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Abstract

In an identity-based encryption (IBE) scheme, there is a key extraction protocol where a user
submits an identity string to a master authority who then returns the corresponding secret key
for that identity. In this work, we describe how this protocol can be performed efficiently and
in a blind fashion for several known IBE schemes; that is, a user can obtain a secret key for an
identity without the master authority learning anything about this identity.

We formalize this notion as blind IBE and discuss its many practical applications. In par-
ticular, we build upon the recent work of Camenisch, Neven, and shelat [CNS07] to construct
oblivious transfer (OT) schemes which achieve full simulatability for both sender and receiver.
OT constructions with comparable efficiency prior to Camenisch et al. were proven secure in the
weaker half-simulation model. Our OT schemes are constructed from the blind IBE schemes we
propose, which require only static complexity assumptions (e.g., DBDH) whereas prior compa-
rable schemes require dynamic assumptions (e.g., q-PDDH).

1 Introduction

In an oblivious transfer (OTN
k ) protocol, introduced by Rabin [Rab81] and generalized by Even,

Goldreich and Lempel [EGL82] and Brassard, Crépeau and Robert [BCR86], a Sender with mes-
sages M1, . . . ,MN and a Receiver with indices σ1, . . . , σk ∈ [1, N ] interact in such a way that at the
end the Receiver obtains Mσ1 , . . . ,Mσk

without learning anything about the other messages and
the Sender does not learn anything about σ1, . . . , σk. Naor and Pinkas were the first to consider
an adaptive setting, OTN

k×1, where the sender may obtain Mσi−1 before deciding on σi [NP99b].
Oblivious transfer is a useful, interesting primitive in its own right, but it has even greater signifi-
cance as OT4

1 is a key building block for secure multi-party computation [Yao86, GMW87, Kil88].
Realizing efficient protocols under modest complexity assumptions is therefore an important goal.

The definition of security for oblivious transfer has been evolving. Informally, security is defined
with respect to an ideal-world experiment in which the Sender and Receiver exchange messages via
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a trusted party. An OT protocol is secure if, for every real-world cheating Sender (resp., Receiver)
we can describe an ideal-world counterpart who gains as much information from the ideal-world
interaction as from the real protocol. Bellare and Micali [BM89] presented the first practical OT2

1

protocol to satisfy this intuition in the honest-but-curious model. This was followed by practical OT
protocols due to Naor and Pinkas [NP99a, NP99b, NP01] in the “half-simulation” model where the
simulation-based model (described above) is used only to show Sender security and Receiver security
is defined by a simpler game-based definition. Almost all efficient OT protocols are proven secure
with respect to the half-simulation model, e.g., [NP99b, NP99a, NP01, DHRS04, OK04, Kal05].
Unfortunately, Naor and Pinkas demonstrated that this model permits selective-failure attacks, in
which a malicious Sender can induce transfer failures that are dependent on the message that the
Receiver requests [NP99b].

Recently, Camenisch, Neven, and shelat [CNS07] proposed practical OTN
k×1 protocols that are

secure in the “full-simulation” model, where the security of both the Sender and Receiver are
simulation-based. These simulatable OT protocols are particularly nice because they can be used
to construct other cryptographic protocols in a simulatable fashion. More specifically, Camenisch
et al. [CNS07] provide two distinct results. First, they show how to efficiently construct OTN

k×1

generically from any unique blind signature scheme in the random oracle model. The two known
efficient unique blind signature schemes due to Chaum [Cha82] and Boldyreva [Bol03] both require
interactive complexity assumptions: one-more-inversion RSA and chosen-target CDH, respectively.
(Interestingly, when instantiated with Chaum signatures, this construction coincides with a prior
one of Ogata and Kurosawa [OK04] that was analyzed in the half-simulation model.) Second, they
provide a clever OTN

k×1 construction in the standard model based on dynamic complexity assump-
tions, namely the q-Power Decisional Diffie-Hellman (i.e., in a bilinear setting e : G×G→ GT , given
(g, gx, gx2

, . . . , gxq
,H) where g ← G and H ← GT , distinguish (Hx,Hx2

, . . . ,Hxq
) from random

values) and q-Strong Diffie-Hellman (q-SDH) assumptions. (Unfortunately, Cheon showed that q-
SDH requires larger than commonly used security parameters [Che06]). These dynamic (including
interactive) assumptions seem significantly stronger than those, such as DDH and quadratic resid-
uosity, used to construct efficient OT schemes in the half-simulation model. Thus, a well-motivated
problem is to find efficient, fully-simulatable OT schemes under weaker complexity assumptions.

Our Contributions. In this work, we provide, to our knowledge, the first efficient and fully-
simulatable OTN

k and OTN
k×1 schemes secure under static complexity assumptions (e.g., DBDH,

where given (g, ga, gb, gc), it is hard to distinguish e(g, g)abc from random). We summarize our
results as follows.

