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Abstract

In this paper, we present the rainbow attack on stream ciphers filtered by Maiorana-McFarland
functions. This can be considered as a generalization of the time-memory-data trade-off attack of
Mihaljevic and Imai on Toyocrypt. First, we substitute the filter function in Toyocrypt (which has
the same size as the LFSR) with a general Maiorana-McFarland function. This allows us to apply the
attack to a wider class of stream ciphers. Moreover, our description replaces the time-memory-data
trade-off attack with the rainbow attack of Oeshlin, which offers better performance and implemen-
tation advantages. Second, we highlight how the choice of different Maiorana-McFarland functions
can affect the effectiveness of our attack. Third, we show that the attack can be modified to apply
on filter functions which are smaller than the LFSR or on filter-combiner stream ciphers. This allows
us to cryptanalyze other configurations commonly found in practice. Finally, filter functions with
vector output are sometimes used in stream ciphers to improve the throughput. Therefore the case
when the Maiorana-McFarland functions have vector output is investigated. We found that the extra
speed comes at the price of additional weaknesses which make the attacks easier.

Keywords Time-memory-data trade-off attack, Rainbow attack, Maiorana-McFarland functions.
∗This is a revised version of a paper [11] presented at the ACNS 2006 conference. There were errors in Table 2 of [11]

and this is corrected in Table 3 of this revision.
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1 Introduction

The construction of Boolean functions with good cryptographic properties has been a well studied area

of research. Some of these properties include balance, high nonlinearity, high order of resiliency, high

algebraic degree and high order of propagation criteria. These properties ensure the Boolean functions

are resistant against various correlation attacks when used in stream ciphers [3, 22].

A well-known class of Boolean functions with good cryptographic properties is the Maiorana-McFarland

class which ensures many of the above mentioned properties. For example, when n is odd, we can con-

struct t-resilient n-bit functions with nonlinearity achieving the quadratic bound 2n−1 − 2(n−1)/2. By

concatenating such a function with its complement, we construct (t + 1)-resilient m-bit functions with

nonlinearity satisfying the quadratic bound 2m−1 − 2m/2 for even m = n + 1. These nonlinearities

are called the quadratic bounds because they are the maximum nonlinearities attainable for quadratic

Boolean functions. When n is even, the Maiorana-McFarland also allows us to construct a large family of

bent functions, i.e. Boolean functions with the highest nonlinearity 2n−1−2n/2−1. Finally, the saturated

functions which achieve optimal order of resiliency t = n − 1 − d and optimal nonlinearity 2n−1 − 2t+1

when the algebraic degree is d can be constructed by this method.

The Maiorana-McFarland class can be viewed as constructions based on concatenating linear func-

tions. This is both an advantage and a weakness. It is an advantage because we can easily manipulate

the distance between Maiorana-McFarland functions and linear functions to obtain resiliency and high

nonlinearity. This helps to protect against correlation and fast correlation attacks [3, 22]. However,

it also means the function becomes linear when we fix certain input bits. Mihaljevic and Imai were

able to exploit this property to launch a search space reduction attack on Toyocrypt. Toyocrypt is a

128-bit stream cipher where a 128-bit modular linear feedback shift register (MLFSR) is filtered by a

128-bit Maiorana McFarland function. They were able to reduce the key space from 2128 to 296 when

32 consecutive output bits are known. The attack works because for each guess on 96 bits of the 128-bit

MLFSR, they were able to form 32 linear equations based on 32 consecutive output bits. This linear

system can be solved to determine the remaining 32 bits in the MLFSR. Using the time-memory-data

trade-off attack of Biryukov and Shamir, they further reduced the attack complexity to 232 with 280

pre-computation and 264 memory.

In Section 3, we generalize the time-memory-data trade-off attack on Toyocrypt by Mihaljevic and

Imai [14] as follows:

1. We show that the search space reduction attack on Toyocrypt can be applied to a general Maiorana-

McFarland function. Because linear feedback shift registers (LFSR’s) are more commonly used in
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stream ciphers, we replace the MLFSR in Toyocrypt by an LFSR.

2. In [14], Mihaljevic and Imai describe how we can improve the search space reduction attack by

applying the time-memory-data trade-off attack of Biryukov and Shamir [2, 9]. In this paper, we

describe how we can improve the search space reduction attack on Maiorana-McFarland functions

by applying the rainbow attack of Oeschlin [16]. The rainbow attack is twice as fast as the time-

memory-data trade-off attack and offers various implementation advantages. We also incorporate

an improvement of the rainbow attack by Mukhopadyay and Sarkar [15] in our attack.

3. We simplify the description of the time-memory-data trade-off attack of [14] by introducing a

search function F (c)(x).

Based on our study, we characterize the performance of the attack for different Maiorana-McFarland

functions. For Maiorana McFarland functions formed by concatenating 2n/2 linear functions of size

n/2-bit, the search space is reduced from 2n to 23n/4. When we apply the rainbow attack, the search

space is further reduced to 2n/4−1 with 23n/8 consecutive keystream bits, 25n/8 pre-computation and

2n/2 memory. This case corresponds to:

1. Filter function in Toyocrypt with n = 128, k = 64.

2. Bent functions [4, 21].

3. Resilient functions whose nonlinearity satisfies the quadratic bound [4, 21].

For Maiorana-McFarland functions formed by concatenating a few large linear functions, we get a

very effective reduction of the search space of an n-bit filter function generator from 2n to 2n/2. In this

case, the equivalent keylength is only half of what is claimed. As shown by Gong and Khoo [8], this case

correspond to the

1. Degree-resiliency-nonlinearity optimized saturated functions,

introduced by Sarkar and Maitra at Crypto 20001 [19]. Thus although this class of functions has

the best trade-off among important cryptographic properties like nonlinearity, resiliency and algebraic

degree, they are weak against the search space reduction attack. When we apply the rainbow attack, the

search space is further reduced to 2n/4−1 with 2n/2 consecutive keystream bits, 2n/2 pre-computation

and 23n/8 memory.
1We note that at the time of the discovery of the saturated functions by Sarkar and Maitra, similar optimal cryptographic

bounds and functions were also independently discovered by Tarannikov [23] and Zheng, Zhang [24].

