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Abstract. The abstraction of cryptographic operations by term algebras, called Dolev-Yao
models or symbolic cryptography, is essential in almost all tool-supported methods for proving
security protocols. Recently significant progress was made – using two conceptually different
approaches – in proving that Dolev-Yao models can be sound with respect to actual crypto-
graphic realizations and security definitions. One such approach is grounded on the notion
of simulatability, which constitutes a salient technique of Modern Cryptography with a long-
standing history for a variety of different tasks. The other approach strives for the so-called
mapping soundness – a more recent technique that is tailored to the soundness of specific
security properties in Dolev-Yao models, and that can be established using more compact
proofs. Typically, both notions of soundness for similar Dolev-Yao models are established
separately in independent papers.
In this paper, the two approaches are related for the first time. Our main result is that
simulatability soundness entails mapping soundness provided that both approaches use the
same cryptographic implementation. Interestingly, this result does not dependent on details
of the simulator, which translates between cryptographic implementations and their Dolev-
Yao abstractions in simulatability soundness. Hence, future research may well concentrate
on simulatability soundness whenever applicable, and resort to mapping soundness in those
cases where simulatability soundness is too strong a notion.

1 Introduction

Tool-supported verification of cryptographic protocols almost always relies on abstrac-
tions of cryptographic operations by term algebras with cancellation rules, called sym-
bolic cryptography or Dolev-Yao models after the first authors [21]. An example term is
Dske(Epke(Epke(N))), where E and D denote public-key encryption and decryption, ske
and pke are corresponding private and public encryption keys, and N is a nonce (random
string). The keys are written as indices for readability; formally they are normal operands
in the term. A typical cancellation rule is Dske(Epke(t)) = t for all public/private key pairs
(pke, ske) and terms t, thus the above term is equivalent to Epke(N). The proof tools handle
these terms symbolically, i.e., they never evaluate them to bit strings. In other words, the
tools perform abstract algebraic manipulations on trees consisting of operators and base
messages, using only the cancellation rules, the message-construction rules of a particular
protocol, and an abstract model of networks and adversaries.

It is not at all clear from the outset whether Dolev-Yao models are a sound abstraction
from real cryptography with its computational security definitions, where messages are
bit strings and the adversary is an arbitrary probabilistic polynomial-time (ppt) Turing
machine. In particular, the tools assume that only the modeled operations and cancellation
rules are possible manipulations on terms, and that terms that cannot be constructed with



these rules are completely secret. For instance, if an adversary (also called intruder) only
saw the example term above and only the mentioned cancellation rule was given, then N
would be considered secret.

Bridging this long-standing gap between Dolev-Yao models and real cryptographic
definitions has recently received considerable attention, and remarkable progress has been
made using two conceptually different approaches.

One such approach, which we call simulatability soundness, is grounded on the security
notion of (black-box reactive) simulatability (BRSIM), which relates a real system (also
called implementation or real protocol) with an ideal system (also called ideal functionality
or ideal protocol). The real system is said to be as secure as the ideal system if every attack
on the real system can be turned into an “equivalent” attack on the ideal system, where
“equivalent” means indistinguishable by an environment (also called honest users). This
security notion essentially means that the real system can be plugged into an arbitrary
protocol instead of the ideal system without any noticeable difference [33, 34, 11]. Basically
the same notion is also called UC (universal composability) for its universal composition
properties [15].1 In terms of the semantics community, BRSIM/UC could be called an im-
plementation or refinement relation, with a particular emphasis on also retaining secrecy
properties, in contrast to typical implementation relations. Now, results on simulatabil-
ity soundness show that a (possibly augmented) Dolev-Yao model, specified as an ideal
system, can be implemented in the sense of BRSIM/UC by a real system using standard
cryptographic definitions. The first such result was presented in [9] and was extended to
more cryptographic primitives in [10, 7]. The use of these results in protocol proofs was
illustrated in [6, 4, 35, 3]. Simulatability soundness of a slightly simpler Dolev-Yao model
and a restricted class of protocols using it was proven in [16].

The other approach, which we call mapping soundness, is grounded on a more recent
technique that is tailored to the soundness of specific security properties in standard Dolev-
Yao models. Mapping soundness for a given protocol is established by showing the existence
of a mapping from bit strings to terms such that applying the mapping to an arbitrary trace
of the real cryptographic execution of the protocol yields a trace of an ideal, Dolev-Yao style
execution of the protocol. Compared to simulatability soundness, mapping soundness can
often be established using more compact proofs and sometimes more relaxed cryptographic
assumptions. Unlike simulatability soundness however, mapping soundness is restricted to
specific classes of protocols, and it does not entail universal composition properties. This
approach started with the seminal work of [2] which proved the mapping soundness of
symmetric encryption under passive attacks. This result was extended in [1, 26] still for
passive attacks. Various later papers extended this approach to active attacks and to
different cryptographic primitives and security properties [30, 27, 19, 18, 16]. In the present
work, we are concerned with mapping soundness for active attacks.

