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Abstract: Cryptographic  hash  algorithms  are  important  building  blocks  in  cryptographic  protocols, 
providing authentication and assurance of integrity. While many different hash algorithms are 
available including MD5, Tiger, and HAVAL, it is difficult to compare them since they do not 
necessarily use  the same techniques to achieve their  security goals.  This  work informally 
describes a framework in four parts which allows different hash algorithms to be compared 
based on their strengths and weaknesses. By breaking down cryptographic hash algorithms 
into  their  preprocessing,  postprocessing,  compression  function,  and  internal  structure 
components, weaknesses in existing algorithms can be mitigated and new algorithms can take 
advantage of strong individual components.

1 INTRODUCTION

Research  in  cryptographic  hash  algorithms  has  gone  through  many  life-cycles  while 
algorithms  have  been  analyzed,  created,  and  broken.  Although  techniques  for  block 
cipher construction were quickly adapted to hash algorithm design and several block-
cipher-based hash algorithm structures have been developed, it  is  not clear that these 
constructions achieve the practical security goals of cryptographic hash algorithms. Even 
today, there is no consensus on a suitable definition of what makes a hash algorithm 
secure. Instead, cryptographers rely on theoretical foundations such as the random oracle 
model which may not be practically attainable [28] and ad hoc constructions which may 
or  may  not  improve  the  security  of  these  algorithms.  At  the  Second  NIST  Hash 
Workshop in 2006, it was agreed that cryptographers do not really know what they want 
in a hash algorithm [33]. This paper is an attempt to partially rectify this lack of direction. 

As weaknesses continue to be found in common hash algorithms, a significant step 
forward would be the concrete determination of what makes hash algorithms secure, or in 
a  different  light,  what  makes  them  weak.  The  compression  function  has  long  been 
considered the most important part of a hash algorithm, and while its importance should 
not be understated, the other parts of calculating a cryptographic hash also prove to be 
vital.  For  example,  weaknesses  leading  to  collisions  have  been  demonstrated  in  the 
compression function of the MD5 algorithm, and subsequent suggestions for modifying 
the algorithm have been offered. Some of these suggestions, such as those describing 
preprocessing  steps  to  be  taken  before  any  part  of  the  message  is  delivered  to  the 
compression function, do not change the underlying weakness in the compressor. While 

1



these modifications certainly defeat the specific attack for which they were designed, 
MD5 would be better  if  it  had “defense in  depth”:  a  strong compression function  in 
addition  to  strong  preprocessing  techniques.  This  paper  describes  a  model  such  that 
cryptographic  hash  algorithms  can  be  modularly  evaluated  for  security  properties  by 
comparing their individual components: preprocessing, postprocessing, the compression 
function, and the internal structure.

2 THE FRAMEWORK

At its most basic, this framework simply divides the operations of cryptographic hash 
algorithms  into  four  distinct  parts:  a  preprocessing  step,  the  internal  structure,  the 
compression  function(s),  and  a  postprocessing  step.  An  n-bit hash  algorithm 
H: {0,1}* → {0,1}n that processes a message M of arbitrary length  made up of  L fixed-
size blocks M0, M1, M2, ..., ML-1 ∈ {0,1}b can also be defined in terms of four functions P, 
Q, R, and S, such that H(M) = P(QR(S(M))). In this equation, S: {0,1}* → {0,1}* indicates 
a preprocessing step which may operate on the entire message M or on each block Mi of 
the message - shortening, lengthening, or doing otherwise according to the requirements 
of the internal structure. QR: {0,1}* → {0,1}s indicates the internal (iterative) structure of 
the hash algorithm which uses the compression function R: {0,1}b → {0,1}c (b > c) in its 
iterated operation on an arbitrary-length input M to generate a semi-final value of length 
s. P: {0,1}s → {0,1}n indicates a postprocessing step on the semi-final hash value. Below, 
we  describe  several  examples  of  each  component  category  in  order  to  offer  some 
representative components rather than an exhaustive list.

2.1 Preprocessors

Szydlo and Yin describe two types of preprocessing that might be performed on the input 
to a hash algorithm: local and global [29]. A local preprocessor is only required to keep 
the current input block in memory, while a global preprocessor may operate upon any 
part of the input. This can be thought of as analogous to the sequential access of data on a 
magnetic tape versus the random access of data on a disk. When the entire input to a hash 
algorithm is not received at once, global preprocessing is impossible. Applications with 
inputs of indefinite lengths are said to have a streaming requirement, which requires that 
cryptographic hash algorithms within these applications only use local preprocessors or 
global  preprocessors  which  can  process  the  message  serially.  Merkle-Damgård 
Strengthening is an example of such a global preprocessor which maintains a counter 
value of the length of the input, which it then appends to the input after the last block is 
reached.