3



In Section 5, we extend our attack to the case where the Maiorana-McFarland function is of smaller

size than the LFSR. This is a very common construction when the filtering function is implemented as a

look-up-table (LUT). The LFSR may be 128-bit long and it is not possible to fit a LUT of size 2128 into

the memory of the cipher. Thus a smaller filter function has to be used. In that case, the complexity of

the search space reduction and rainbow attack depends on the width of the LFSR bits which are tapped

to certain input bits of the filter function. These input bits have the property that when they are known,

the Maiorana-McFarland function becomes linear.

In Section 6, we extend the attack to the filter combiner model. At each clock cycle, the Boolean

function will extract several bits from each of s linear feedback shift registers LFSRi, i = 0, 1, . . . , s− 1,

as input to produce a keystream bit. As analyzed by Sarkar [18], the filter combiner offers various

advantages over the filter function and combinatorial generators. We show that in this case, the search

space reduction and rainbow attack can also be applied effectively.

In Section 7, we extend the attack to the case where the filter function is a vectorial Maiorana-

McFarland function. Vector output filter function generator has higher throughput for faster communi-

cation speed but it has an additional weakness. There is an exponential decrease in the complexity of

search space reduction when compared to the single output case. This gives a very efficient attack even

by a direct exhaustive search. This complexity can be further reduced by applying the rainbow attack.

In Sections 3 to 7, we simplified the attack scenarios to give a clearer explanation of the attack

methods. In Section 8, we describe how these attacks can be easily adapted to apply to stream ciphers

that use more general linear finite state machines, tap points and filter functions. Finally, we conclude

the paper in Section 9.

2 Preliminaries on Maiorana McFarland Functions

The Hadamard Transform of a Boolean function f : GF (2)n → GF (2) is

f̂(w) =
∑

x∈GF (2)n

(−1)w·x+f(x).

The nonlinearity of a function f : GF (2)n → GF (2) is defined as

Nf = 2n−1 − 1
2

max
w

|f̂(w)|.

A high nonlinearity is desirable as it ensures linear approximation of f is ineffective. This offers protection

against linear approximation based attacks [12, 22].

A Boolean function f : GF (2)n → GF (2) is t-th order correlation immune, denoted CI(t), if f̂(w) = 0

for all 1 ≤ wt(w) ≤ t where wt(w) is the number of ones in the binary representation of w. Correlation
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immunity ensure that f cannot be approximated by linear functions with too few terms, which offers

protection against correlation attack [22]. Furthermore, if f is balanced and CI(t), we say f is resilient

of order t.

The Maiorana-McFarland function is defined by the equation:

f(x0, . . . , xn−1) = g(x0, . . . , xk−1) + (xk, . . . , xn−1) · φ(x0, . . . , xk−1). (1)

where f : GF (2)n → GF (2), g : GF (2)k → GF (2) and φ : GF (2)k → GF (2)n−k. φ is usually an

injection or 2-to-1 map which would require k ≤ n/2 or k ≤ n/2 + 1 respectively.

The Maiorana-McFarland functions had been used extensively to construct Boolean functions with

good cryptographic properties in the past decade (see [4] for a summary). Some notable examples are

listed in the following two Propositions.

Proposition 1. (extracted from [4, 21])

1. Let f : GF (2)n → GF (2) be defined by equation (1). Let n be odd, k = (n − 1)/2 and φ :

GF (2)(n−1)/2 → GF (2)(n+1)/2 be an injection such that

wt(φ(x0, . . . , xk−1)) ≥ t + 1 and |{z ∈ GF (2)(n+1)/2|wt(z) ≥ t + 1}| ≥ 2(n−1)/2.

Then f is a t-resilient function with nonlinearity 2n−1 − 2(n−1)/2.

2. Let f(x0, . . . , xn−1), n odd, be a t-resilient function constructed as in part 1. Then

g(x0, . . . , xn−1, xn) = f(x0, . . . , xn−1) + xn,

is t + 1-resilient and has nonlinearity 2m−1 − 2m/2 where m = n + 1 is even.

3. Let n be even, k = n/2 and φ(x0, . . . , xk−1) be a permutation in equation (1), then f(x) is a bent

function, i.e. it has the highest possible nonlinearity 2n−1 − 2n/2−1.

The first construction is quite useful because a nonlinearity of 2n−1 − 2(n−1)/2 is considered high

for functions with odd number of input bits. Furthermore, when n ≡ 1 (mod 4), we can also obtain

resiliency of order (n − 1)/4 [4, page 555]. The second construction derives highly nonlinear resilient

function with even number of input bits from the first construction. The third construction on bent

functions is widely used in cryptography because of their high nonlinearity. Some examples include the

ciphers CAST and Toyocrypt [1, 14]. The functions presented in Proposition 1 has the common property

that k ≈ n/2.