First, we introduce a building block, which is of independent interest. In identity-based en-
cryption (IBE) [Sha84], there is an extraction protocol where a user submits an identity string to a
master authority who then returns the corresponding decryption key for that identity. We formalize
the notion of blindly executing this protocol, in a strong sense; where the authority does not learn
the identity nor can she cause failures dependent on the identity, and the user learns nothing beyond
the normal extraction protocol. This concept has similarities to recent work by Goyal [Goy07], in
which a user wishes to hide certain characteristics of an extracted IBE key from the authority. In
§3.1, we describe efficient blind extraction protocols satisfying this definition for the IBE schemes
due to Boneh and Boyen [BB04] and Waters [Wat05] (using a generalization proposed indepen-
dently by Naccache [Nac05] and Chatterjee and Sarkar [CS05]). The latter protocol is similar to
a blind signature scheme proposed by Okamoto [Oka06]. We call IBE schemes supporting efficient
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blind extraction protocols: blind IBE, for short.
Second, we present an efficient and fully-simulatable OTN

k protocol constructed from any of the
proposed blind IBE schemes (without requiring additional assumptions), and thus our constructions
are secure under only DBDH. Intuitively, consider the following OTN

k construction. The Sender
runs the IBE setup algorithm and sends the corresponding public parameters to the Receiver.
Next, for i = 1 to N , the Sender encrypts Mi under identity “i” and sends this ciphertext to the
Receiver. To obtain k messages, the Receiver blindly extracts k decryption keys for identities of his
choice and uses these keys to decrypt and recover the corresponding messages. While this simple
protocol does not appear to be simulatable, we are able to appropriately modify it. (Indeed, one
must also be cautious of possibly malformed ciphertexts, as we discuss later.) Our constructions
from blind IBE are inspired by the Camenisch et al. [CNS07] generic construction from unique
blind signatures. Indeed, recall that the secret keys sk id of any fully-secure IBE can be viewed as
signatures by the authority on the message id [BF01]. Camenisch et al. [CNS07] require unique
blind signatures, whereas we do not; however, where they require unforgeability, we require that
our “blind key extraction” protocol does not jeopardize the semantic security of the IBE.

Third, we present an efficient and fully-simulatable OTN
k×1 protocol constructed from our pro-

posed blind IBE schemes in the random oracle model. We discuss how to remove these oracles
at an additional cost. This improves on the complexity assumptions required by the comparable
random-oracle scheme in Camenisch et al. [CNS07], although we leave the same improvement for
their adaptive construction without random oracles as an open problem. Finally, in §5, we discuss
the independent usefulness of blind IBE to other applications, such as blind signatures, anonymous
email, and encrypted keyword search.

2 Technical Preliminaries

Let BMsetup be an algorithm that, on input the security parameter 1κ, outputs the parameters for
a bilinear mapping as γ = (q, g, G, GT , e), where g generates G, both G and GT have prime order
q, and e : G×G→ GT . In our schemes, we will require that the correctness of these parameters be
publicly verifiable (Chen et al. [CCS07] describe efficient techniques for verifying these parameters
in a typical instantiation). We will refer to the following complexity assumption made in these
groups.

Decisional Bilinear Diffie-Hellman (DBDH) [BF01]: Let BMsetup(1κ) → (q, g, G, GT , e).
For all p.p.t. adversaries Adv, the following probability is strictly less than 1/2 + 1/poly(κ):
Pr[a, b, c, d← Zq; x0 ← e(g, g)abc; x1 ← e(g, g)d; z ← {0, 1}; z′ ← Adv(g, ga, gb, gc, xz) : z = z′].

Known Discrete-Logarithm-Based, Zero-Knowledge Proofs. We use known techniques
for proving statements about discrete logarithms, such as (1) proof of knowledge of a discrete
logarithm modulo a prime [Sch91], (2) proof that a committed value lies in a given integer inter-
val [CFT98, CM99, Bou00], and also (3) proof of the disjunction or conjunction of any two of the
previous [CDS94]. These protocols are secure under the discrete logarithm assumption, although
some implementations of (2) require the Strong RSA assumption.

When referring to the proofs above, we will use the notation of Camenisch and Stadler [CS97].
For instance, PoK{(x, r) : y = gxhr ∧ (1 ≤ x ≤ n)} denotes a zero-knowledge proof of knowledge
of integers x and r such that y = gxhr holds and 1 ≤ x ≤ n. All values not in enclosed in ()’s are
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assumed to be known to the verifier. We can apply the Fiat-Shamir heuristic [FS86] to make such
proofs non-interactive in the random oracle model.

Commitments. Let (CSetup,Commit,Decommit) be a commitment scheme where CSetup gen-
erates public parameters ρ; on input a message M , Commit(ρ,M) outputs a pair (C,D); and
Decommit(ρ,M, C,D) outputs 1 if D decommits C to M , or 0 otherwise. Our subsequent construc-
tions require an efficient protocol for proving knowledge of a decommitment D with respect to
(ρ,M, C). We recommend using the Pedersen commitment scheme [Ped92] based on the discrete
logarithm assumption, in which the public parameters are a group of prime order q, and ran-
dom generators (g0, . . . , gm). In order to commit to the values (v1, . . . , vm) ∈ Zm

q , pick a random
r ∈ Zq and set C = gr

0

∏m
i=1 gvi

i and D = r. Schnorr’s technique [Sch91] is used to efficiently prove
knowledge of the value D = r.

3 Blind Identity-Based Encryption

An identity-based encryption (IBE) scheme supports two types of players: a single master authority
and multiple users; together with the algorithms Setup, Encrypt, Decrypt and the protocol Extract.
Let us provide some input/output specification for these protocols with intuition for what they do.

Notation: Let I be the identity space andM be the message space. We write P (A(a),B(b))→
(c, d) to indicate that protocol P is between parties A and B, where a is A’s input, c is A’s output,
b is B’s input and d is B’s output.