Local preprocessors which use counter values have also been discussed, such as in 
Biham and Dunkelman's HAIFA framework [7]. In the HAIFA framework, a technique is 
introduced which appends a fixed-length counter containing the number of bits that the 
hash algorithm has so far processed to the end of every data block. This is similar to MD-
strengthening, except this length field is appended to every block, not just the last, and 
obviates  the  need  for  MD-strengthening.  Szydlo  and  Yin  proposed  whitening  and 
message  self-interleaving  as  specific  local  preprocessing  techniques  to  defeat  known 
collision attacks in MD5 [29]. The whitening technique inserts fixed blocks of data at 
intervals within the input stream. Message self-interleaving repeats every byte of data in 
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fixed-length  blocks  before  feeding  the  input  stream  to  the  internal  structure.  Both 
techniques serve to diffuse the input across more iterations of the compression function, 
and may operate on entire blocks. The drawback with these preprocessors is  that the 
overall speed of the hash algorithm is reduced. Kauer et al [16] proposed a technique 
called local tagging which requires each input block to be hashed separately, then the 
results of the single-block hash appended and prepended to the data block as “tags”. This 
effectively results in each input byte being hashed twice – once to generate the tags and 
again with the tags in place alongside the actual input bytes.

One global preprocessing method offered in [16] prepends the length of the input to 
the input itself, which makes it a global preprocessor since the length of the input is not 
known upon processing  of  the  first  input  block.  A global  technique  called  complete 
striped hashing [11] reorders the input data such that the ith byte of the processed input is 
taken from the original input at block i·n mod |M|, where |M| is the length of the input, 
and n is relatively prime to |M|. This has the benefit of disrupting certain block injection 
or  length-extension  collision  attacks  by  spreading  any  injected  or  modified  data  to 
various places in the preprocessed input. The drawbacks are that it is a global technique 
and that collision attacks may still be performed in anticipation of the preprocessing step.

2.2 Internal Structure

In this paper, we avoid using the terms “iterative structure” or “domain extension” [4] in 
favor of “internal structure”, as the internal structure of a hash algorithm need not be 
iterative, nor must the internal structure extend the domain of an internal function. It 
could operate on the entire message at once and never resemble the Merkle-Damgård 
(MD) construction, which is the structure in use by several common hash algorithms, 
including MD5 [34], SHA-1 [35], HAVAL [31] and Tiger [2].  While the MD iterative 
structure maintains the collision resistance of underlying compression functions, it does 
not necessarily maintain any preimage resistance properties that the compression function 
may possess. There has been research on the topic of security property preservation in 
internal structures [4], and these definitions may prove useful in the choice or design of 
internal structures in cryptographic hash algorithms.

A  structure  similar  to  Merkle-Damgård  and  based  upon  a  block  cipher  as  the 
underlying  compression  function  is  the  Davies-Meyer  (DM)  iterative  structure  [21]. 
Variants  of  the  DM structure  include  Matyas-Meyer-Oseas  (MMO)  and  Miyaguchi-
Preneel (MP).  These structures either  encrypt the output  of the previous compression 
with the message block or encrypt the message block with the output of the previous 
compression. After the block cipher has returned its result, and depending on the specific 
structure, the output of the block cipher is then exclusive-ORed with the message block, 
the previous compression output, or both. Lucks' Double-Pipe Hash [20] is a stronger 
variant of MD that is separate from DM and uses two “levels” of compression functions 
such  that  each  message  block  is  compressed  twice  (starting  with  two  different 
initialization vectors) such that two separate chaining values are kept. This “cascading” 
of compression functions results in an internal structure which is provably more resistant 
against (multiple) preimage attacks. The Double-Pipe Hash can be further extended to a 
k-Pipe  Hash  (with  k  levels  of  compression  functions)  to  further  reinforce  the  hash 
algorithm against such attacks. The Double-Pipe Hash is only half as fast as a typical 
MD-based algorithm, and the k-Pipe Hash is slower by a factor of k.