The saturated functions are functions which attain optimal trade-off between algebraic degree d,

order of resiliency t = n−d−1 and nonlinearity 2n−1−2t+1. Such functions were constructed by Sarkar
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and Maitra in [19]. It was shown by Gong and Khoo in [8] that the saturated functions correspond to

n-bit Maiorana-McFarland functions as follows.

Proposition 2. (Sarkar, Maitra [19, 8]) Fix d ≥ 2 and let n = 2d−1 + d − 2. Define f : GF (2)n →

GF (2) by equation (1) where k = d − 1. Let φ : GF (2)d−1 → GF (2)2
d−1−1 be an injection such that

wt(φ(x0, . . . , xk−1)) ≥ 2d−1− 2. Then deg(f) = d, f is t-resilient having nonlinearity 2n−1− 2t+1 where

t = n − 1 − d. In that case, the order of resiliency is optimal by Siegenthaler’s inequality [22] and

nonlinearity is optimal by Sarkar-Maitra inequality [19].

The function in Proposition 2 has the property that k ≈ log2(n) << n.

Propositions 1 and 2 construct Boolean functions with optimal cryptographic properties by concate-

nating linear functions. But we shall show that their linear structures can be exploited to give efficient

attacks on stream ciphers in Section 3.

3 The Rainbow Attack on Maiorana-McFarland Functions

In [14], Mihaljevic and Imai presented a time-memory-data trade-off attack on the stream cipher Toy-

ocrypt. Toyocrypt is a filter function generator where we have an MLFSR of length 128 bit filtered by

a 128-bit Boolean function of the form:

f(x0, . . . , x127) = g(x0, . . . , x63) + (x64, . . . , x127) · π(x0, . . . , x63),

where g has 3 terms in its algebraic normal form (ANF) of degree 4, 17, 63 and π permutes the bit

positions of (x0, . . . , x63). Mihaljevic and Imai showed that the effective key diversity of such a generator

can be reduced from 128 bits to 96 bits when 32 consecutive output bits are known. Based on this

observation, they modified the Biryukov-Shamir [2] time-memory-data tradeoff attack for improved

cryptanalysis.

It is easy see that the filter function in Toyocrypt is a Maiorana-McFarland function with parameters

n = 128, k = 64. Due to the wide usage of the Maiorana-McFarland construction, it will be useful to

generalize the Mihaljevic-Imai attack to a general Maiorana-McFarland filter function generator. In this

attack, we look at a stream cipher where an n-stage LFSR is filtered by a n-bit Maiorana-McFarland

function defined by equation (1). We assume bit i of the LFSR is the i-th input of f(x).

Suppose we know l consecutive output bits y0, . . . , yl−1 and let (xi, . . . , xi+n−1) be the LFSR state

corresponding to yi. Based on equation (1), we have:

yi = g(xi, . . . , xi+k−1) + (xi+k, . . . , xi+n−1) · φ(xi, . . . , xi+k−1), i = 0, . . . , l − 1. (2)
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Suppose we guess k + l consecutive input bits x0, . . . , xk+l−1.

Then g(xi, . . . , xi+k−1) and φ(xi, . . . , xi+k−1) will be known for i = 0, . . . , l − 1. In that case, the l

equations in (2) will be linear and they will contain n− (k + l) unknown variables xk+l, . . . , xn−1. The

variables xn, . . . , xn+l−2 in equation (2) can be linearly expressed in terms of x0, . . . , xn−1 using the

LFSR feedback relation.

Thus we have l linear equations in n − (k + l) variables. For this linear system to be solvable, we

need:

l ≥ n− (k + l) =⇒ l ≥ n− k

2
.

Therefore, suppose we know l = d(n − k)/2e consecutive output bits y0, . . . , yl−1 and we guess the

k + l = n− l = b(n + k)/2c consecutive input bits x0, . . . , xk+l−1. Then we can solve for the remaining

l input bits xk+l, . . . , xn−1 in equation (2) and counter check whether our guess is correct, by back-

substitution and comparing with a sufficiently long keystream, e.g. of length 2n bits. Thus we have

proven that:

Theorem 1. Consider an n-bit LFSR filtered by equation (1) where bit i of the LFSR is the ith input

of f(x). The key space is reduced from 2n to 2b(n+k)/2c bits when d(n−k)/2e consecutive output bits are

known.

Remark 1. For ease of notation, we assume that (n+k)/2, (n−k)/2 are integers from now on. The case

when they are not integers can be handled by adding the appropriate ceiling d e and floor b c operations

as in Theorem 1.

Next we improve the attack complexity of Theorem 1 by applying the rainbow attack [16]. The

rainbow attack can be seen as an improvement of the time-memory-data trade-off attack [2, 9, 14] which

is twice as fast and has various implementation advantages.

Let f : GF (2)n → GF (2) be the filter function of an n-bit LFSR. Define f̃ : GF (2)n → GF (2)n as:

f̃(x̃) = n-bit output of filter function generator,

when the LFSR is initialized by x̃ ∈ GF (2)n.