- In the Setup(1κ, c(κ)) algorithm, on input a security parameter 1κ and a description of an
the identity space |I| ≤ 2c(κ) where c(·) is a computable, polynomially-bounded function, the
master authority P outputs master parameters params and a master secret key msk .

- In the Extract(P(params,msk),U(params, id)) → (id , sk id ) protocol, an honest user U with
identity id ∈ I obtains the corresponding secret key sk id from the master authority P or
outputs an error message. The master authority’s output is the identity id or an error
message.

- In the Encrypt(params, id, m) algorithm, on input identity id ∈ I and message m ∈ M, any
party can output ciphertext C.

- In the Decrypt(params, id, sk id , C) algorithm, on input a ciphertext C, the user with sk id

outputs a message m ∈M or the distinguished symbol φ.

Definition 3.1 (Selective-Identity Secure IBE (IND-sID-CPA) [CHK04]) Let κ be a security
parameter, c(·) be a polynomially-bounded function, |I| ≤ 2c(κ) and M be the message space.
An IBE is IND-sID-CPA-secure if every p.p.t. adversary A has an advantage negligible in κ for
the following game: (1) A outputs a target identity id∗ ∈ I. (2) Run Setup(1κ, c(κ)) to obtain
(params,msk), and give params to A. (3) A may query an oracle Oparams,msk (·) polynomially
many times, where on any input id 6= id∗ in I, the oracle returns sk id , and on any other input,
the oracle returns an error message. (4) A outputs two messages m0,m1 ∈M where |m0| = |m1|.
Select a random bit b and give A the challenge ciphertext c∗ ← Encrypt(params, id∗,mb). (5) A may
continue to query oracle Omsk (·) under the same conditions as before. (6) A outputs b′ ∈ {0, 1}.
We define A’s advantage in the above game as |Pr [b′ = b]− 1/2|.
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On stronger notions of ciphertext security for IBE. A stronger notion of ciphertext security for
IBE schemes is adaptive-identity security (IND-ID-CPA) [BF01], which strengthens the IND-sID-
CPA definition by allowing A to select the target identity id∗ at the start of step (4) in the above
game. In §3.1, we show blind IBE schemes satisfying both IND-sID-CPA and IND-ID-CPA security.
Fortunately, our oblivious transfer applications in §4 require only IND-sID-CPA-security (because
the “identities” will be fixed integers from 1 to poly(κ)), some additional applications in §5 require
the stronger IND-ID-CPA-security.

Blind IBE. So far, we have only described traditional IBE schemes. A blind IBE scheme consists
of the same players, together with the same algorithms Setup, Encrypt, Decrypt and yet we replace
the protocol Extract with a new protocol BlindExtract which differs only in the authority’s output:

- In the BlindExtract(P(params,msk),U(params, id)) → (nothing, sk id ) protocol, an honest
user U with identity id ∈ I obtains the corresponding secret key sk id from the master au-
thority P or outputs an error message. The master authority’s output is nothing or an error
message.

We now define security for blind IBE, which informally is any IND-sID-CPA-secure IBE scheme with
a BlindExtract protocol that satisfies two properties:

1. Leak-free Extract: a potentially malicious user cannot learn anything by executing the
BlindExtract protocol with an honest authority which she could not have learned by executing
the Extract protocol with an honest authority; moreover, as in Extract, the user must know
the identity for which she is extracting a key.

2. Selective-failure Blindness: a potentially malicious authority cannot learn anything about
the user’s choice of identity during the BlindExtract protocol; moreover, the authority cannot
cause the BlindExtract protocol to fail in a manner dependent on the user’s choice.

Of course, a protocol realizing the functionality BlindExtract (in a fashion that satisfies the prop-
erties above) is a special case of secure two-party computation [Yao86, GMW87, Kil88]. However,
using generic tools may be inefficient, so as in the case of blind signature protocols, we seek to
optimize this specific computation. Let us now formally state these properties.

Definition 3.2 (Leak-Free Extract) A protocol BlindExtract = (P,U) associated with an IBE
scheme Π = (Setup,Extract,Encrypt,Decrypt) is leak free if for all efficient adversaries A, there
exists an efficient simulator S such that for every value κ and polynomial c(·), no efficient dis-
tinguisher D can distinguish whether A is playing Game Real or Game Ideal with non-negligible
advantage:

Game Real: Run (params,msk) ← Setup(1κ, c(κ)). As many times as D wants, A chooses an
identity id and executes the BlindExtract protocol with P: BlindExtract(P(params,msk),A(params, id)).

Game Ideal: Run (params,msk) ← Setup(1κ, c(κ)). As many times as D wants, S chooses an
identity id and queries a trusted party to obtain the output of Extract(params,msk , id), if
id ∈ I and ⊥ otherwise.

Here D and A (or S) may communicate at any time. Also, params defines I.
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This definition implies that the identity id (for the key being extracted) is extractable from the
BlindExtract protocol, since S must be able to interact with A to learn which identities to submit
to the trusted party. We will make use of this observation later. Another nice property of this
definition is that any key extraction protocol with leak-freeness (regardless of whether blindness
holds or not) composes into the existing security definitions for IBE. (This would not necessarily
be true of a blind signature protocol for the same type of signatures.) We state this formally below.

Lemma 3.3 If Π = (Setup,Extract,Encrypt,Decrypt) is an IND-sID-CPA-secure (resp., IND-ID-
CPA) IBE scheme and BlindExtract associated with Π is leak-free, then Π′ = (Setup, BlindExtract,
Encrypt, Decrypt) is an IND-sID-CPA-secure (resp., IND-ID-CPA) IBE scheme.