1.1 Our Results
In this paper, the two approaches are related for the first time. Our main result is that
simulatability soundness entails mapping soundness provided that both approaches use
1 The 2005 revision of the long version of [15] also contains an explicit blackbox version of UC, which

is proven to be equivalent to UC. A similar equivalence was first shown in the long version of [33] for
universal and blackbox synchronous reactive simulatability.
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the same cryptographic implementation. Interestingly, this result does not dependent on
details of the simulator, which translates between cryptographic implementations and their
Dolev-Yao abstractions in simulatability soundness. More precisely, our result is based
on two assumptions on the Dolev-Yao model, specified as an ideal system Mideal, and its
cryptographic implementation Mreal. The first assumption is that Mreal is as secure as Mideal

in the sense of BRSIM/UC, which formalizes simulatability soundness for the Dolev-Yao
model and the cryptographic implementation under consideration. The second assumption
is that if protocols are executed based on Mideal instead of Mreal, then the resulting traces
are so-called Dolev-Yao traces, i.e., these traces can be constructed while adhering to the
rules of the term algebra and the protocol under consideration, which exactly reflects the
intuition and purpose behind the Dolev-Yao model Mideal. We furthermore demonstrate
that our assumptions are met for the existing simulatability-sound Dolev-Yao model and its
implementation from [9]. The argument of our proof only relies on these two assumptions
and hence allows for easy extension to additional classes of cryptographic primitives and
protocols beyond the ones considered in this paper.

We note that requiring the same cryptographic implementations for both simulata-
bility soundness and mapping soundness means that existing results on simulatability
soundness do not necessarily fully supersede existing results on mapping soundness: the
former results may for instance require stronger assumptions on the security of crypto-
graphic primitives, specific techniques from robust protocol design such as explicit type
tags, additional randomization, etc. in order to establish simulatability between the cryp-
tographic implementation and its Dolev-Yao abstraction. However, we believe that it is
fair to say that future research may well concentrate on simulatability soundness whenever
applicable, and resort to mapping soundness in those cases where simulatability soundness
constitutes too strong a notion.

1.2 Further Related Work
Reactive simulatability was first defined generally in [33], based on simulatability defi-
nitions for secure (one-step) function evaluation [22, 23, 12, 29, 14]. On the side of formal
methods, it is also highly related to the observational equivalence notions for a probabilis-
tic π-calculus from [28]. Reactive definitions of simulatability for asynchronous systems
were presented in [34, 15], called UC (universal composability) and with somewhat dif-
ferent details in the latter. Since then, these definitions have been used in many ways
for proving individual cryptographic systems and general theorems. While the definitions
of [34, 15] have not been rigorously mapped, we believe that for the results in this paper
the differences do not matter, in particular if one thinks of the equivalent blackbox version
of UC. Similarly, we believe that the results would hold in the formalism started in [28],
and the recently proposed formalism put forward in [25].

In the wider field of linking formal methods and cryptography, there is also work on
formulating syntactic calculi for dealing with probabilism and polynomial-time consider-
ations directly and encoding them into proof tools, in particular [31, 32, 24, 20, 13]. This
is orthogonal to the work of justifying Dolev-Yao models: In situations where Dolev-Yao
models are applicable and sound, they are likely to remain important because of the strong
simplification they offer to the tools, which enables the tools to treat larger overall systems
automatically than with the more detailed models of cryptography.
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1.3 Paper Outline
Section 2 reviews the basic terminology of symbolic cryptography, its deduction rules, and
the definition of protocols. Section 3 reviews the notion of simulatability, and points out
necessary requirements for a Dolev-Yao model to be sound in the sense of BRSIM/UC.
Section 4 defines executions of protocols within the reactive simulatability framework, thus
preparing a common ground for comparing both notions of soundness. Section 5 finally
proves that simulatability soundness implies mapping soundness. Section 6 concludes.

2 Symbolic Cryptography

In this section we review basic terminology concerning Dolev-Yao models and the cor-
responding deduction rules for deriving new messages from a given set of messages. In
addition, we give the definition of protocols along the lines of works on the mapping ap-
proach [30, 19, 18].

2.1 Basic Terminology, Dolev-Yao Terms, and Deduction Rules
We define {0, 1}∗ to be the set of payloads. Payloads will typically be identifiers of agents,
which is why we often refer to this set by ID. Similar to works on the mapping approach, see
e.g., [19, 18], encryption and signature messages will be annotated with labels which rep-
resent random coins. This accounts for the fact that encrypting/signing the same message
yields different ciphertexts/signatures when performed with different randomness. There-
fore we define the set Rand := ID ∪ {adv} × N of random coins where adv /∈ ID denotes
the adversary. A tuple (a, r) stands for the randomness r generated by agent a. By ek(A),
dk(A), sk(A), and vk(A) we denote the encryption, decryption, signing, and verification
key of agent A ∈ ID, respectively.

Now, the set of (Dolev-Yao) messages M is defined by the following grammar:

M ::= ID | 〈M, M〉 | Nonce | ERand
ek(ID)(M) | SigRand

vk(ID)(M). (1)

where Nonce is a set of nonces. We sometimes drop the labels for the random coins if they
are not needed or clear from the context.

Given a set of messages ϕ, we now recall standard Dolev-Yao style rules for deriving new
messages from ϕ. The derivation relation `A is parameterized by an agent A ∈ ID∪ {adv}
since different agents use different random coins.

– Initial knowledge: ϕ `A m for all m ∈ ϕ,
– Pairing and unpairing: If ϕ `A m1 and ϕ `A m2, then ϕ `A 〈m1,m2〉; conversely, if

ϕ `A 〈m1,m2〉, then ϕ `A m1 and ϕ `A m2.
– Encryption and decryption: If ϕ `A ek(b) and ϕ `A m, then ϕ `A Er

ek(b)(m) for all
b ∈ ID, r ∈ {A} ×N; conversely, if ϕ `A Er

ek(b)(m) and ϕ `A dk(b), then ϕ `A m for all
b ∈ ID, r ∈ Rand.