Tree-based hash algorithms on the other hand [5], do not process input data in the 
same iterative manner as MD and its variants. Each input block is placed at the leaves of 
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a balanced binary (or n-ary) tree. Each block is compressed, then the resulting hash value 
is paired with the hash value of the appropriate  neighbor block, which are both then 
passed to the compression function again, and so on, until the hash for the entire tree is 
calculated. The drawbacks to this approach are that it  requires  O(log  n) memory and 
twice as much time to calculate the hash as a linear, iterative solution. A benefit to this 
structure is that intermediate hashes may be kept to speed up recalculation of the overall 
hash should changes occur in only a few blocks of the input. 

2.3 Compression Functions

One of the most straightforward ways to construct a compression function for a hash 
algorithm is to reuse a function that is already available, namely a block cipher [19, 26]. 
Since a block cipher takes two inputs whose lengths combined are longer than its output, 
it seems that the cipher would be an ideal candidate for a compression function. The 
previously-mentioned DM, MMO and MP iterative structures do exactly this, though the 
block cipher to be used is left as a black box. Conceivably, any block cipher known to be 
secure could be used in this capacity. We reiterate, though, that it is unclear whether a 
cryptographic hash algorithm based upon a block cipher actually achieves the practical 
security goals of a hash algorithm. 

With this in mind, several dedicated hash algorithms (and consequently compression 
functions) have been proposed which do not rely on existing constructions like block 
ciphers.  Instead,  many  dedicated  hash  algorithms  like  MD5,  SHA-1  and  Tiger  use 
combinations of Boolean functions and substitution boxes on the input data to achieve 
one-way  compression.  These  Boolean  compression  functions  are  sometimes  chosen 
based on desirable features such as those described in [31] and include non-linearity, 
equal distribution of 0-bits and 1-bits, satisfaction of the Strict Avalanche Criterion [30], 
and  independence  of  output  bits.  Other  dedicated  hash  algorithms  use  compression 
functions which rely upon or are similar to well-known schemes, such as WHIRLPOOL's 
compression  function which is  similar  to  AES/Rijndael's  matrix  operations  and  Very 
Smooth Hash (VSH) [9] which uses modular exponentiation. 

2.4 Postprocessors

Postprocessing, output filtering or finalization of the hash, that is, modification of the 
“semi-final”  hash  value,  has  received  significantly  less  attention  than  the  other 
components discussed. One reason for this is that postprocessing is of limited utility in 
improving the collision resistance of hash algorithms, though these techniques may help 
defend against  certain  preimage  and  algebraic  attacks.  Some postprocessing  schemes 
which cascade the results of multiple hash algorithms have been explored, but Boneh and 
Boyen [8] proved that there is no more efficient way than concatenation to combine the 
output of two collision-resistant hash functions while retaining the collision resistance of 
the compression functions. This result was improved upon by Pietrzak [24] who removed 
the assumption that each individual hash could be computed at most once.

Nevertheless,  algorithms sometimes provide a hash value which is longer than the 
application  requires.  For  example,  the  SHA-384  algorithm  is  simply  the  SHA-512 
algorithm  with  a  different  initialization  value  and  its  output  truncated  to  384  bits. 
Truncation and final compression (sometimes called finalization) are two postprocessing 
steps which have been proposed to  cater  to  applications requiring a  hash value of  a 
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particular length. The truncation method simply discards the most-significant or least-
significant bits from a semi-final hash to yield a final hash value which is of the desired 
length. This method requires the compression function used in the hash algorithm to be 
collision resistant not only over the entire hash value, but for the truncated value as well. 
Truncation  is  not  the  postprocessor  of  choice  for  some  other  schemes.  One  scheme 
proposed  by  Bellare  and  Ristenpart  called  Enveloped  Merkle-Damgård  (EMD)  [4] 
applies a final round of compression which uses a different  initializing value (IV) to 
compress  the  semi-final  hash value into the  final  hash value.  A scheme used by the 
HAVAL algorithm [31] uses a final exclusive-OR-based compression of its 256-bit result 
depending on whether a 128-, 160-, 192- or 224-bit hash value is required. Though these 
techniques have been proposed and in some cases are in active use, the secure way to 
compress  a  final  hash  value  into  a  smaller  size  without  losing  desirable  security 
properties otherwise remains an open research problem. 