Next, we define the second property of blindness. We use a strong notion of blindness called
selective-failure blindness proposed recently by Camenisch et al. [CNS07], ensuring that even a
malicious authority is unable to induce BlindExtract protocol failures that are dependent on the
identity being extracted.

Definition 3.4 (Selective-Failure Blindness (SFB) [CNS07]) A protocol P (A(·), U(·, ·)) is said
to be selective-failure blind if every p.p.t. adversary A has a negligible advantage in the following
game: First, A outputs params and a pair of identities id0, id1 ∈ I. A random b ∈ {0, 1} is chosen.
A is given black-box access to two oracles U(params, idb) and U(params, idb−1). The U algorithms
produce local output sk b and sk b−1 respectively. If sk b 6= ⊥ and sk b−1 6= ⊥ then A receives (sk0, sk1).
If sk b = ⊥ and sk b−1 6= ⊥ then A receives (⊥, ε). If sk b 6= ⊥ and sk b−1 = ⊥ then A receives (ε,⊥).
If sk b = ⊥ and sk b−1 = ⊥ then A receives (⊥,⊥). Finally, A outputs its guess b′. We define A’s
advantage in the above game as |Pr [b′ = b]− 1/2|.

We thus arrive at the following definition.

Definition 3.5 (Secure Blind IBE) A blind IBE Π = (Setup, BlindExtract, Encrypt, Decrypt) is
called IND-sID-CPA-secure (resp. IND-ID-CPA) if and only if: (1) Π is IND-sID-CPA-secure (resp.
IND-ID-CPA), and (2) BlindExtract is leak free and selective-failure blind.

3.1 IBE Schemes with Efficient BlindExtract Protocols

In this section, we describe efficient BlindExtract protocols for: (1) the IND-sID-CPA-secure IBE due
to Boneh and Boyen [BB04] and (2) the IND-ID-CPA-secure IBE proposed independently by Nac-
cache [Nac05] and Chatterjee-Sarkar [CS05] which is a generalized version of Waters IBE [Wat05].
Note that in §3.3 we will be adding some additional features to these IBE schemes; these will help us
to construct oblivious transfer protocols in §4. Since all of these schemes share a similar structure,
we’ll begin by describing their common elements.

Setup(1κ, c(k)): Let γ = (q, g, G, GT , e) be the output of BMsetup(1κ). Choose random elements
h, g2 ∈ G and a random value α ∈ Zq. Set g1 = gα. Finally, select a function F : I → G that
maps identities to group elements. (The descriptions of F and I will be defined specific to
the schemes below.) Output params = (γ, g, g1, g2, h, F ) and msk = gα

2 .

Extract: Identity secret keys are of the form: sk id = (d0, d1) = (gα
2 · F (id)r, gr), where r ∈ Zq is

randomly chosen by the master authority. Note that the correctness of these keys can be
publicly verified using a test described below.
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P(params,msk) U(params, id)

1. Choose y
$← Zq.

2. Compute h′ ← gygid
1 and send h′ to P.

3. Execute PoK{(y, id) : h′ = gygid
1 }.

4. If the proof fails to verify, abort.

5. Choose r
$← Zq.

6. Compute d′0 ← gα
2 · (h′h)r.

7. Compute d′1 ← gr.
8. Send (d′0, d

′
1) to U .

9. Check that e(g1, g2) · e(d′1, h′h) = e(d′0, g).

10. If the check passes, choose z
$← Zq;

otherwise, output ⊥ and abort.
11. Compute d0 ← (d′0/(d′1)

y) · F (id)z

and d1 ← d′1 · gz.
12. Output sk id = (d0, d1).

Figure 1: A BlindExtract protocol for the Boneh-Boyen IBE.

Encrypt(params, id, M): Given an identity id ∈ I, and a message M ∈ GT , select a random s ∈ Zq

and output the ciphertext C = (e(g1, g2)s ·M, gs, F (id)s).

Decrypt(params, id, sk id, cid): On input a decryption key sk id = (d0, d1) ∈ G2 and a ciphertext
C = (X, Y, Z) ∈ GT ×G2, output M = X · e(Z, d1)/e(Y, d0).

Next, we’ll describe the precise format of the secret keys sk id and corresponding BlindExtract
protocols for particular IBEs.

3.1.1 A BlindExtract Protocol for an IND-sID-CPA-Secure IBE

In the Boneh-Boyen IBE [BB04], I ⊆ Zq and the function F : I → G is defined as F (id) = h · gid
1 .

A secret key for identity id , where r ∈ Zq is random, is:

sk id = (d0, d1) = (gα
2 · F (id)r, gr) = (gα

2 · (h · gid
1 )r, gr).

The protocol BlindExtract(P(params,msk),U(params, id)) is described in Figure 1. Recall that U
wants to obtain sk id without revealing id , and P wants to reveal no more than sk id . Let Π1 be
the blind IBE that combines algorithms Setup, Encrypt, Decrypt with the protocol BlindExtract in
Figure 1.

Theorem 3.6 Under the DBDH assumption, blind IBE Π1 is secure (according to Definition 3.5);
i.e., BlindExtract is both leak-free and selective-failure blind.