– Signature: If ϕ `A sk(b) and ϕ `A m, then ϕ `A Sigr
vk(b)(m) for all b ∈ ID, r ∈ {A}×N.

– Signature transformation: If ϕ `A Sigr
vk(b)(m), then ϕ `A Sigr′

vk(b)(m) for b ∈ ID, r ∈
Rand, r′ ∈ {A} × N.2

2 Note that the standard definition of signature security (unforgeability under chosen-message attack) does
not exclude that the adversary, given a signature for a certain message, can create another signature for
the same message.
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– Plaintext retrieval: If ϕ `A Sigr
vk(b)(m), then ϕ `A m for all b ∈ ID, r ∈ Rand,

– Verification-key retrieval: If ϕ `A Sigr
vk(b)(m), then ϕ `A vk(b) for all b ∈ ID, r ∈ Rand.

– Encryption-key retrieval: If ϕ `A Er
ek(b)(m), then ϕ `A ek(b) for all b ∈ ID, r ∈ Rand,

Sometimes we will ignore labels for random coins in derivations of adv. In this case, we
write ` instead of `adv. More precisely, if m is a message and m′ is obtained from m by
dropping the random coins in m, then ϕ `adv m implies ϕ ` m′.

2.2 Definition of Protocols

A k-party protocol is defined by k roles, where a role specifies the behavior of a party in a
protocol run. Defining roles requires to first introduce variables. We assume disjoint sets
of typed variables X.n for nonces and X.d for payloads.

Now, the ith role, i = 1, . . . k, is defined to be a directed, edge-labeled finite tree where
the edges originating in the same node are linearly ordered. Each edge is labeled with a rule
(l, r) for terms l and r, where terms are messages which may contain variables (see below).
We use certain distinguished variables A1, . . . , Ak ∈ X.d and Nj ∈ X.n for j ≥ 0. When
the ith role is instantiated with parties a1, . . . , ak, then Aj is substituted by aj for every
j = 1, . . . , k and for the variables Nj occurring in the role, fresh nonces are generated.
Note that such an instance of the ith role is carried out by party ai. Similar to [18], we
put syntactic restrictions on a role to make sure that it can actually be carried out when
giving it a computational interpretation (see below for these restrictions).

Intuitively, in a protocol run, a role is executed by a party as follows. The execution
of the role starts in the root of the role. When receiving a message, the party tries to
match the message against one of the left-hand sides of the rules that the outgoing edges
of the current node (at the beginning this is the root) are labeled with. If no left-hand
side matches, nothing happens; the party does not change its state. If a left-hand side of
the rule of one of the edges matches with the message, then the first such edge is picked
(according to the given linear ordering on outgoing edges) and the right-hand side of this
rule is sent to the network (i.e., the adversary) as output. Matching a message against a
term (the left-hand side of a rule), means that a party parses the message according to the
term. For example, if the term is Eek(a)(〈a, y〉) for y ∈ X.n, then the party would first try
to decrypt the message with dk(a), then check whether the result is a pair, check whether
the first component of this pair is the name a, check whether the second component is a
nonce (i.e., is tagged as a nonce and has the expected length), and then store this nonce in
y. When executing a role, some variables in left-hand sides of a rule might have occurred
already in left-hand sides of rules of preceding edges. In this case, the value of the variable
is not overwritten, but it is checked whether the old and the new value coincide. This is
rigorously defined in Section 4.

As mentioned above, we need to put syntactic restrictions on roles to make sure that
they can be executed. For this purpose, we restrict the kind of terms that can occur on
the left-hand side and right-hand side in rules. For the ith role of a protocol, terms on the
left-hand side of a rule have to be of the following form:

Tl
i ::= ID | X.n | X.d | 〈Tl

i, T
l
i〉 | Eek(Ai)(T

l
i) | Sigvk({A1,...,Ak})(T

l
i).
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As explained above Eek(Ai)(t) means that the party Ai (recall that Ai carries out the ith
role) decrypts the received message with dk(Ai) and then parses the plaintext according to
t. Since Ai only knows its own decryption key dk(Ai), terms of the form Eek(Aj)(t) for j 6= i
are not allowed. We allow Ai to check the validity of the signatures of all other principals,
i.e., Ai is assumed to know vk(Aj) for all j.

One could consider more general terms than those contained in Tl
i, e.g., terms that

contain specific ciphertexts, variables for encryption/verification keys, or variables for ci-
phertexts in order to model ciphertext forwarding. While our results can be lifted to these
cases, we concentrate on Tl

i as to not encumber our main ideas with details that are of
only minor importance in this paper.

For the ith role of a protocol, terms on the right-hand side of a rule have to be of the
following form:

Tr
i ::= ID | X.n | X.d | 〈Tr

i , T
r
i 〉 | Eek({A1,...,Ak})(T

r
i ) | Sigvk(Ai)(T

r
i ).

A term Eek(Aj)(t) means that party Ai first computes a bit string b for t and then encrypts
b with the public key of Aj ; Sigvk(Ai)(t) has a similar meaning. We require that variables
on the right-hand side of a rule belong to {A1, . . . , Ak} ∪ {Nj | j ≥ 0}, or occur on the
left-hand side of the rule, or occur on the left-hand side of a preceding rule in a role to
ensure that values of these variables are determined by the time they are used to form
output messages. As in the case of Tl

i, several extensions are possible but not considered
here for reasons of clarity.