Let c ∈ GF (2)(n−k)/2 be a fixed string. Given x ∈ GF (2)(n+k)/2, we can use the proof of Theorem 1

to find s ∈ GF (2)(n−k)/2 such that:

f̃(x||s) restricted to first (n− k)/2 bits = c,

i.e. f̃(x||s) = (c||y).
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where ‘||’ is concatenation of bit strings. Based on this computation, we introduce a search function

F (c) : GF (2)(n+k)/2 → GF (2)(n+k)/2 for the description of our attack. We define F (c)(x) to be the right

most (n + k)/2 bits of f̃(x||s), i.e.,

F (c)(x) = y

The function F (c) will be the search function used in our description of the rainbow attack on Maiorana

McFarland functions. We note that this function can also simplify the description of the attack in [14].

Setup:

1. Randomly choose a binary string c ∈ GF (2)(n−k)/2 and define the function F (c)(x) as described

above.

2. Define a chain of t−1 distinct functions F1(x), F2(x), . . . , Ft−1(x) which are slight variations of the

search function F (c)(x) as follows. Randomly seed an (n+k)/2-bit LFSR (with maximum period)

and generate a sequence of (n + k)/2-bit vectors X1, X2, . . . , Xt−1. Let the variant functions be

defined as Fj(x) = F (c)(x)⊕Xj (Please see Remark 4 for further explanation on this step).

3. Let p and t be integers defined by pt2 = 2(n+k)/2. Form a p× t by 2 array as follows:

For i = 1 . . . p × t, randomly choose a start point yi,0 and compute the chain of values yi,1 =

F1(yi,0), yi,2 = F2(yi,1), . . . , yi,t = Ft−1(yi,t−1). Store the start and end points (SPi, EPi) =

(yi,0, yi,t).

Attack:

1. We look among the keystream to find a n-bit string whose first (n− k)/2 bits matches the pattern

c. Let the last (n + k)/2 bits of this string be y.

2. For j = 2 . . . t, search among the endpoints EPi in our table to check if

EPi = Ft−1(. . . (Ft−j+1(y) . . .).

If there is a match, then (x||s) is the secret initial state of the LFSR where

x = Ft−j(. . . F1(SPi) . . .),

and s is the (n − k)/2-bit string computed such that the leftmost (n − k)/2 bits of f̃(x||s) is c.

The string s can be found by solving linear equations as in the proof of Theorem 1.

Based on [2] and [16], the parameters in the attack satisfy the following constraint:
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To look up the rainbow table, we need to compute Ft−1(y), Ft−1(Ft−2(y)), Ft−1(Ft−2(Ft−3(y))), . . . .

The time taken is T =
∑t−1

i=1 i = t(t− 1)/2 function computations. Let the amount of data collected be

D. By [2], our table only need to cover 1/D of the whole search space N = 2(n+k)/2 = pt2 because we

just need one string out of D possible strings in the available keystream. Since we are only storing the

end points, the memory M needed is pt/D. Thus we derive the relation:

TM2D2 = t(t− 1)/2× (pt/D)2 ×D2

≈ p2t4/2 = N2/2 =⇒ T = N2/(2M2D2).

Let the memory be M = 2mem and the number of strings of the form (c||x) (where c ∈ GF (2)(n−k)/2

is fixed) in the collected data be D = 2d. This means we need to sample 2(n−k)/2+d consecutive

keystream bits to collect this data. Thus the processing time is N2/(2M2D2) = 2n+k−2(d+mem)−1. The

pre-processing time is N/D = 2(n+k)/2−d. We state the result formally as:

Theorem 2. Consider an n-bit LFSR filtered by equation (1) where bit i of the LFSR is the ith input

of f(x). The LFSR initial state can be found with complexity 2n+k−2(d+mem)−1 by using 2(n+k)/2−d

pre-processing and 2mem memory when 2(n−k)/2+d consecutive output bits are known.

Remark 2. We note that in the time-memory-data trade-off attack of [14], the function chains in a table

are derived from a constant function F (c)(x), thus they have a high chance of collision because the table

(which have to cover the search space) is large. An alternative is suggested in [14] which uses multiple

tables where the function for each table is a variant of F (c)(x). In that case, we let N = 2(n+k)/2 = pt2

and construct t table of size p× t. This set-up gives optimal performance by the ”matrix stopping rule”

[9]. Let the amount of data be D. Then the amount of memory needed is M = pt/D because we are

storing p end points in each of t tables and we only need to cover 1/D of the search space. The time

to look up a table is t and the processing complexity which is the time to look up t table is T = t2. We

deduce that:

TM2D2 = t2 × (pt/D)2 ×D2

= p2t4 = N2.

Thus the processing complexity is T = N2/(M2D2) which is twice as slow as in the rainbow attack.

Remark 3. The rainbow attack, besides being twice as fast as the time-memory-data trade-off attack,

also has the following implementation advantages [16].

1. The number of table look up in the rainbow attack is reduced by a factor of t when compared to the

time-memory-data trade-off (which uses t tables).
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2. Rainbow tables have no loops because each reduction function Fj is only used once. So we do not

need to spend time to detect and reject loops when constructing the table.

3. Merging chains in rainbow tables have identical endpoints. So it can be used to determine merging

chains, just like distinguished points.

4. In time-memory-data trade-off, distinguished points are used to detect merging chains and loops.

However, the chains have variable lengths. In comparison, rainbow chains avoid merging chains

and loops by using distinct reduction functions. Thus the rainbow chains have constant lengths.

As explained in [16], this is more efficient and effective.

From experimental data in [16], the above implementation advantages improve the efficiency more than

the factor of 2 improvement we computed in Remark 2.

