the
decryption algorithm will return the right plaintext:

1
1 z1t+ay: pr(zatayz) w3 tayy
v (%
H et) = H =H(h") =k
uritay: ur1tay:

Now we show that when the ciphertext is invalid with u = ¢", v = ¢"d" ,a’ # a = TCR(u, €),
the decryption algorithm will return a random value from the attacker’s view:

1
o Tatam g"(@tayy) pr(zeta’ys) z3tay;
H| — —
ux1tay gr(x1+ay1)

_H <(gry1<a'—a) hr<x2+a'yz>)z2+1ay2)

1
Let € = (gryl(“ —a) pr(z2ta’y2) ”“’2+“y2> ,w = log, h, consider the distribution of (z1, 72, y1,¥2):

log, ¢ = z1 + wxg (1)
log, d = y1 + wys (2)
log, v = 7(21 + ay1) + wr(x2 + ayz) (3)

ryi1(a’ — a) +wr(xe + d'ys)
9 + ays

log, e =

The attacker can get (1) and (2) from the public key (¢, d), and get (3) from the output of
encryption algorithm. It is clear that (4) is linearly independent of (1)(2) and (3), therefore, the
adversary can not get enough information to determine the distribution of (z1, z2,y1,y2) and can
not denote (4) by (1)(2) and (3) either. Since H is a non-malleable hash function, the adversary can
not denote (4) by the response of the decryption oracle with other ciphertexts. So the decryption
algorithm’s output is random from the attacker’s view.

Now we prove the following theorem.

Theorem 1. The above cryptosystem is secure against adaptive chosen ciphertext attack assuming
that (1) TCR is a target collision resistant hash function,(2)H is a non-malleable hash function,
(8) SKE is a IND-PA secure symmetric key encryption scheme.

To prove the theorem, we will assume that there is an adversary that can break the cryptosystem,
and T'C'R is a target collision resistant hash function, H is non-malleable hash function and show
how to use this adversary to construct a statistical test for the DDH problem.

For the statistical test, we are given (g, h,u,T) coming from either the distribution R or D.
At a high level, our construction works as follows. We build a simulator that simulates the joint
distribution consisting of adversary’s view in its attack on the cryptosystem, and the hidden bit
b generated by the generated oracle (which is not a part of the adversary’s view). We will show
that if the input comes from D, the simulation will be perfect, and so the adversary will have a
non-negligible advantage in guessing the hidden bit b. We will also show that if the input comes
from R, then the adversary’s view is essentially independent of b, and therefore the adversary’s
advantage is negligible. This immediately implies a statistical test distinguishing R from D: run
the simulator and adversary together, and if the simulator outputs b and the adversary outputs v/,
the distinguisher outputs 1 if b = b/, and 0 otherwise.

We now give the details of the simulator. The input to the simulator is (g, h, u, T'). The simulator
runs the following key generation algorithm, using the given (g, h). The simulator chooses

R
T1,22,Y1,Y2 < Z:;
and computes
¢ gUth™d — gt h??;

The simulator also chooses a target collision resistant hash function T'C' R, a non-malleable hash
function H, and a IND-PA secure SEK. The public key that the adversary sees is (g, ¢,d, h, TCR, H, SKE).
The simulator knows (z1, z2, y1, y2).

First we describe the simulation of the encryption oracle. Given mg, m1, the simulator chooses
b € {0,1} at random, and computes

k-« H(T);e «— SKE.Encrypt(k,my),a «+— TCR(u,e),v « u**tyropratia

and outputs: (u,e,v)
We now describe the simulation of the decryption oracle. Given (uy, €;, v;), the simulator calcu-
lates:

1

a; — TCR(u;,e;), ki — H (wzﬁam) ;m; «— SKE.Decrypt(k;, e;)

u; Ty

and returns m;.
That completes the description of the simulator. The theorem now follows immediately from
the following two lemmas.

Lemma 1. If the simulator’s input comes from D, the joint distribution of the adversary’s view
and the hidden bit b is the same as that in the actual attack.

Consider the joint distribution of the adversary’s view and the bit b when the input comes from
the distribution D. Say u = ¢" and T'=h".

As we see the decryption oracle is just the same as that in the actual attack. It is clear in this
case that the output of the encryption oracle has the right distribution, since:

U= gr; k= H(hT), v = yFrtvepratysa gr(x1+y1a)hr(acz+y2a) =cd;

So both the encryption oracle and the decryption oracle has the right distribution just the same
as that in the actual attack.

Lemma 2. If the simulator’s input comes from R, the distribution of the hidden bit b is independent
from the adversary’s view.