Let Roles describe the set of all roles. Then, a k-party protocol is a mapping
Π : {1, . . . , k} → Roles.

3 Simulatability and Requirements for Simulatability-sound Dolev-Yao
Models

In this section, we review the notion of simulatability and point out necessary requirements
for a Dolev-Yao model to be sound in the sense of BRSIM/UC.

3.1 Review of Simulatability

Simulatability constitutes a general approach for comparing two systems, typically called
real and ideal system. In terms of the semantics community one might speak of an im-
plementation or refinement relation, specifically geared towards the preservation of what
one might call secrecy properties compared with functional properties. We believe that
all our following results are independent of the differences between the definition styles of
the various recent papers on simulatability [28, 33, 15, 11, 25]. However, we have to fix a
specific formalism, and we use that from [34, 11].

The ideal system in [34, 11] typically consists of a single machine TH, the trusted host,
see Figure 1. In the context of simulatability soundness, TH represents a Dolev-Yao model.
The real system consists of a set of machines Mu, one for every user u. In the context of
simulatability soundness, the real system describes the cryptographic implementation. The
ideal or real system interacts with arbitrary so-called honest users, collectively represented
by a single machine H; this corresponds to potential protocols or human users interacting
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Figure 1. Black-box reactive simulatability (BRSIM) between the real system M1 ‖ · · · ‖ Mn and the ideal
system TH, where Mu is the machine of user u ∈ {1, . . . , n}. The quantifiers are numbered to show their
order.

with the ideal or real system. Furthermore, the ideal or real system interacts with an
adversary A, who is often given more power than the honest users; in particular in real
systems A typically controls the network and can manipulate messages on the bit string
level. The adversary is also granted the ability to interact with the honest users H in order
to influence their behavior, e.g., to suggest which messages are to be sent. Technically, the
interaction with H models known-message and chosen-message attacks.

Now, black-box reactive simulatability (BRSIM) states that there exists a simulator Sim
such that for all A, no H can distinguish (in the sense of computational indistinguishability
of families of random variables [36]) whether it interacts with the real system and the
real adversary, or with the ideal system and a combination of the real adversary and
the simulator (which together form the ideal adversary) as depicted in Figure 1. Note
that indistinguishability in particular entails that the ideal and real system offer identical
interfaces to the honest users in order to prevent trivial distinguishability. We write M1 ‖
· · · ‖ Mn ≤BRSIM TH to say that the real system M1 ‖ · · · ‖ Mn is as secure as the ideal
system TH in the sense of BRSIM/UC.

The reader may regard the machines, i.e., the individual boxes in Figure 1, as prob-
abilistic I/O automata, Turing machines, CSP or pi-calculus processes etc. The only re-
quirement on the underlying system model is that the notion of an execution of a system
when run together with an honest user and an adversary is well-defined. In [34, 11], the
machines are a type of probabilistic I/O automata. We always assume that all parties are
polynomial-time.

3.2 On Simulatability-based Dolev-Yao Models and their Cryptographic
Implementations

We now outline necessary requirements a Dolev-Yao model Mideal offering the capabilities
described in Section 2 and an implementation Mreal = Mreal

1 ‖ · · · ‖ Mreal
n realized by

actual cryptographic primitives have to fulfill for being simulatability-sound. Solely fixing
minimal requirements typically expected from Dolev-Yao models instead of considering
a specific Dolev-Yao model frees our results from specific details and idiosyncrasies of
existing models.

For achieving simulatability, the Dolev-Yao model Mideal and its cryptographic imple-
mentation Mreal have to offer an identical I/O interface which the honest users connect to.
We hence assume that the interaction at the I/O interface is based on handles (pointers)
to objects stored in the system, i.e., the user never obtains real bit strings (nonces, cipher-
texts, etc.) from the cryptographic implementation but only handles to such objects. The
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only exception are payloads which obviously have to be retrievable in their bit string rep-
resentation in some way. Note that we do not fix any specific instantiation of these handles
but we only assume that they can be operated on in the expected manner as discussed
below.

The I/O interface has to permit suitable commands for constructing terms accord-
ing to the Dolev-Yao style deduction rules given in Section 2, and for sending them to
other principals. This in particular comprises the generation of nonces, pairs of messages
(i.e., concatenations of messages), pairs of public and private keys, to perform public-key
encryption/decryption, to generate and verify signatures, to retrieve payloads from their
handles, and to send and receive messages to/from the network. Moreover, there have
to exist commands for parsing handles, in particular for testing handles for equality (for
simplicity, we assume that each user u is deterministically given the same handle again if
a term is reused), and for querying the types of handles.

Concerning the network interface, Mideal and Mreal differ. The network interface of Mideal

offers the adversary commands for constructing and parsing terms according to the Dolev-
Yao style deduction rules, and for sending the terms to users. The machines Mreal

u output
messages to and receive bit string messages from the adversary at their network interfaces.

Note that we did not describe the internal behavior of the Dolev-Yao model Mideal. It
turns out not to be relevant for achieving our results, but we later only have to require two
properties of Mideal: First, Mreal is as secure as Mideal in the sense of BRSIM/UC; second,
the behavior of Mideal in fact ensures that the adversary can only manipulate messages
according to the Dolev-Yao rules presented in Section 2. More formally, the second property
requires that when Mideal is run with arbitrary honest users and an arbitrary adversary,
the resulting protocol traces are so-called Dolev-Yao traces, which are defined in Section 5.