Remark 4. The method we use to generate the functions Fj(x) from an LFSR is by Mukhopadyay

and Sarkar [15]. The method suggested in [2, 14] (and originally by Hellman in [9]) is to generate

Fj(x) by permuting the output bits of F (c)(x). But it was shown by Fiat and Noar that there exist

search functions which are polynomial time indistinguishable from a random function but for which the

time-memory trade-off attack fails [7], when permutation of output bits are used. The advantage of the

approach of [15] is that it is not possible to construct a Fiat-Naor type example for the LFSR-based

rainbow method. Moreover, LFSR sequences are very efficient to compute.

Example 1. We apply Theorem 2 to Toyocrypt with the parameters n = 128, k = 64, d = 16 and

mem = 64. The complexity of the time-memory-data trade-off attack is 280 for pre-processing and 231

for processing when we know 248 consecutive output bits. This attack is twice as fast as the attack in

[14].

Remark 5. To obtain 216 128-bit ciphertext blocks where the first 32 bits is a fixed pattern c in Example

1, we need to scan through 248 keystream bits. This scanning complexity is not taken into account in the

processing complexity 231, which only covers the search of the rainbow table. Part of the reason for not

mixing the two complexities is that searching the rainbow table involves computing the function F (c) (by

solving a linear system) which is more complex than scanning for a fixed pattern from the keystream.

The same remark applies to Example 2, 3 and 4 later in the paper.
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4 On the Security of Different Maiorana-McFarland Functions
against the Rainbow Attack

In general, the parameter k in the Maiorana-McFarland construction (equation 1) is in the range

1 ≤ k ≤ n/2.

4.1 The Case when k is Approximately n/2

Consider the extreme case k ≈ n/2. There are many optimal functions belonging to this class as

summarized in Proposition 1. In this case, (n−k)/2 ≈ n/4 and the key diversity is reduced to (n+k)/2 ≈

3n/4 bits when ≈ n/4 consecutive keystream bits are known. Suppose we collect 2d = 2n/8 ciphertexts

corresponding to a pre-computed n/4-bit pattern, i.e. 23n/8 consecutive keystream bits. Then in a

rainbow attack with 2mem memory, the complexity is 25n/8 for pre-processing and 25n/4−2mem−1 for the

actual attack by Theorem 2. If n is not too big, it is reasonable to use 2mem = 2n/2 memory which

means the attack complexity is 2n/4−1. If we can obtain more keystream bits, then the pre-computation

and attack complexity can be reduced further.

4.2 The Case when k is Much Smaller than n

The other extreme is when k << n. This scenario may occur when we use a saturated function from

Proposition 2. In this case, (n + k)/2 ≈ n/2 and the key diversity is reduced to ≈ n/2 bits when ≈ n/2

consecutive output bits are known. Suppose we collect 2d = 1 (where d = 0) ciphertext corresponding to

a pre-computed n/2-bit pattern, i.e. we need 2n/2 consecutive keystream bits. Then in a time-memory-

data trade-off attack using 2mem memory, the complexity is 2n/2 for pre-processing and 2n−2mem−1 for

processing. Unlike the case k ≈ n/2, we can use less memory here because the search space is smaller.

If we use 2mem = 23n/8 memory, then the attack complexity is 2n/4−1.

From the above discussion, we see that as k decreases, the memory, pre-computation and attack

complexity decreases but the number of consecutive keystream bits needed increases. Sometimes it is

not possible to obtain so many keystream bits for time-memory-data trade-off attack on equation 2.

It may be more feasible to use Theorem 1 directly and perform an exhaustive search with complexity

2(n+k)/2 based on (n− k)/2 consecutive output bits.
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5 When the LFSR and Boolean Functions have Different Sizes

As a generalization, we consider the above attack when an n-bit LFSR is filtered by a m-bit Maiorana

McFarland function f(x) where m < n. Let the function be of the form

f(x0, . . . , xm−1) = g(x0, . . . , xr−1) + (xr, . . . , xm−1) · φ(x0, . . . , xr−1). (3)

where f : GF (2)m → GF (2), g : GF (2)r → GF (2) and φ : GF (2)r → GF (2)m−r.

Therefore the function f(x) becomes linear when the first r input bits are fixed. Let these r input

bits be tapped from the leftmost k bits of the LFSR, and the remaining m − r input bits of f(x) be

tapped from the rightmost n− k LFSR bits.

As before, assume l consecutive output bits of f(x) are known and we guess k+ l leftmost LFSR bits.

Then we can form l linear equations with n− (k + l) unknown variables of the LFSR initial state. This

system of equations can be solved when l = d(n − k)/2e. So knowing d(n − k)/2e consecutive output

bits will reduce the initial state space from n bits to k + l = b(n + k)/2c bits. It is easy to see that

we can apply the rainbow attack as in Section 3 by using the same search function F (c)(x). The attack

complexity for direct exhaustive search and rainbow attack is the same as before but now, the parameter

k depends not just on f(x) but also on the tap points from the LFSR. We summarize our discussion as

a theorem:

Theorem 3. Consider an n-bit LFSR which is filtered by a m-bit Maiorana-McFarland function defined

by equation (3). Suppose the first r bits of f(x) is tapped from the leftmost k bits of the LFSR, and the

remaining m− r input bits of f(x) is tapped from the rightmost n− k LFSR bits. Then the keyspace is

reduced from 2n to 2(n+k)/2 when (n− k)/2 consecutive output bits are known.

Furthermore, the LFSR initial state can be found with 2n+k−2(d+mem)−1 processing, 2(n+k)/2−d pre-

processing and 2mem memory when 2(n−k)/2+d consecutive output bits are known.