Let u=g", T = h"" v = yrtanTe2tae o = TCR(u,e). It is clear that k = H(T) is random
from the adversary’s view conditioning on u. Consider:

log, v = r(z1 4 ayr) + wrt (z2 + ays) (5)

It is clear that (5) and (1)(2) are linearly independent, therefore, the adversary can not get
sufficient information to determine the distribution of (x1,x2,y1,y2). So k = H(T) is random from
the adversary’s view conditioning on v. Since H is non-malleable hash function, the adversary can
not get equations from the decryption oracle to determine the distribution of (z1, z2, y1, y2) and can
not denote k = H(T) by other k; = H(h'), r; # r+. If the adversary can not get the H(T) = H(h"")
directly from the decryption oracle the distribution of & = H(T') will be independent from the
adversary’s view. As SKE is IND-PA secure, the distribution of b will be independent from the
adversary’s view when the distribution of k& = H(T) is independent from the adversary’s view.
Thus the lemma follows immediately from the following proposition:

Proposition 1. The adversary can not get H(h’"+) directly from the decryption oracle except neg-
lrgible probability.

Now assume that the adversary submits a ciphertext (u;, e;,v;) # (u, e, v), there are three cases
we consider:

Case 1: (u;,e;) = (u,e),v; # v. In this case we have u; = ¢",v; = w1 T@NTTVGY2 g £ g =
TCR(u;,e;), consider:

1

. +) T

v; 12_‘_1%2 B gT($1+azy1)h7’ (z24asy2) za+ayy
w; Ty - gr(x1+ay1)

- H ((gryl (ai—a) pr* (z2taiys)) zg+1ay2>

Case 2:

Case 3:

Case 4:

Case 5:

5

Let ¢; = (gryl(“i_a)hr+($2+ai?’2))Z2+1“y2, we have:

1 ryi(a — a) +wrt (v2 + aiy2) 6
Ogg el - $2 _|_ ay2 ()

It is clear that (6) and (1)(2)(5) are linearly independent, therefore, the adversary can not get
sufficient information to determine the distribution of (z1, z2, y1, y2). Thus the probability that
(g (@i=a) prt (e2tae)ymra — s negligible.

u; = u,e; # e,v; # v. In this case we have u; = ¢",v; = uP1TanTraY2 If q; = TCR(u;, e;)

we have:

logg v; = r(z1 + aiyr) + wr (z2 + aiys) (7)

Since TCR is a target collision resistant hash function we have a # a;. It is clear that (7) and
(1)(2)(5) are linearly independent, therefore, the adversary can not get sufficient information
to determine the distribution of (z1,x2,y1,y2) and also can not denote (7) by (1)(2) and (5).
Thus the probability of the adversary submits such a ciphertext is negligible.

If a; # TCR(uj,e;), similar to case 1 the pobability that the adversary H(h™") from the
decryption oracle is negligible.

u; = u,e; # e,v; = v. In this case we have u; = ¢g",v; = u*1TW1T*1+%2_ Since TCR is a target
collision resistant hash function we have a # a; = TCR(u;, €;). Similar to case 1 the pobability
that the adversary H(h™") from the decryption oracle is negligible.

u; # u,v; = v. In this case we have u; = g™, v; = ¥ TWIT*17a2 p. £ Since TCR is a target
collision resistant hash function we have a # a; = TCR(u;,¢€;). to case 1 the pobability that
the adversary H (h’“+) from the decryption oracle is negligible.

u; # u,v; # v. In this case we have u; = g™, v; = ¢g"(T1tev)PP14aw2 po oL p 1f q; = TCOR(uy, €;)
then similar to case 2, the probability of the adversary submits such a ciphertext is negligible. If
a; # TCR(u;, e;), similar to case 1 the pobability that the adversary H (hﬁ) from the decryption
oracle is negligible.

Now we complete the proof of theorem 1.

Security of the modified KD04-KEM

First we describe the modified KD04-KEM:

— KEM.KeyGen(1¥): Assume that G is group of order ¢ where ¢ is a large prime number.

R . R . 1 To, Y1, Y2
91,92 < G,$1,$2ayl>?/2 — anC<_gll.9227d(_gl 9o

PK = (glagQaCa d7 HaTCR)aSK = ($17$2,y1,y2)

Where TCR is a target collision resistant hash function [12]. Let H : G — {0,1}* where k is
the length of symmetric key K. We assume that H(v) is a non-malleable hash function.