4 Reactive Execution of Protocols

We now describe the execution of a protocol Π along with an adversary who controls the
network. More precisely, we describe the concrete execution of Π, i.e., the execution in
which actual cryptographic algorithms are used, rather than their Dolev-Yao abstractions.
Our definition corresponds to the one for mapping approaches [30, 19, 18]. However, we
present the definition in the reactive simulatability framework using Mreal in order to
facilitate the presentation of our main result (Section 5).

We use an honest user machine HΠ to emulate the execution of Π. This machine
makes use of Mreal to carry out the necessary cryptographic operations. Recall that Mreal

uses actual cryptographic algorithms to perform the cryptographic operations and that at
its I/O interface handles are used to point to the bit strings (payloads, ciphertexts, nonces
etc.) stored in Mreal. While Mreal is a composition of machines Mreal

u , u ∈ {1, . . . , n}, HΠ can
emulate the execution of instances of Π by only using one Mreal

u since within this machine
key pairs for every party can be generated. This is even more general than using a separate
machine for each party since it allows to model that the adversary dynamically generates
new parties. We emphasize that the communication between the parties is still carried out
over the network, so by using just one machine Mreal

u we do not introduce any idealization.
As usual, the network is controlled by the adversary A. The adversary can instruct HΠ

to generate a new instance of a role Π(i) of Π and at the beginning of the execution A
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can corrupt parties, which corresponds to the prevalent static corruption model for Dolev-
Yao models. Altogether, the run of the system HΠ ‖ Mreal ‖ A corresponds to a concrete
execution of instances of Π. The setting is depicted in Figure 2.

It remains to describe HΠ , i.e., the way HΠ emulates instances of Π. Similar to the
definition of concrete executions in mapping approaches [19, 18], the machine HΠ keeps a
global state to remember what instances of Π are running and in what local state these
instances are. The global state is a tuple (SId, f, ϕ), where
– SId is a finite set of session IDs,
– ϕ denotes the knowledge of the adversary at the current point in time, and
– f maps every session identifier i in SId to the current (local) state f(i) =

(i, ν, p, (a1, . . . , ak)) of that session, see below, where a session is an instance of one
role of the protocol.

A local state is a tuple (i, ν, p, (a1, . . . , ak)) with the following components: i ∈ {1, . . . , k}
is the index of the role Π(i) that is executed in this session, ν is a substitution that maps
those variables in Π(i) which were bound in the matching processes so far to handles
(pointing to bit strings stored in Mreal), p is a node in the role Π(i) marking the current
point in the execution of Π(i), and (a1, . . . , ak) are the agents participating in this session.
Recall that the session is carried out by ai with the agents aj , j ∈ {1, . . . , k} \ {i}. The
initial global state is (∅, ∅, ∅).

The machine HΠ also keeps a table in which it remembers handles of the names of hon-
est and dishonest principals along with their encryption/decryption/signing/verification
keys (in case of honest principals) and encryption/verification keys (in case of dishonest
principals). It also keeps a set of known handles to payloads and nonces. The table and
the set are updated in the obvious way; we hence will not further describe it but simply
assume that HΠ knows the names and keys of all honest and dishonest principals as well
as the (handles of) payloads and nonces which occurred so far in the protocol run.

We now describe how global states evolve in HΠ in terms of transitions. In what follows,
we often do not distinguish between payloads and their handles since HΠ can retrieve the
payloads from Mreal by supplying the handle. For example, we do not distinguish between
the name of an agent (represented as payload data) and the handle to this name.

Following the prevalent static corruption model for Dolev-Yao models, the adversary
can corrupt parties only at the beginning of the execution. This is captured by the adver-
sary sending a message (a bit string) of the form (corrupt, a1, . . . , al, g1, . . . , gl, h1, . . . , hl)
to Mreal where ai are names of principals, and gi and hi are their encryption and verifica-
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tion keys, respectively, provided by A. This corruption message is forwarded by Mreal in
terms of a handle to HΠ such that HΠ can go through this list (using the local commands
of Mreal). As a result, HΠ will change the global state as follows:

Corrupt message (from A via Mreal
u ): (∅, ∅, ∅) (corrupt,a1,...,al,g1,...,gl,h1,...,hl)−−−−−−−−−−−−−−−−−−−−→ (∅, ∅, ϕ′) where

l ≥ 0. When HΠ receives a handle on the corruption message, HΠ tests if all ai are
payloads (interpreted as names of agents), all gi are handle to encryption keys and all hi

are handles to verification keys. Otherwise, the execution is aborted. Now, the knowledge
of the adversary recorded by HΠ is

ϕ′ := {ai, ek(ai), dk(ai), sk(ai), vk(ai) | 1 ≤ i ≤ l}.

Strictly speaking, for the definition of concrete executions, HΠ does not have to keep track
of the knowledge of the adversary. However, its track record will be sufficient for our results.

The following two commands for creating new sessions and sending messages from A
(via Mreal) may occur in arbitrary number and order.