A proof of Theorem 3.6 is presented in the full version of this work .
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3.1.2 A BlindExtract Protocol for an IND-ID-CPA-Secure IBE

In the generalized version of Waters IBE [Wat05], proposed independently by Naccache [Nac05]
and Chatterjee and Sarkar [CS05], the identity space I is the set of bit strings of length N , where
N is polynomial in κ, represented by n blocks of ` bits each. The function F : {0, 1}N → G is
defined as F (id) = h ·

∏n
j=1 u

aj

j , where each uj ∈ G is randomly selected by the master authority
and each aj is an `-bit segment of id . Naccache discusses practical IBE deployment with N = 160
and ` = 32 [Nac05]. A secret key for identity id , where r ∈ Zq is random, is:

sk id = (d0, d1) = (gα
2 · F (id)r, gr) = (gα

2 · (h ·
n∏

j=1

u
aj

j )r, gr).

The protocol BlindExtract(P(params,msk),U(params, id)) is described in Figure 1, with the follow-
ing alterations. Parse the identity as id = (a1, . . . , an), where each ai is ` bits. In line 2, compute
h′ as gy ·

∏n
j=1 u

aj

j . In line 3, execute the proof PoK{(y, a1, . . . , an) : h′ = gy ·
∏n

j=1 u
aj

j ∧ 0 ≤ ai <

2`, for i = 1 to n}. The range part of this proof (e.g., 0 ≤ ai < 2`) can be performed exactly or, by
shortening each ai by a few bits, can be done at almost no additional cost [CFT98, CM99, Bou00].
Follow the rest of the protocol as is. Let Π2 be the blind IBE that combines Setup, Encrypt, Decrypt
with the BlindExtract protocol described above.

Theorem 3.7 Under the DBDH assumption, blind IBE Π2 is secure (according to Definition 3.5);
i.e., BlindExtract is both leak-free and selective-failure blind.

A proof of Theorem 3.7 is presented in the full version of this paper .

3.2 On Other IBEs and HIBEs

Let us briefly summarize what we know about efficient BlindExtract protocols for other IBE schemes
and hierarchical IBE (HIBE) schemes. First, random oracle based IBEs [BF01, Coc01] appear to be
less suited to developing efficient BlindExtract protocols than their standard model successors. This
is in part due to the fact that the identity string is hashed into an element in G in these schemes,
instead of represented as an integer exponent, which makes our proof of knowledge techniques
unwieldy. We were not able to find BlindExtract protocols for the Boneh and Franklin [BF01],
Cocks [Coc01], or the recent Boneh-Gentry-Hamburg [BGH07] IBEs with running time better
than O(|I|), where I is the identity space. Additionally, we did not consider the efficient IBE of
Gentry [Gen06], as our focus was on schemes with static complexity assumptions.

We additionally considered hierarchical IBE schemes, such as those due to Boneh and
Boyen [BB04], Waters [Wat05] and Chatterjee and Sarkar [CS06]. For all of these HIBEs, the
number of elements comprising an identity secret key grow with the depth of the hierarchy, but
each piece is similar in format to the original keys and our same techniques would apply.

3.3 Additional Properties for a Blind IBE

In §4, we use blind IBE as a tool for constructing oblivious transfer protocols. We can use either
of the efficient blind IBEs Π1 and Π2 defined above together with the following observations about
efficient protocols relating to them.
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First, in our OT constructions, we require an efficient zero-knowledge proof of knowledge proto-
col for the statement PoK{(msk) : (params,msk) ∈ Setup(1κ, c(κ))}. If efficiency were not critical,
we could accomplish this proof using general techniques [Yao86, GMW87, Kil88]. However, for
the parameters used in Π1,Π2, this proof can be conducted efficiently in a number of ways; one
technique is to set msk = α and conduct the equivalent PoK{(α) : g1 = gα} using a standard
Schnorr proof [Sch91].

The second property that we require is more subtle. Note that in the schemes Π1 and Π2,
there are many valid decryption keys for each identity. This may lead to a condition where some
incorrectly-formed ciphertexts decrypt differently depending on which secret key is used. This can
cause problems with the proofs of full-simulation security for our OT protocols (specifically, we
may not be able to show Receiver security.) To address this condition in our OT protocols, we
require that Π1 and Π2 possess a property similar to committing encryption [CFGN96]. Intuitively,
this property ensures that for a ciphertext and identity (C, id): (1) running the honest decryption
algorithm on C with respect to any valid secret key for identity id will result in the same unique
value, or (2) if this is not so, then this fact can be publicly identified.

Let us define a public ciphertext validity check algorithm, which we denote by IsValid(params, id , C).
In the case of blind IBE schemes Π1 and Π2, we implement this algorithm by first checking the
group parameters γ are valid (see [CCS07]), and verifying that for any params and C = (X, Y, Z),
all the values are in the correct groups and e(Y, F (id)) = e(Z, g). The correctness property for the
IsValid algorithm is that it outputs 1 for all honestly-generated parameters and ciphertexts. From
the description of Π1 and Π2, it is easy to see that IsValid is correct. The algorithm’s behavior in
the case of maliciously-generated input is constrained insofar as it affects the following definition:

Definition 3.8 (Committing IBE) An IBE scheme (resp., blind IBE) Π is committing if and
only if: (1) it is IND-sID-CPA-secure (resp., secure in the sense of definition 3.5) and (2) every p.p.t.
adversary A has an advantage negligible in κ for the following game: First, A outputs params, id ∈ I
and a ciphertext C. If IsValid(params, id, C) 6= 1 then abort. Otherwise, the challenger, on input
(params, id), runs the Extract (resp., BlindExtract) protocol with A twice to obtain purported keys
sk id, sk ′id. A’s advantage is defined as:∣∣Pr

[
Decrypt(params, id, sk id, C) 6= Decrypt(params, id, sk ′id, C)

]∣∣
In the full version of this work , we prove that both Π1 and Π2 are committing blind IBE schemes
in the sense of definition 3.8.