2.5 Application

This modular building-block approach allows for a certain amount of interchangeability. 
Using this framework, hash algorithm designers can choose the components that most 
closely  satisfy  their  security  and  performance  requirements  a  la  carte.  It  also  allows 
cryptographers to analyze both the strength of components individually and interactions 
between  existing  components  without  having  to  analyze the  entire  algorithm 
monolithically. The framework offers the opportunity to treat components as black boxes 
or  to  ignore  them  altogether  while  evaluating  the  security  of  another  component. 
Determining the strength of a compression function, for example, does not require one to 
include  the  preprocessing  component  in  the  evaluation.  However,  evaluation  of  the 
security  of  a  particular  iterative  internal  structure  requires  consideration  of  the 
compression function. For example, one compression function component may not suit a 
particular iterative structure due to block size differences, known vulnerabilities with the 
use of the two, or poor performance.

One might even construct algorithms by combining components of well-known hash 
algorithms in novel ways. The framework also allows for parameterizable design, so that 
a  hash algorithm need not  define only one method of operation.  For example,  Lucks 
proposes that “...the size w of the internal hash values is a security parameter of its own 
right”  [20]  and  HAVAL  has  its final  hash  length  and  number  of  rounds  of  the 
compression  function  as  parameters.  These  parameters  are  easily  supported  by  this 
framework. Taking this to a logical extreme, an application using a cryptographic hash 
algorithm might have all of the four components as runtime parameters. An application 
with the streaming requirement might use a local preprocessor, but later might choose a 
global preprocessor if the entire input is available. In a smart card environment where 
processing power is limited, the algorithm might choose a compression function that is 
easier to compute when a “full strength” version is not required. Applications may also 
make decisions based on how parallelizable the calculation of the hash value must be.

Having described each part of the four-part framework of hash algorithm design, we 
now  apply  this  framework  to  decompose  the  hash  algorithms  MD5,  SHA-1,  Tiger, 
WHIRLPOOL [3], HAVAL and RadioGatún [6], the results of which can be found in 
Table 1.
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Algorithm
Hash 

Length 
(bits)

Preprocessing Structure Compression 
Function(s) Postprocessing

MD5 128 MD-
Strengthening

Merkle-
Damgård 
Iterative

Non-linear 
boolean None

SHA-1 160 MD-
Strengthening

Merkle-
Damgård 
Iterative

Non-linear 
boolean None

Tiger 192/160/
128

MD-
Strengthening

Merkle-
Damgård 
Iterative

Non-linear 
boolean & S-

boxes

Truncation to 
desired hash 

length

WHIRLPOOL 512 MD-
Strengthening

Miyaguchi-
Preneel 
Iterative

Block cipher 
similar to 
Rijndael

None

HAVAL
256/224/

192/
160/128

Length, 
version, 

parameter 
padding

Merkle-
Damgård 
Iterative

Boolean 
functions 

with specific 
security 
criteria

Compression to 
desired hash 

length

RadioGatún
Any 

multiple 
of 2 

words

MD-
Strengthening

“Belt-and-
Mill” custom 
two-function 

iterative

1 linear,
1 non-linear 

with feedback

Repeated 
“blank” 

iteration until 
desired hash 

length is 
reached

Table 1: Existing Hash Algorithms in the Four-Component Framework

3 ATTACKS

Each component of a hash algorithm plays a role in the strength of the overall algorithm. 
Weaknesses in a single component can expose the algorithm to various attacks which 
may compromise its overall security. The specific security features of the hash algorithm 
as a whole can be described by explicitly enumerating the attacks which are infeasible by 
virtue of its components. With this in mind, we will describe the attacks against which a 
strong  hash  algorithm  should  be  resistant,  then  discuss  the  components  that  are 
responsible for protecting the algorithm against each.

3.1 Collision attacks

A hash function  h  is collision resistant if it is computationally infeasible to determine 
inputs  a and  b such that  h(a) =  h(b). All four components play a role in the collision 
resistance of a cryptographic hash algorithm. Clearly, a  compression function plays a 
large  role  in  maintaining  the  collision  resistance  of  a  hash  algorithm,  as  a  weak 
compressor  may expose  the  algorithm to  single-block  collisions  for  which  the  other 
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components  can  not  compensate.  An  internal  structure  component  can  maintain  the 
collision resistance properties of a compression function, one example of which is the 
MD  iterative  structure  which  provably  maintains  the  collision  resistance  of  the 
underlying compression function. Coron et al suggest strengthening iterative algorithms 
with a local preprocessor which appends a 0-bit to each non-final block and appends a 1-
bit  to  the  final  block  [10].  In  the  same  paper,  they  explain  that  postprocessing  by 
truncation can defeat collision attacks based on length extension by hiding a portion of 
the final hash. It  has also been determined that finding multicollisions – collisions in 
iterated hash algorithms beyond the first – does not require much more additional work 
[14, 15, 22]. Fortunately, alternate internal structures such as those described in [20] can 
increase the work required to find these multicollisions to a much safer level.