Initiate new session (from A via Mreal
u ): (SId, f, ϕ)

(new,i,a1,...,ak)−−−−−−−−−→ (SId′, f ′, ϕ′) where SId′

and f ′ are constructed as follows: Let sid := |SId| + 1 be the new session identi-
fier and SId′ := SId ∪ {sid}. Using Mreal, create new encryption and signature pairs
ek(ai), dk(ai), sk(ai), vk(ai) for all honest participants ai that do not yet have one. Also,
using Mreal, create new nonces for all variables Nj occurring in Π(i) and create a han-
dle to the payload sid . Define f ′(sid ′) := f(sid ′) for each sid ′ ∈ SId, and f(sid) :=
(i, ν, ε, (a1, . . . , ak)), where ε is the root of the role tree, and ν maps every Aj in Π(i)
to aj and every Nj occurring in Π(i) to the (handle of the) corresponding nonce. Let
ϕ′ := ϕ ∪ {sid} ∪ {ek(aj), vk(aj) | j = 1, . . . , k}. Using Mreal, create a list containing
sid and the created encryption and verification keys, and send this list (using the send
command) via Mreal to the adversary.

Send message (from A via Mreal
u ): (SId, f, ϕ)

(send,sid ,m)−−−−−−−→ (SId, f ′, ϕ′): Suppose f(sid) =
(i, ν, p, (a1, . . . , ak)) and let (l1, r1), . . . , (lh, rh) be the labels of edges leaving node p, in
the order given. Machine HΠ now tries to parse m according to ν(lj) starting with ν(l1),
then continuing with ν(l2), and so on, until the parsing is successful. If the parsing is not
successful for every ν(lj), the local state remains unchanged, and hence, the global state
does not change either.

The parsing of m according to l := ν(lj) is performed by HΠ inductively on the
structure of l. The parsing updates ν since some variables not in the domain of the current
ν, may now be assigned some values. Also, HΠ keeps track of new payloads and nonces
created by the adversary. For this, a set ϕnew is maintained which at the beginning of the
parsing is set to the empty set. Now, the parsing is performed by HΠ as follows: First,
check whether m and l have the same type (by asking Mreal for the type of m and then
checking whether it corresponds to l). If the types differ, then stop. Otherwise continue as
follows:
– If l is a handle to a payload or a nonce, then check whether l = m. (Note that the same

payloads/nonces get the same handles in Mreal. Here we use that HΠ only employs one
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machine Mreal
u for some u ∈ {1, . . . , n}. We emphasize that this is not an idealization.

Whether it is checked if bit strings or handles coincide does not make a difference.)
– If l ∈ {0, 1}∗ is a payload, then retrieve the payload of m and check whether it coincides

with l.
– If l ∈ X.n, then check whether m is a handle to a nonce. If not, then stop. Otherwise,

extend ν by mapping l to m. If m has not occurred before (i.e., m is a handle to a new
payload or nonce that the adversary generated), then add m to ϕnew.

– If l ∈ X.d, then check whether m is a handle to a payload, and continue similarly to
the previous case.

– If l = 〈t1, t2〉, then recursively parse the first component of m according to t1 and ν,
and then the second component according to t2 and (the possibly updated) ν.

– If l = Eek(ai)(t), then decrypt m with dk(ai). If this fails, then stop. Otherwise, parse
the resulting plaintext (given as a handle), according to t.

– If l is a signature term, then proceed analogously to the case of encryption.
If the parsing of m according to l is successful, we say that m and l match and call the
resulting substitution (the updated ν), the matching function. Now, let h be minimal such
that m matches with ν(lh) and let θ be the resulting matching function. (If such an i does
not exist, then, as mentioned, the global state remains unchanged.)

Next, HΠ constructs, using Mreal, the output message according to r := θ(rh). The
result is a handle to this message in Mreal. The construction is carried out inductively on
the structure of r as follows. Note that r does not contain variables since all variables are
substituted with handles by θ.
– If r is a handle, then return this handle.
– If r ∈ {0, 1}∗ is a payload, then create a handle to this payload, and then return the

handle.
– If r is a pair, then recursively, construct messages for the two components. With the

resulting handles, retrieve a handle to the pair from Mreal.
– If r = Eek(aj)(t), then recursively construct a message for t. With the resulting handle

and the handle to ek(aj), retrieve a handle from Mreal to the corresponding ciphertext
and return this handle.

– If r = Sigvk(ai)(t), then proceed analogously to the previous case; however, to generate
the signature the handle to sk(ai) is used.

Let m′hnd denote the handle to the output message. Also, let r′ be obtained from r by
adding as the label for the random coins in encryption and signature subterms of r, the
handle (together with ai) obtained when creating the corresponding messages. The moti-
vation for this is that different messages stored in Mreal get different handles, and hence,
these handles can be used as labels for random coins. For example, if r = 〈ai,Eek(aj)(ai)〉,
then r = 〈ai, E

(ai,e
hnd)

ek(aj)
(ai)〉 where ehnd is the handle corresponding to the message created

according to Eek(aj)(ai).
Now, HΠ first updates the global state and then sends the message corresponding to

m′hnd to the adversary.
The global state is updated as follows: SId remains unchanged; f ′ coincides with f on

all SId \ {sid} and f ′(sid) = (i, θ, ph, (a1, . . . , ak)) where ph is the hth successor of p in
Π(i); ϕ′ = ϕ ∪ ϕnew ∪ {r′}.
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Later we will modify the definition of HΠ as follows, where the modified HΠ will be
referred to by H′Π : H′Π tests whether tm = θ(l), the term corresponding to m, is deducible
from the adversaries current knowledge, i.e., if ϕ∪ϕnew ` tm. If not, H′Π stops the execution
before updating the global state and sending send(m′hnd), and outputs failure.

We now define traces of Π when executed with the adversary A. Our definition is based
on executions of the system HΠ ‖ Mreal ‖ A.