We illustrate the attack with the following example.

Example 2. Consider a 13-bit LFSR filtered by a 4-bit Boolean function f(x).

f(x0, x1, x2, x3) = g(x0, x1) + (x2, x3) · φ(x0, x1).

f(x) becomes linear when we fix the first two bits x0, x1, i.e. n = 13, m = 4 and r = 2. At time i, let the

output be yi and the LFSR state be (xi, xi+1, . . . , xi+12). Number the positions of the LFSR by 0, . . . , 12

and let the tap points to (x0, x1, x2, x3) be LFSR[0, 3, 5, 9]. f(x) is linear when the first two tap points

0 and 3 are known, so k = 4. Suppose we know d(n − k)/2e = 5 consecutive output bits y1, . . . , y5 and
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we guess b(n + k)/2c = 8 consecutive LFSR bits x0, . . . , x7. Form the equations:

yi = f(xi, xi+3, xi+5, xi+9), i = 0, . . . , 4.

The equations for i = 0, 1, 2 allows us to find x9, x10, x11. The equation for i = 3 involves the unknown

bits x8 and x12. The equation for i = 4 involves the unknown bit x13 which can be written as a linear

function of the unknown bits x8, x12 through the LFSR relation. Thus these two linear equations can be

solved for x8, x12. Therefore we can reduce the complexity of the initial state space from 13-bit to 8-bit

when 5 consecutive output bits are known.

After the search space reduction, we may apply the rainbow attack but for this small example, it is

easier to search directly.

6 Extending the Attack to Filter Combiner Model

In this section, we extend the search space reduction and rainbow attack on the filter combiner model.

For ease of explanation, we consider the case of two linear feedback shift registers LFSR1 and LFSR2.

The attacks on more LFSR’s are similar. At each clock cycle, a Boolean function will take as input

several state bits from each of LFSR1 and LFSR2 to output a keystream bit.

Let the length of LFSR1 be n1 and that of LFSR2 be n2. Let f : GF (2)m → GF (2) be defined by:

f(x0, . . . , xm−1) = (xr, . . . , xm−1) · φ(x0, . . . , xr−1) + g(x0, . . . , xr−1). (4)

Therefore when we fix the first r input bits, f(x) becomes linear.

Let the first r input bits of f(x), i.e. (x0, x1, . . . , xr−1) be tapped from among the leftmost k1 and

k2 bits of LFSR1 and LFSR2. Let the rest of the n− r input bits be tapped from the rightmost n1−k1

and n2 − k2 bits of LFSR1 and LFSR2.

Suppose we know l consecutive output bits y0, y1, . . . , yl−1. Let us guess the leftmost k1 + l and

k2 + l bits of LFSR1 and LFSR2. Then at time i, φ(xi, . . . , xi+r−1), g(xi, . . . , xi+r−1) are known for

all i = 0, 1, . . . , l − 1. This means:

yi = f(xi, . . . , xi+m−1) = (xi+r, . . . , xi+m−1) · φ(xi, . . . , xi+r−1) + g(xi, . . . , xi+r−1).

is a linear equation for i = 0, 1, . . . , l − 1.

We have l equations in n1 − (k1 + l) + n2 − (k2 + l) variables. For this linear system to be solvable,

we need

n1 − (k1 + l) + n2 − (k2 + l) ≤ l

=⇒ l ≥ d((n1 − k1) + (n2 − k2))/3e.
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We take l = d((n1 − k1) + (n2 − k2))/3e. Thus the search space is reduced from 2n1+n2 to:

2(k1+l)+(k2+l) ≈ 2(2(n1+n2)+(k1+k2))/3.

The rainbow attack can be applied for our scenario as follows. Let l = d((n1 − k1) + (n2 − k2))/3e, we

define a function f̃ : GF (2)n1 ×GF (2)n2 → GF (2)k1+k2+3l to be:

f̃(x̃1, x̃2) = the (k1 + k2 + 3l)-bit output keystream when (LFSR1, LFSR2) are initialized by (x̃1, x̃2).

For a fixed string c ∈ GF (2)l and xi ∈ GF (2)ki+l, we can find si ∈ GF (2)ni−(ki+l) such that

f̃(x1||s1, x2||s2) = (c||y) by the method described above. Based on this computation, we define a

search function F (c) : GF (2)k1+l ×GF (2)k2+l → GF (2)k1+k2+2l to be the rightmost k1 + k2 + 2l bits of

f̃(x̃1, x̃2), i.e.

F (c)(x1, x2) = y

By using this search function, we can perform a rainbow attack as in Section 3. The search space is

N = 2k1+k2+2l. Assuming we have M = 2mem memory and we have 2l+d consecutive keystream bits

from which we can sample D = 2d ciphertext whose first l bits correspond to c. Then the preprocessing

complexity is N/D = 2k1+k2+2l−d and processing complexity is N2/(2M2D2) = 22(k1+k2+2l−(d+mem))−1.

Example 3. Let us consider a filter combiner generator where LFSR1 and LFSR2 have lengths n1 =

64 = n2. Let f(x) be defined by equation (4) where m = 64 and r = 32. Let the first r bits of f(x) be

tapped from the leftmost k1, k2 bits of LFSR1 and LFSR2 where k1 = 16 = k2.

The complexity of direct search without applying rainbow attack is

2k1+k2+2l = 216+16+2×32 = 296.

where l = d((64 − 16) + (64 − 16))/3e = 32. The complexity is less than the intended security of

2n1+n2 = 2128.