4 Simulatable Oblivious Transfer

We now turn our attention to constructing efficient and fully-simulatable oblivious transfer proto-
cols. We’ll use any of the efficient blind IBEs presented in the previous section as a building block.
In particular, we focus on building (non-adaptive) OTN

k and (adaptive) OTN
k×1 protocols, in which

a Sender and Receiver transfer up to k messages out of an N -message set. In the non-adaptive
model [BCR86, NP99a], the Receiver requests all k messages simultaneously. In the adaptive
model [NP99b], the Receiver may request the messages one at a time, using the result of previous
transfers to inform successive requests. Intuitively, the Receiver should learn only the messages it
requests (and nothing about the remaining messages), while the Sender should gain no information
about which messages the Receiver selected.
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Full-simulation vs. half-simulation security. Security for oblivious transfer is defined via
simulation. Informally, a protocol is secure if, for every real-world cheating Sender (resp., Receiver)
we can describe an ideal-world counterpart who gains as much information from the ideal-world
interaction as from the real protocol. Much of the oblivious transfer literature uses the simulation-
based definition only to show Sender security, choosing to define Receiver security by a simpler
game-based definition. Naor and Pinkas demonstrated that this weaker “half-simulation” approach
permits selective-failure attacks, in which a malicious Sender induces transfer failures that are
dependent on the message that the Receiver requests [NP99b]. Recently, Camenisch et al. [CNS07]
proposed several practical OTN

k×1 protocols that are secure under a “full-simulation” definition,
using adaptive (e.g., q-PDDH) or interactive (e.g., one-more-inversion RSA) assumptions. We now
enhance their results by demonstrating efficient full-simulation OTN

k and OTN
k×1 protocols secure

under static complexity assumptions (e.g., DBDH).

4.1 Definitions

Recall the definitions for both the non-adaptive and adaptive protocols. For consistency with earlier
work, we use the notation from Camenisch et al. [CNS07].

Definition 4.1 (k-out-of-N Oblivious Transfer (OTN
k , OTN

k×1)) An oblivious transfer scheme
is a tuple of algorithms (SI,RI,ST,RT). During the initialization phase, the Sender and the Receiver
run an interactive protocol, where the Sender runs SI(M1, . . . , MN ) to obtain state value S0, and
the Receiver runs RI() to obtain state value R0. Next, during the transfer phase, the Sender and
Receiver interactively execute ST,RT, respectively, k times as described below.

Adaptive OT. In the adaptive OTN
k×1 case, for 1 ≤ i ≤ k, the ith transfer proceeds as follows: the

Sender runs ST(Si−1) to obtain state value Si, and the Receiver runs RT(Ri−1, σi) where 1 ≤ σi ≤ N
is the index of the message to be received. This produces state information Ri and the message M ′

σi

or ⊥ indicating failure.

Non-adaptive OT. In the non-adaptive OTN
k case the parties execute the protocol as above; however,

for round i < k the algorithm RT(Ri−1, σi) does not output a message. At the end of the the kth

transfer RT(Rk−1, σk) outputs the messages (M ′
σ1

, . . . ,M ′
σk

) where for j = 1, . . . , N each M ′
σj

is
a valid message or the symbol ⊥ indicating protocol failure. (In a non-adaptive scheme, the k
transfers do not necessarily require a corresponding number of communication rounds.)

Definition 4.2 (Full Simulation Security.) Security for oblivious transfer is defined according
to a simulation-based definition.

Real experiment. In experiment RealŜ,R̂(N, k, M1, . . . ,MN ,Σ) the possibly cheating sender Ŝ is
given messages (M1, . . . ,MN ) as input and interacts with possibly cheating receiver R̂(Σ), where
Σ is a selection algorithm that on input messages (Mσ1 , . . . ,Mσi−1) outputs the index σi of the
next message to be queried. At the beginning of the experiment, both Ŝ and R̂ output initial states
(S0, R0). In the adaptive case, for 1 ≤ i ≤ k the sender computes Si ← Ŝ(Si−1), and the receiver
computes (Ri,M

′
i)← R̂(Ri−1), where M ′

i may or may not be equal to Mi. In the non-adaptive case,
the Receiver obtains no messages until the kth round, and therefore the selection strategy Σ must
be non-adaptive. At the end of the kth transfer the output of the experiment is (Sk, Rk).

Ideal experiment. In experiment IdealŜ′,R̂′(N, k, M1, . . . ,MN ,Σ) the possibly cheating sender
algorithm Ŝ′ generates messages (M∗

1 , . . . ,M∗
N ) and transmits them to a trusted party T . In the ith
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round Ŝ′ sends a bit bi to T ; the possibly cheating receiver R̂′(Σ) transmits σ∗i to T . In the adaptive
case, if bi = 1 and σ∗i ∈ (1, . . . , N) then T hands Mσi

∗ to R̂′. If bi = 0 then T hands ⊥ to R̂′. Note
that in the non-adaptive case, T does not give R̂′ any response until the kth round. At the end of
the kth transfer the output of the experiment is (Sk, Rk).