— KEM.Encrypt(PK): Given PK, the encryption algorithm runs as follows.

r& Zy iur + gisug — gyia < TCOR(u1,ug); K« H(c"d™); v « (u1,u2)

— KEM.Decrypt(SK,1): Given a ciphertext ¢ = (u1,u2) and SK, the decryption algorithm runs
as follows.

Note that, in [14], the hash function H is only needed to be uniform. While we need a non-
malleable hash function H.
It is clear that when the ciphertext is valid the decryption algorithm will return the right result.

Now we show that when the ciphertext is invalid with ui; = g7, ug; = g;i, ri # rl, the decryption
algorithm will return a random value from the attacker’s view:

K; = H(g;i(x1+aiy1)g;§($2+aiy2))

Let v; n(x1+aiy1)g72"§($2+az‘yz)

=q ,w = log,, g2, consider the distribution of (x1, 2, y1,y2):
log,, ¢ = m1 + wxg (8)
log,, d = y1 + wys2 (9)
log,, vi = ri(z1 + ay1) + wri(ze + ayz) (10)

It is clear that (10),(8) and (9) are linearly independent, therefore, the adversary can not get
enough information to determine the distribution of (x1,z2,y1,y2) and also can not denote (10)
by (8) and (9). Since H is a non-malleable hash function the adversary can not denote (10) by
the response of the decryption oracle to other ciphertexts. So the decryption oracle of both the
simulator and the actual attack outputs random value from the adversary’s view.

Now we prove that the modified KD04-KEM is CCA secure:

Theorem 2. The modified KD04-KEM above is secure against adaptive chosen ciphertext attack
assuming that (1)hash function TCR is chosen from target collision resistant hash function fam-
ily, (2)H 1is a non-malleable hash function and (3) Diffie-Hellman decision problem is hard in the
group G.

To prove the theorem, we will assume that there is an adversary that can break the KEM, and
TCR is a target collision resistant hash function, H is a non-malleable hash function, and show
how to use this adversary to construct a statistical test for the DDH problem.

For the statistical test, we are given (g1, g2, u1, u2) coming from either the distribution R or D.
We will show that if the input comes from D, the simulation will be perfect, and so the adversary
will have a non-negligible advantage in guessing the hidden bit b, if the input comes from R, then
the adversary’s view is essentially independent of b, and therefore the adversary’s advantage is
negligible. This immediately implies a statistical test distinguishing R from D.

The input to the simulator is (g1, g2, u1,u2). The simulator runs the following key generation
algorithm, using the given (g1, g2). The simulator chooses

R«
T1,22,Y1,Y2 < Zq

and computes

c—gi'gy*d — g g%

The simulator also chooses a target collision resistant hash function T'C'R and a non-malleable
hash function H. The public key that the adversary sees is (g1, g2, ¢, d, H). The simulator knows
(@1, 2, Y1,Y2).

First we describe the simulation of the encryption oracle. Given PK, the simulator chooses
b € {0,1} at random, and computes

Ko — H(u" ™ g™ 0 TCR(uy, uz), 4 — (u1,us), Ky & {0,1}F

and outputs: (¢, Kp)
We now describe the simulation of the decryption oracle. Given (u14,u9;), the simulator calcu-
lates:
a; — TCR(u1s,uz;), K; — H(uj} T4 ugztei¥2)
The simulator returns K.
That completes the description of the simulator. The theorem now follows immediately from
the following two lemmas.

Lemma 3. If the simulator’s input comes from D, the joint distribution of the adversary’s view
and the hidden bit b is the same as that in the actual attack.

Consider the joint distribution of the adversary’s view and the bit b when the input comes from
the distribution D. Say u; = g7 and ua = g5.
As we see the decryption oracle is just the same as that in the actual attack. It is clear in this
case that the output of the encryption oracle has the right distribution, since:
ui = gf,up = gy,a = TCR(uy,ug), K = uf* ™52 = ¢"d"™
So both the encryption oracle and the decryption oracle has the right distribution just the same
as that in the actual attack.

Lemma 4. If the simulator’s input comes from R, the distribution of the hidden bit b is independent
from the adversary’s view.

971"(:61 +ay1)g;”(:c2+ay2)

When (g1, 92, u1,u2) € R with u; = g, ug = ggl,r #7' let v = , we have:

log,, v =r(z1 + ay1) + wr'(z2 + ayz) (11)

It is clear that (11),(8) and (9) are linearly independent, therefore, the adversary can not get
enough information to determine the distribution of (z1,x2,¥y1,y2) and can not denote (11) by
(8) and (9) either. Since H is non-malleable hash function, the adversary can not get equations
from the decryption oracle to determine the distribution of (z1, 22, y1,y2) and can not denote (11)
by the response of the decryption oracle to other ciphertexts. If the adversary can not get H(v)
directly from the decryption oracle the distribution of the hidden bit b will be independent from
the adversary’s view. Thus the lemma follows immediately from the following proposition:

Proposition 2. The adversary can not get H(v) directly from the decryption oracle except negli-
gible probability.