Assuming we have 2mem = 264 memory and 2l+d = 248 consecutive keystream bits where d = 16. The

initial LFSR state can be recovered with 22(k1+k2+2l−(d+mem))−1 = 231 processing and 2k1+k2+2l−d = 280

pre-processing. Thus the attack complexities are similar to Toyocrypt.

In a similar way, the search space reduction and rainbow attack of a filter combiner with s LFSR

can be computed. We state this formally as:

Theorem 4. Consider a filter combiner where equation (4) filters the content of LFSR1, LFSR2, . . . , LFSRs

of size n1, n2, . . . , ns respectively. Let the first r bits of equation (4) be tapped from the leftmost ki bits
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of LFSRi. And let the remaining m − r bits be tapped from the rightmost ni − ki bits of LFSRi,

i = 0, 1, . . . , s− 1.

Let l = ((n1 − k1) + . . . + (ns − ks))/(s + 1). Then the key space of the filter combiner is reduced

from 2n1+...+ns to 2k1+...+ks+s×l when l consecutive output bits are known. Furthermore, the LFSR

initial states can be found with 22(k1+...+ks+s×l−(d+mem))−1 processing, 2k1+...+ks+s×l−d pre-processing

and 2mem memory when 2l+d consecutive keystream bits are known.

7 Extending the Attack to Vectorial Maiorana-McFarland Func-
tions

In this section, we consider the case where an n-bit LFSR is filtered by a vectorial Maiorana-McFarland

functions F : GF (2)n → GF (2)m defined by:

F (x0, . . . , xn−1) = (f0(x0, . . . , xn−1), . . . , fm−1(x0, . . . , xn−1)) (5)

where each function fj : GF (2)n → GF (2) is defined by:

fj(x0, . . . , xn−1) = (xk, . . . , xn−1) · φj(x0, . . . , xk−1) + gj(x0, . . . , xk−1).

for j = 0, 1, . . . ,m− 1. This case may occur in practice because the encryption speed of a vector output

generator is m times faster than a single bit filter function generator.

For good security, we want any linear combination of fj(x) to correspond to a t-resilient Maiorana-

McFarland function with high nonlinearity. The usual method to construct F (x) is to ensure that linear

combinations of fj(x) correspond to concatenation of linear functions which are distinct and each linear

function in the concatenation is an expression in t + 1 or more variables. This can be achieved by using

linear codes as shown in [17].

We assume bit i of the LFSR is the i-th input of F (x). Suppose we know l consecutive output words,

i.e. l ×m consecutive output bits.

word 1: y0,0, y0,1, . . . , y0,m−1

word 2: y1,0, y1,1, . . . , y1,m−1

. . .

word l: yl−1,0, yl−1,1, . . . , yl−1,m−1

Let us guess the k+ l leftmost bits of the LFSR, i.e. (x0, x1, . . . , xk+l−1). Then (xi, xi+1, . . . , xi+k−1)
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is known at time i = 0, 1, , . . . , l − 1 and the following equations are linear.

yi,0 = g0(xi, . . . , xi+k−1) + (xi+k, . . . , xi+n−1) · φ0(xi, . . . , xi+k−1)

yi,1 = g1(xi, . . . , xi+k−1) + (xi+k, . . . , xi+n−1) · φ1(xi, . . . , xi+k−1)

. . .

yi,m−1 = gm−1(xi, . . . , xi+k−1) + (xi+k, . . . , xi+n−1) · φm−1(xi, . . . , xi+k−1)

We have l ×m equations in n− (k + l) unknowns. For this linear system to be solvable, we need:

n− (k + l) ≤ l ×m

=⇒ l ≥ d(n− k)/(m + 1)e.

We take l = d(n− k)/(m + 1)e. Thus the search space is reduced from 2n to 2k+l = 2k+d(n−k)/(m+1)e.

The rainbow attack can be applied for our scenario as follows. Let l = d(n− k)/(m + 1)e, we define

a search function F̃ : GF (2)n → GF (2)k+(m+1)l to be

F̃ (x̃) = the (k + (m + 1)l)-bit output keystream when the LFSR is initialized by x̃ ∈ GF (2)n.

For a fixed string c ∈ GF (2)ml and x ∈ GF (2)k+l, we can find s ∈ GF (2)n−(k+l) such that F̃ (x||s) =

(c||y) by the method described above. Based on this computation, we define a search function F (c) :

GF (2)k+l → GF (2)k+l to be the rightmost k + l bits of F̃ (x||s), i.e.,

F (c)(x) = y

By using this search function, we can perform a rainbow attack as in Section 3. The search space is

N = 2k+l. Assume we have M = 2mem memory and 2ml+d consecutive keystream bits (from which

we can sample D = 2d ciphertext whose first l m-bit words correspond to c). Then the preprocessing

complexity is N/D = 2k+l−d and processing complexity is N2/(2M2D2) = 22(k+l−(d+mem))−1.

Theorem 5. Let l = d(n − k)/(m + 1)e. Consider an n-bit LFSR filtered by equation (5) where bit i

of the LFSR is the i-th input of F (x). The key space is reduced from 2n to 2k+l when ml consecutive

output bits are known.