3.2 Preimage & second preimage attacks

A hash function  h  is preimage resistant if, given  y,  it is computationally infeasible to 
determine an input a such that h(a) = y and second preimage resistant if, given b and y, it 
is computationally infeasible to determine an input a such that h(a) = h(b) = y. If one can 
prove the collision resistance of a hash algorithm, then one can also prove the second 
preimage  resistance  of  an  algorithm  [21].  The  same  cannot  be  said  for  preimage 
resistance. While the MD structure preserves the collision resistance of a compression 
function, it does not necessarily maintain its preimage resistance. Structures such as the 
aforementioned Double-Pipe Hash, on the other hand, do help to enforce the algorithm's 
preimage  resistance.  Length  extension  attacks  such  as  those  described  in  [13]  and  a 
generalization  in  [18]  can  be  prevented  by  trivial  message  preprocessing  such  as 
HAIFA's Bits So Far [7].

3.3 Other freedom properties & security requirements

Applications  with  additional  specific  security  requirements  should  be  expected,  and 
candidates  for  the  four  components  can  be evaluated  individually  for  how well  they 
satisfy those requirements.  In  [1],  Anderson described several  freedom properties  for 
cryptographic  hash  algorithms  other  than  collision,  preimage  and  second  preimage 
resistance  which  may  be  quite  important  in  certain  applications.  He  first  describes 
complementation freedom in a function h which means it is infeasible to find inputs a and 
b  such  that  h(a) = ~h(b).  He  also  offers  several  others,  mostly  involving  arithmetic 
operations, such as addition freedom, where it is infeasible to find a,  b, and c such that 
h(a) +  h(b) =  h(c). If  the compression function does not provide the desired freedom 
properties, postprocessing or preprocessing steps can be introduced that explicitly destroy 
any  algebraic  structure  within  the  hash  algorithm  which  might  violate  the  freedom 
properties [12]. We posit without proof that a careful choice of components can guarantee 
any explicit finite set of arithmetic freedom properties. 

4 CONCLUSIONS & FUTURE WORK

Unfortunately,  this  framework  does  not  account  for  the  interdependencies  between 
components, and determining a generalized way for components to interconnect is an 
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interesting future research topic. The RadioGatún [6] hash algorithm, for example, tightly 
couples  its  internal  structure  to  its  compression  functions.  Other  simpler 
interdependencies like the block length or input size are easier to decouple and fit within 
the framework. The fact that the components are distinct and logically separate in this 
paper should not be understood to mean that we believe that all hash algorithms must 
follow this pattern. We do do believe, though, that this divide-and-conquer approach will 
allow cryptographers to construct strong cryptographic hash algorithms from vetted and 
well-known building blocks. When a component is found to be weak or unsuitable in a 
particular application, it can be replaced by one which is known to be strong. That is not 
to say that there are any guarantees that creating a new hash algorithm from existing 
strong components will  yield a strong overall  algorithm, but  best practices should be 
assembled  and  researched  to  determine  the  best  methods  for  constructing  algorithms 
piecewise. We would suggest the following very loose sequence for designing iterated 
cryptographic hash algorithms:

1. Determine the security and usability properties desired
2. Determine the hash length(s) and length of the internal chaining value based on the 

desired properties of the algorithm
3. Choose  or  design  compression  functions  which  satisfy  the  relevant  security 

properties and output chaining values of appropriate length
4. Choose  or  design  an  internal  structure  which  interoperates  with  the  chosen 

compression function and satisfies the relevant security properties
5. Choose or design preprocessing steps which interoperate with the internal structure 

and satisfy the relevant security properties, if necessary
6. Choose or design postprocessing steps which interoperate with the internal structure 

and provide the required hash length, if necessary
7. Confirm  that  the  construction  interoperates  correctly  and  provides  the  desired 

security properties.
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