Definition 1 (Traces). A trace of Π when executed with the adversary A is a sequence

g0
C1−→ g1

C2−→ g2
C3−→ · · · Cn−−→ gn of transitions gi

Ci+1−−−→ gi+1 as defined above for HΠ

obtained by executing the system HΠ ‖ Mreal ‖ A. The Ci are the corrupt, new, and send
commands and g0 = (∅, ∅, ∅) is the initial global state. A send transition only belongs to
the trace if HΠ successfully parsed the input message.

5 Simulatability Soundness implies Mapping Soundness

Mapping soundness is established in the following style: One defines concrete protocol
traces where several instances of the protocol run along with an adversary, a polynomial-
time machine, who controls the network. Messages are bit strings and the cryptographic
operations are carried out by cryptographic algorithms. This corresponds to runs of the
system HΠ ‖ Mreal ‖ A. In addition, one defines symbolic protocol traces where messages are
Dolev-Yao terms. If the adversary is restricted to only derive new messages from a given
set of messages by applying Dolev-Yao derivation rules (see Section 2), then these symbolic
protocol traces are called Dolev-Yao traces. Now one constructs a mapping from bit strings
to terms such that applying the mapping to an arbitrary trace of the concrete cryptographic
execution yields a Dolev-Yao trace: Different payloads and nonces are mapped to different
constants, encryption/decryption/verification/signing keys are represented by ek(a), dk(a),
vk(a), and sk(a) where a is the constant representing the name of an agent. Pairings,
ciphertexts, and signatures are represented by the corresponding Dolev-Yao terms. Given
such a mapping, it is then shown that the resulting symbolic protocol trace constitutes
a Dolev-Yao trace with overwhelming probability. In other words, this shows that in the
setting considered the polynomial-time adversary is not more powerful than the Dolev-Yao
intruder.

In this section we show that mapping soundness is implied by simulatability soundness,
i.e., by results that prove cryptographic implementations as secure as Dolev-Yao style
abstractions in the sense of BRSIM/UC.

Before we can state and prove our result, let us make the following observation about
HΠ ‖ Mreal ‖ A. On the one hand, as explained in Section 4, this system describes con-
crete protocol executions: The different instances of the protocol only communicate over
the network and this network is controlled by the adversary, who is a ppt Turing ma-
chine. The messages exchanged are bit strings and are computed using cryptographic
algorithms. On the other hand, Mreal provides an abstract interface to HΠ in the sense
that HΠ does not obtain bit strings from Mreal (except for payloads), but only handles to
bit strings stored in Mreal. In fact, Mreal realizes the mapping from bit strings to handles,
and these handles can be interpreted as Dolev-Yao terms: A handle to a payload/nonce
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can be interpreted as a constant representing this payload/nonce. A handle to an encryp-
tion/decryption/verification/signing key of an agent a can be interpreted as the ground
term ek(a), dk(a), vk(a), and sk(a), respectively. Similarly, handles to pairs, ciphertexts,
and signatures, can be interpreted as Dolev-Yao terms representing these objects. We note
that since all handles are maintained in one machine Mreal

u for some u ∈ {1, . . . , n}, dif-
ferent payloads/nonces/etc. are referred to by different handles. Hence, the mapping from
bit strings to Dolev-Yao terms, and with this, the translation of concrete protocol traces
to symbolic traces is performed by Mreal. In other words, the interface interactions HΠ

conducts with honest users already constitute a symbolic trace corresponding to a con-
crete trace. Hence it turns out not to be necessary anymore to define this translation. This
might be surprising, since a natural intuition suggests that in simulatability soundness
results this translation is performed by the simulator. It is important to note that while
Mreal implicitly provides a mapping from concrete traces to symbolic traces, this does not
necessarily mean that the latter trace is a Dolev-Yao trace. Our main result essentially
shows that from simulatability soundness it follows that the symbolic trace derived from
the mapping constitutes a Dolev-Yao trace with overwhelming probability, which is exactly
what mapping soundness intends to establish. The following definition captures the notion
of a Dolev-Yao trace.

Definition 2 (Dolev-Yao Traces). A trace

(SId0, f0, ϕ0)
C1−→ (SId1, f1, ϕ1)

C2−→ · · · Cr−→ (SIdr, fr, ϕr)

is called a Dolev-Yao trace if and only if the following holds: For all i such that Ci is of
the form (send, sid i,mi) we have that ϕi−1∪ (ϕi−1)new `adv tmi where tmi is the Dolev-Yao
term corresponding to mi and (ϕi−1)new contains the new constants in tmi generated by
the adversary (see the definition of HΠ in Section 4).

Now, we are ready to prove our main result, namely that simulatability soundness
implies mapping soundness. This results is based on two assumptions. The first assumption
is that Mreal ≤BRSIM Mideal, i.e., the cryptographic implementation is as secure as the
Dolev-Yao abstraction in the sense of BRSIM/UC. This exactly formalizes simulatability
soundness. The second assumption is that if protocols are executed based on Mideal instead
of Mreal, then the resulting traces are Dolev-Yao traces. More precisely, for every ideal
adversary A′ (which may be a composition of a simulator and a real adversary) all traces
of HΠ ‖ Mideal ‖ A′ are Dolev-Yao traces, which exactly reflects the intuition and purpose
behind the Dolev-Yao abstraction Mideal.