Sender Security. OTN
k×1 provides Sender security if for every real-world p.p.t. receiver R̂ there

exists a p.p.t. ideal-world receiver R̂′ such that ∀N = `(κ), k ∈ [1, N ], (M1, . . . ,MN ), Σ, and every
p.p.t. distinguisher:
RealS,R̂(N, k, M1, . . . ,MN ,Σ)

c
≈ IdealS′,R̂′(N, k, M1, . . . , MN ,Σ).

Receiver Security. OTN
k×1 provides Receiver security if for every real-world p.p.t. sender Ŝ there

exists a p.p.t. ideal-world sender Ŝ′ such that ∀N = `(κ), k ∈ [1, N ], (M1, . . . ,MN ), Σ, and every
p.p.t. distinguisher:
RealŜ,R(N, k, M1, . . . ,MN ,Σ)

c
≈ IdealŜ′,R′(N, k, M1, . . . , MN ,Σ).

4.2 Constructions

4.2.1 Non-adaptive OTN
k without Random Oracles

Given a committing blind IBE scheme Π, it is tempting to consider the following “intuitive” pro-
tocol: First, the Sender runs the IBE Setup algorithm and sends params to the Receiver. Next,
for i = 1, . . . , N the Sender transmits an encryption of message Mi under identity “i”. To obtain
k messages, the Receiver extracts decryption keys for identities (σ1, . . . , σk) via k distinct execu-
tions of BlindExtract, and uses these keys to decrypt the corresponding ciphertexts. If Π is a blind
IBE secure in the sense of definition 3.5, then a cheating Receiver gains no information about the
messages corresponding to secret keys he did not extract. Similarly, with additional precautions,
a cheating Sender does not learn the identities extracted. However, it seems difficult to show this
protocol is fully-simulatable, because the ideal Sender would have to form the N ciphertexts before
learning the messages that k of them must decrypt to!

Fortunately, we are able to convert this simple idea into the fully-simulatable OTN
k protocol

shown in Figure 2. We require only the following modifications: first, we have the Sender prove
knowledge of the value msk using appropriate zero-knowledge techniques.1 Then, rather than
transmitting the ciphertext vector during the first phase of the protocol, the Sender transmits only
a commitment to a collision-resistant hash of the ciphertext vector, and sends the actual ciphertexts
at the end of the kth round together with a proof that she can open the commitment to the hash
of the ciphertexts. (She does not open the commitment; she only proves that she knows how to do
so.)

Theorem 4.3 (Full-simulation Security of the OTN
k Scheme) If blind IBE Π ∈ {Π1,Π2}

with the IsValid as defined in §3.3 and (CSetup,Commit,Decommit) is a secure commitment scheme,
then the OTN

k protocol of figure 2 is sender-secure and receiver-secure in the full-simulation model
under DBDH.

We include a proof of Theorem 4.3 in the full version .
1In §3.3, we describe how to conduct these proofs efficiently for the practical blind IBE constructions we consider.
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SI(M1, . . . ,MN ),ST() RI(),RT(σ1, . . . , σk)

Sender and Receiver agree on parameters for a commitment scheme and
a collision-resistant hash function H.a

1. Generate (params,msk)← Setup(1κ, c(κ)).
2. For j = 1, . . . , N , set Cj ← Encrypt(params, j,Mj).
3. Compute (C,D)← Commit (H(C1, . . . , CN )).
4. Send (params, C) to Receiver.
5. Conduct PoK{(msk) : (params,msk) ∈ Setup(1κ, c(κ))}.

6. If the proof does not verify, abort.

For i = 1, ..., k, run BlindExtract on identity σi for Receiver to obtain skσi .

Following the kth extraction:
1. Send the ciphertexts (C1, . . . , CN ) to the Receiver.
2. Conduct PoK{(D) : Decommit (H(C1, . . . , CN ), C,D) = 1}.

3. If the proof does not verify, or for any i
IsValid(params, i, Ci) 6= 1, abort and set
M ′

σ1
, . . . ,M ′

σk
← ⊥.

4. For i = 1 to k: If BlindExtract on σi failed,
set M ′

σi
← ⊥; else, set M ′

σi
to the value

Decrypt(params, σi, skσi , Cσi).

Output Sk Output Rk, (M ′
σ1

, . . . ,M ′
σk

).

aIn the case of Pedersen’s commitment scheme, the parameters may be generated by the Receiver.
H may also be selected by the Receiver.

Figure 2: OTN
k from any of the committing blind IBEs in §3, with input messages M1, . . . ,MN ∈M.

We present the SI,RI,ST,RT algorithms in a single protocol flow.

4.2.2 Adaptive OTN
k×1 in the Random Oracle Model

While our first protocol is efficient and full-simulation secure, it permits only non-adaptive queries.
For many practical applications (e.g., oblivious retrieval from a large database), we desire a proto-
col that supports an adaptive query pattern. We approach this goal by first proposing an efficient
OTN

k×1 protocol secure in the random oracle model. The protocol, which we present in Figure 3,
requires an IBE scheme with a super-polynomial message space (as in the constructions of §3.1),
and has approximately the same efficiency as the construction with random oracles of Camenisch et
al. [CNS07]. However, their construction requires unique blind signatures and the two known op-
tions due to Chaum [Cha82] and Boldyreva [Bol03] both require interactive complexity assumptions.
By using the blind IBE schemes in §3.1, our protocols can be based on the DBDH assumption.