Assume that the adversary submits a ciphertext (u1;,u2;) # (u1,u2) there are two cases we
consider.

Case 1: (u14,u2;) # (u1,u2) and a; # a. Consider the return value:

K; = H(g?($1+aiyl)g;’;(-732+aiy2))

i ; r'(z2+a;
Let ,Ug _ g71"z(1'1+a1y1)921(2 192)’ we have:

log,, v; = ri(z1 + ay1) + wri(ze + aiy2) (12)

It is clear that (12),(8) and (9) are linearly independent, therefore, the adversary can not get
enough information to determine the distribution of (x1,z2,y1,y2) and can not denote (12) by
(8) and (9) either. Thus the probability that v = v} is negligible.

Case 2: (u14,u2;) # (u1,u2) and a; = a. In this case it will be a target collision attack on T'C'R. Since
we assume that TCR is secure against target collusion attack, the probability of this case is
negligible.

6 Efficiency Analysis

The efficiency of our scheme, CS98, KD04 and Kiltz07 is listed in table 1.

Table 1. Efficiency comparison

Encryption(exp) | Decryption(exp) |Ciphertext overhead(bit)|Assumption
CS98 |4.5(3exp+1mexp)|2.5(1lexp+1mexp) 3|q| DDH
KDO04 (3.5(2exp+1mexp)| 1.5(1mexp) 2|q| + |a] DDH
Kiltz07|3.5(2exp+1mexp)| 1.5(1mexp) 2|q| GHDH
HKO7 (3.5(2exp+1mexp)| 1.5(1mexp) 2|q| + |a] DDH
NEW [3.5(2exp+1mexp)| 1.5(1mexp) 2|q| DDH

In tablel NEW is our new public key encryption scheme, CS98 is the scheme in [10], KD04
is the scheme in [14], Kiltz07 is the hybrid scheme build from first scheme in [22], HKO7 is the
hybrid scheme build from the first scheme in [23]. When tabulating computational efficiency hash
function and block cipher evaluations are ignored, multi-exponentiation (mexp) is counted as 1.5
exponentiations (exp). Ciphertext overhead represents the difference between the ciphertext length
and the message length, and |qg| is the length of a group element, |a| is the length of tag in SKE.

We see that our scheme is more efficient than CS98 in both computation and bandwidth. Com-
pered with KDO04 and HKO07 the new scheme is more efficient in bandwidth and the same efficient
in computation. The new scheme is as efficient as Kiltz07 both in computation and bandwidth.
However the new scheme is CCA secure based on DDH assumption which is more flexible than
GHDH assumption that Kiltz07 based on.

7 Conclusion

We propose a new paradigm name as “uniform decryption” for constructing CCA secure public key
encryption schemes which combines “validity check” and decryption together. In the case of uniform
decryption the attacker even can not get whether the queried ciphertext is “valid” or not. Moreover
the combination of “validity check” and the decryption will yield more efficient schemes. Using the
new paradigm we construct an efficient public key encryption scheme, which can be proved to be
CCA secure in standard model based on DDH assumption and can be seen as a combination of a
tag-KEM and a DEM. We also give a modified KD04-KEM with a small modification which only
requires a non-malleable hash function as the KDR. We show that the modified KD04-KEM is
CCA secure in standard model based on DDH assumption.

References

1. M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway, “Relations Among Notions of Security for Public-Key
Encryption Schemes”, Adv. in Cryptology - Crypto 1998, LNCS vol. 1462, Springer-Verlag, pp. 26-45, 1998;

2. D. Dolev, C. Dwork, and M. Naor, “Non-Malleable Cryptography”, SIAM J. Computing , 30(2): 391-437, 2000;

3. C. Rackoff and D. Simon, “Non-Interactive Zero-Knowledge Proof of Knowledge and Chosen Ciphertext Attack”,
Adv. in Cryptology - Crypto 1991, LNCS vol. 576, Springer- Vrlag , pp. 433-444, 1991;

4. V. Shoup, “Why Chosen Ciphertext Security Matters”, IBM Research Report RZ 3076, November , 1998. Available
at http://www.shoup.net/papers;