Theorem 1 (Simulatability Soundness implies Mapping Soundness). Let Π be a
protocol. Assume the following two properties about Mreal and Mideal:

1. Mreal ≤BRSIM Mideal.
2. For every ideal adversary A′, all traces of HΠ ‖ Mideal ‖ A′ are Dolev-Yao traces.

Then, for all (real) adversaries A, the probability that a trace of HΠ ‖ Mreal ‖ A is a
Dolev-Yao trace is overwhelming.
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Proof. First, it follows from existing results that the relation ϕ ` m given a set ϕ of Dolev-
Yao messages and a Dolev-Yao message m can be decided in polynomial time in the size
of ϕ and m (see, e.g., [17]).

Now, consider H′Π as defined in Section 4. By construction, H′Π behaves exactly as HΠ

except that it checks whether the Dolev-Yao term corresponding to the received message
can be deduced by the current intruder knowledge plus the new handles (corresponding to
payloads and nonces generated by the adversary) in the received message. If this is not the
case, then H′Π outputs failure. Since the relation ` can be decided in polynomial time and
HΠ is a polynomial time machine, H′Π runs in polynomial time as well. Furthermore, by
definition of Dolev-Yao traces it follows that the probability that a trace of HΠ ‖ Mreal ‖ A
is a non-Dolev-Yao trace is exactly the probability that H′Π outputs failure in a run of H′Π ‖
Mreal ‖ A. For proving the theorem, it hence remains to show that the latter probability is
negligible for every A.

By the first assumption in the theorem, we know that Mreal ≤BRSIM Mideal. Thus,
there exists a simulator S such that for every A the view of H′Π in H′Π ‖ Mreal ‖ A is
indistinguishable from the view of H′Π in H′Π ‖ Mideal ‖ S ‖ A. We can consider S ‖ A to
be an ideal adversary A′, i.e., A′ = S ‖ A. Now, by the second assumption in the theorem
and since H′Π exactly behaves as HΠ on Dolev-Yao traces, we can conclude that H′Π never
outputs failure in a run of H′Π ‖ Mideal ‖ A′. Finally, it follows that the probability that
H′Π outputs failure in a run of H′Π ‖ Mreal ‖ A is negligible as otherwise the views of H′Π in
H′Π ‖ Mreal ‖ A and H′Π ‖ Mideal ‖ A′ could be distinguished. ut
We emphasize that the argument in the proof of Theorem 1 is quite generic. As mentioned,
the two assumptions stated in the theorem are what simulatability soundness should pro-
vide in any case. In addition to these two assumptions, we only used the fact that HΠ

can be extended in such a way that it stops whenever it encounters a non-Dolev-Yao
trace. Only the definition of HΠ and the extension of HΠ depend on the specific cryp-
tographic primitives and the class of protocols considered. The rest of the argument is
completely independent of these details and it resembles property preservation theorems
for simulatability [5, 8]. Therefore, the above theorem should also hold for larger classes of
cryptographic primitives and protocols.

We conclude this section by showing that the two assumptions in Theorem 1 are met by
a concrete cryptographic implementation and its Dolev-Yao abstraction. More precisely,
we consider the cryptographic implementation and its Dolev-Yao abstraction presented
in [9]. Let us refer to the cryptographic implementation by Mreal

BPW and the Dolev-Yao
abstraction by Mideal

BPW, called the BPW model henceforth. The I/O interface of Mreal
BPW (and

hence, that of Mideal
BPW) offers all commands also offered by Mreal, except that in [9] lists

instead of pairs are considered. The first assumption of Theorem 1, now with respect
to Mreal

BPW and Mideal
BPW, is satisfied by the main result proved in [9]. The second assumption

of Theorem 1 easily follows from the definition of the BPW model Mideal
BPW: The machine

Mideal
BPW internally does not store bit strings but Dolev-Yao terms. If a (handle to a) term is

sent by an honest user to the network (and hence, the ideal adversary), then at the network
interface only a (potentially new) handle to the term is given to the ideal adversary. The
ideal adversary can now only parse and manipulate this and other terms to which he has
obtained a handle via the network interface of Mideal

BPW and this interface only allows for
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commands that correspond to the Dolev-Yao derivation rules given in Section 2. From this
observation the second assumption of Theorem 1 easily follows. We summarize this in the
following proposition.

Proposition 1. The cryptographic implementation and Dolev-Yao abstraction presented
in [9] satisfy the assumptions made in Theorem 1.

6 Conclusion

In this paper, the two notions of simulatability soundness and mapping soundness for
bridging the long-standing gap between Dolev-Yao models and cryptographic realizations
with their computational security definitions are related for the first time. Our main result
is that simulatability soundness entails mapping soundness provided that both approaches
use the same cryptographic implementation. Interestingly, this result does not dependent
on details of the simulator, which translates between cryptographic implementations and
their Dolev-Yao abstractions in simulatability soundness. The argument of our proof is
generic in the sense that it can easily be extended to additional classes of cryptographic
primitives and protocols beyond the ones considered in this paper.

We stress that requiring the same cryptographic implementations for both simulata-
bility soundness and mapping soundness means that existing results on simulatability
soundness do not necessarily fully supersede existing results on mapping soundness: the
former results may for instance require stronger assumptions on the security of crypto-
graphic primitives, specific techniques from robust protocol design such as explicit type
tags, additional randomization, etc. in order to establish simulatability between the cryp-
tographic implementation and its Dolev-Yao abstraction. However, we believe that it is
fair to say that future research may well concentrate on simulatability soundness whenever
applicable, and resort to mapping soundness in those cases where simulatability soundness
constitutes too strong a notion.
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