Theorem 4.4 (Full-simulation Security of the OTN
k×1 Scheme) If blind IBE Π ∈ {Π1,Π2}

with the IsValid as defined in §3.3 and H is modeled as a random oracle, then the OTN
k×1 protocol
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SI(M1, . . . ,MN ) RI()

1. Select (params,msk)← Setup(1κ, c(κ)).
2. Select random W1, . . . ,WN ∈M, and for j = 1, . . . , N set:
— Aj ← Encrypt(params, j,Wj)
— Bj ← H(Wj)⊕Mj

— Cj = (Aj , Bj)
3. Conduct PoK{(msk) : (params,msk) ∈ Setup(1κ, c(κ))}.
4. Send (params, C1, . . . , CN ) to Receiver.

5. If the proof fails to verify or for any i
IsValid(params, i, Ci) 6= 1, abort and
set M ′

σ1
, . . . ,M ′

σk
← ⊥.

Output S0 = (params,msk) Output R0 = (params, C1, . . . , CN )

ST(Si−1) RT(Ri−1, σi)

In the ith transfer, run BlindExtract on identity σi for Receiver to obtain skσi .

1. If BlindExtract fails, then set M ′
σi

to ⊥.
2. Else set t← Decrypt(params, σi, skσi , Aσi)

and set M ′
σi
← Bσi ⊕H (t).

Output Si = Si−1 Output Ri = (Ri−1,M
′
σi

).

Figure 3: Adaptive OTN
k×1 from any of the committing blind IBEs in §3, with M1, . . . ,MN ∈ {0, 1}n.

Let hash H :M→ {0, 1}n be modeled as a random oracle.

of figure 3 is sender-secure and receiver-secure in the full-simulation model under DBDH.

We include a proof of Theorem 4.4 in the full version .

4.2.3 Adaptive OTN
k×1 without Random Oracles

The random-oracle OTN
k×1 presented above is reasonably efficient both in terms of communication

cost and round-efficiency. Ideally, we would like to construct a protocol of comparable efficiency
in the standard model. We could construct an OTN

k×1 protocol by compiling k instances of the
non-adaptive OTN

k from §4.2.1. Each protocol round would consist of a 1-out-of-N instance of
the protocol, with new IBE parameters and new a vector of ciphertexts (C1, . . . , CN ). To ensure
that each round is consistent with the previous rounds, the Sender would need to prove that the
underlying plaintexts remain the same from round to round. This can be achieved using standard
proof techniques, but is impractical for large values of k or N .

Alternatively, we could combine our scheme with the standard model OTN
k×1 of Camenisch et

al. [CNS07]. Their efficient OTN
k×1, for example, incurs only a constant cost per transfer phase.

However, the protocol relies on the dynamic q-Strong DH and q-Power Decisional DH assumptions,
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where large values of q require larger than normal security parameters [Che06]. Fortunately, one
might be able to keep q small (on the order of k rather than N) by combining the Camenisch et
al. scheme with ours as follows: in their initialization, the Sender releases N values corresponding
to the messages that require q = N . Instead, we could use a blind IBE scheme to encrypt these N
values during initialization, and then during the adaptive transfer phase, a Receiver could request
the decryption key of his choice along with the information required in the Camenisch et al. scheme.
Thus, reducing the values available to an adversary to q = k.

5 Other Applications of Blind IBE

Privacy-preserving delegated keyword search. Several works use IBE as a building-block for
public-key searchable encryption [BCOP04, WBDS04]. These schemes permit a keyholder to dele-
gate search capability to other parties. For example, Waters et al. [WBDS04] describe a searchable
encrypted audit log in which a third party auditor is granted the ability to independently search
the encrypted log for specific keywords. To enable this function, a central authority generates
“trapdoors” for the keywords that the auditor wishes to search on. In this scenario, the trapdoor
generation authority necessarily learns each of the search terms. This may be problematic in cir-
cumstances where the pattern of trapdoor requests reveals sensitive information (e.g., the name
of a user under suspicion). By using blind and partially-blind IBE, we permit the authority to
generate trapdoors, yet learn no information (or only partial information) about the search terms.2

Blind and partially-blind signature schemes. Moni Naor observed that each adaptive-identity
secure IBE implies an existentially unforgeable signature scheme [BF01]. By the same token, an
adaptive-identity secure blind IBE scheme implies an unforgeable, selective-failure blind signature
scheme. This result applies to the adaptive-identity secure Π2 protocol of §3.1.2, and to the selective-
identity secure protocol Π1 when that scheme is instantiated with appropriately-sized parameters
and a hash function (see §7 of [BB04]). The efficient BlindExtract protocol for the adaptive-identity
secure Π2 scheme can also be used to construct a partially-blind signature, by allowing the signer
(the master authority) to supply a portion of the input string. Partially-blind signatures have many
applications, such as document timestamping and electronic cash [MS98].

Temporary anonymous identities. In a typical IBE, the master authority can link users to
identities. For some applications, users may wish to remain anonymous or pseudonymous. By
employing (partially-)blind IBE, an authority can grant temporary credentials without linking
identities to users or even learning which identities are in use.

Acknowledgments. Thanks to abhi shelat for helpful discussions, and to an anonymous reviewer
for pointing out an issue regarding malformed ciphertexts.
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