5. V. Shoup, “A Proposal for an ISO Standard for Public Key Encryption (version 2.1)”, December, 2001. Available
at http://www.shoup.net/papers;

6. R. Canetti, O. Goldreich, and S. Halevi, “The Random Oracle Methodology Revisited” 30thACM Symp. on Theory
of Computing (STOC), ACM, pp. 209-218, 1998;

7. M. Naor and M. Yung, “Public-Key Cryptosystems Provably-Secure against Chosen- Ciphertext Attacks”, 22nd
ACM Symposium on Theory of Computing (STOC), ACM, pp. 427-437, 1990;

8. A. Sahai, “Non-Malleable Non-Interactive Zero Knowledge and Adaptive Chosen- Ciphertext Security”, 40th IEEE
Symposium on Foundations of Computer Science(FOCS), IEEFE, pp. 543-553, 1999;

9. Y. Lindell, “A Simpler Construction of CCA-Secure Public-Key Encryption Under General Assumptions”, Adv.
in Cryptology - Eurocrypt 2003, LNCS vol. 2656, Springer- Verlag, pp. 241-254, 2003;

10. R. Cramer and V. Shoup, “A Practical Public Key Cryptosystem Provably Secure Against Chosen Ciphertext
Attack”, Adv. in Cryptology - Crypto 1998, LNCS vol. 1462, Springer- Verlag , pp. 13-25, 1998;

11. R. Cramer and V. Shoup, “Universal Hash Proofs and a Paradigm for Adaptive Chosen Ciphertext Secure
Public-Key Encryption”, Adv. in Cryptology - FEurocrypt 2002, LNCS vol. 2332, Springer-Verlag, pp. 45-64, 2002;

12. R. Cramer and V. Shoup. “Design and analysis of practical public-key encryption schemes secure against adaptive
chosen ciphertext” attack. STAM Journal on Computing, 33(1):167-226, 2003.

13. R. Gennaro and Y. Lindell, “A Framework for Password-Based Authenticated Key Exchange” Adv. in Cryptology-
FEurocrypt 2003, LNCS vol. 2656, Springer-Verlag, pp. 524-543, 2003;

14. K. Kurosawa and Y. Desmedt, “A New Paradigm of Hybrid Encryption Scheme”, Adv. in Cryp-tology - Crypto
2004, LNCS vol. 3152, Springer-Verlag, pp. 426-442, 2004;

15. R.Canetti, S.Halevi, and J. Katz, “Chosen-Ciphertext Security from Identity-Based Encryption[C]”, Advances in
Cryptology Eurocrypt 2004, Berlin:Springer-Verlag,2004: 207- 222;

16. D.Boneh and J.Katz, “Improved efficiency for CCA-secure cryptosystems built using identity based encryption”,
In Proceedings of RSA-CT 2005. Springer-Verlag, 2005;

17. Qixiang Mei, “Study on the Public Key Cryptosystem Secure against Chosen Ciphertext Attack”, Ph.D. thesis,
Chengdu: Southwest Jiaotong University,2005,21-35;

18. V. Shoup, “Using Hash Functions as a Hedge against Chosen Ciphertext Attack”, FUROCRYPT 2000, pp.275-
288,2000;

19. Masayuki Abe, Rosario Gennaro, Kaoru Kurosawa, and Victor Shoup, Tag-KEM/DEM: A new framework for
hybrid encryption and a new analysis of Kurosawa-Desmedt KEM”, by Abe, Gennaro, Kurosawa, and Shoup, in
Proc. Eurocrypt 2005.

20. D. Hofheinz, J. Herranz, and E. Kiltz. The Kurosawa-Desmedt key encapsulation is not chosen-ciphertext secure.
Cryptology ePrint Archive, Report 2006/207, 2006. http://eprint.iacr.org

21. Eike Kiltz, David Galindo. “Direct Chosen-Ciphertext Secure Identity-Based Key Encapsulation Without Ran-
dom Oracles”. ACISP 2006: 336-347

22. Eike Kiltz. “Chosen-Ciphertext Secure Key Encapsulation based on Hashed Gap Decisional Diffie-Hellman”.
Proceedings of the 10th International Workshop on Practice and Theory in Public Key Cryptography, PKC
2007, pp. 282-297 LNCS 4450 (2007).Springer-Verlag. Full version available on Cryptology ePrint Archive: Report
2007/036

23. Dennis Hofheinz and Eike Kiltz. Secure Hybrid Encryption from Weakened Key Encapsulation. Advances in
Cryptology — CRYPTO 2007, pp. 553-571 LNCS 4622 (2007).Springer-Verlag.