Furthermore, the LFSR initial states can be found with 22(k+l−(d+mem))−1 processing, 2k+l−d pre-

processing and 2mem memory when 2ml+d consecutive keystream bits are known.
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Table 1: Reduced Search Space for n = 128, k = 64 and Different Output Size m

Output Size m 1 2 3 4 5 6 8 16
Reduced Search Space 296 286 280 277 275 274 272 268

Consecutive Keystream 32 44 48 52 55 60 64 64

Remark 6. We may also consider the case where the vector Maiorana-McFarland function has different

size as the LFSR as in Section 5.

Another extension is when the filter function in the filter combiner model is a vectorial Maiorana

McFarland function. In that case, the result is a combination of Theorem 4 and 5.

Example 4. Consider the parameters in Toyocrypt where we have a 128-bit stream cipher filtered by

a 128-bit vector Maiorana-McFarland function F (x) with parameter k = 64 and m output bits. F (x)

may correspond to the vector function in Corollary 1 of [17] which is 1-resilient and has nonlinearity

2127 − 264.

Then by Theorem 5, l = d64/(m + 1)e and the search space reduction is 264+l. Suppose we apply

rainbow attack with 2d ciphertext whose first m × l bits correspond to a fixed string c. Then we need a

keystream of length 2ml+d. If we have 2mem memory, the pre-processing complexity is 264+l−d and the

processing complexity is 22(64+l−(d+mem))−1. These values are tabulated for different output size m in

Table 1, 2.

In Table 1, we list the size of the reduced search space for different output size.

In Table 2, we list the pre-processing and processing complexities of rainbow attack for different

amount of memory and keystream. Here we fix the number of ciphertext required as 216 and concentrate

on achieving a low attack complexity.

We do not need the attack complexity to be as low as 23 because an attack complexity of 231 is

considered sufficiently fast in practice. Therefore in Table 3, we fix the attack complexity as 231 and

show that this helps reduce the keystream and memory requirement. However, one drawback in this case

is that pre-processing complexity is increased as well.

In all three tables, we see that as the number of output bits m increases, the search space, memory,

pre-processing and processing complexities decrease while the amount of consecutive keystream bits needed

increases.

8 Further Generalizations

Some ways in which our attacks can be further generalized are as follows:
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Table 2: Complexities of Rainbow Attack for n = 128, k = 64 and Different Output Size m with
Emphasis on Low Attack Complexity

Output Size m 1 2 3 4 5 6 8 16
Consecutive Keystream 248 260 264 268 271 276 280 280

Memory 264 262 260 258 256 255 253 250

Pre-processing Complexity 280 270 264 261 259 258 256 252

Processing Complexity 231 215 27 25 25 25 25 23

Number of Ciphertext 2d 216 216 216 216 216 216 216 216

Table 3: Complexities of Rainbow Attack for n = 128, k = 64 and Different Output Size m where Attack
Complexity is fixed as 231, this gives lower Memory and Keystream Requirements than those in Table
2.

Output Size m 1 2 3 4 5 6 8 16
Consecutive Keystream 248 252 256 258 261 266 269 269

Memory 264 262 256 255 253 252 251 247

Pre-processing Complexity 280 278 272 271 269 268 267 264

Processing Complexity 231 231 231 231 231 231 231 231

Number of Ciphertext 2d 216 28 28 26 26 26 25 25

1. In Theorem 2 and 5, we have adopted the convention that the first k input bits of f(x) are always

tapped from the leftmost k bits of the LFSR. It is easy to see that the attacks have the same

complexities if we tap any k consecutive bits of the LFSR.

2. Similarly, in Theorem 3, we can tap the first r input bits of f(x) from any consecutive k bits of the

LFSR. In Theorem 4, we can tap the r bits from any consecutive k1, . . . , ks bits of LFSR1, . . . , LFSRs

respectively.

3. In our attacks, we have presented the rainbow attack on Maiorana McFarland functions because

it is a well-known and common construction in the Boolean function literature. In that case, the

function becomes linear when the leftmost k bits are known. To make the attack more general, we

can look at any n-bit Boolean function which becomes linear when k (not necessarily consecutive)

input bits are known.

4. In our attacks, we can replace the LFSR by any linear finite state machine like a modular linear

feedback shift register (MLFSR), Galois linear feedback shift register (GLFSR) or linear cellular

automata. This is because the attacks only make use of the property that any LFSR state bits at

time i is a linear function of the initial state.
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9 Conclusion

We have generalized the Mihaljevic-Imai time-memory-data trade-off attack on Toyocrypt [14] to ap-

ply on any filter function generator using a Maiorana-McFarland function. The time-memory attack is

replaced with the rainbow attack, which is faster and has other implementation advantages. We fur-

ther explore different configurations when the filter function is smaller than the LFSR, when several

LFSR’s are used and when vector output functions are used. Further generalizations based on replacing

LFSR’s with other linear finite state machines, using different tap points and using more general Boolean

functions are proposed. We showed that the attack can be effectively applied in all these scenarios to

significantly reduce the attack complexities. Because the Maiorana-McFarland function is a popular

Boolean function construction, our attack may be a useful tool for stream cipher cryptanalysis.

There are many other stream cipher attacks which may be more effective than the rainbow attack. For

example, if the Boolean function has weak correlation properties, we may be able to apply correlation

attack [3, 22]. When a certain multiple of the Boolean function has low degree, we can apply the

algebraic attack [5]. When the stream cipher has a linear re-synchronization mechanism, we may apply

the resynch-attack [6]. However, if the stream cipher is designed to protect against these attacks, and a

Maiorana-McFarland function (a popular choice) is used, the rainbow attack is a viable alternative.
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