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ABSTRACT
In this paper, we define and explore the notion of a proof of
retrievability (POR). A POR enables an archive or back-up
service (prover) to demonstrate to a user (verifier) that it
has “possession” of a file F , that is, that the archive retains
data sufficient for the user to retrieve F in its entirety.

A POR may be viewed as a kind of cryptographic proof
of knowledge (POK), but one specially designed to handle a
large file (or bitstring) F . We explore POR protocols here in
which the communication costs, number of memory accesses
for the prover, and storage requirements of the user (verifier)
are small parameters essentially independent of the length
of F . In addition, in a POR, unlike a POK, neither the
prover nor the verifier need actually have knowledge of F .
PORs give rise to a new and unusual security definition.

We view PORs as an important tool for the management
of semi-trusted online archives. Existing cryptographic tools
help users ensure the privacy and integrity of their files once
they are retrieved. It is also natural, however, for users to
want to verify that archives do not delete or modify files
while they are stored. The goal of a POR is to accom-
plish these checks without users having to download the files
themselves. A POR can also provide quality-of-service guar-
antees, i.e., show that a file is retrievable within a certain
time bound.

1. INTRODUCTION
Several trends are opening up computing systems to new

forms of outsourcing, that is, delegation of computing ser-
vices to outside entities. Improving network bandwidth and
reliability are reducing user reliance on local resources. En-
ergy and labor costs as well as computing-system complex-
ity are militating toward the centralized administration of
hardware. Increasingly, users employ software and data
that reside thousands of miles away on machines that they
themselves do not own. Grid computing, the harnessing of
disparate machines into a unified computing platform, has
played a role in scientific computing for some years. Sim-
ilarly, remotely administered application software—loosely a
throwback to terminal/mainframe computing architectures—
is now a pillar in the internet-technology strategies of major
companies like Google and Microsoft.

Storage is no exception to the outsourcing trend. On-
line data-backup services abound for consumers and enter-
prises alike. Amazon Simple Storage Service (S3) [1], for
example, offers an abstracted online-storage interface, al-
lowing programmers to access data objects through web-
service calls, with fees metered in gigabyte-months and data-
transfer amounts. Researchers have investigated alternative
service models, such as peer-to-peer data archiving [10].

As users and enterprises come to rely on diverse sets of
data repositories, with variability in service guarantees and
underlying hardware integrity, they will require new forms
of assurance of the integrity and accessibility of their data.
Simple replication offers one avenue to higher-assurance data
archiving, but at often unnecessarily and unsustainably high
expense. (Indeed, a recent IDC report suggests that data-
generation is outpacing storage availability [12].) Protocols
like Rabin’s data-dispersion scheme [29] are more efficient:
They share data across multiple repositories with minimum
redundancy, and ensure the availability of the data given the
integrity of a quorum (k-out-of-n) of repositories. Such pro-
tocols, however, do not provide assurances about the state
of individual repositories—a shortcoming that limits the as-
surance the protocols can provide to relying parties.

In this paper, we develop a new cryptographic building
block known as a proof of retrievability (POR). A POR en-
ables a user (verifier) to determine that a prover (archive)
“possesses” a file or data object F . More precisely, a suc-
cessfully executed POR assures a verifier that the prover
presents a protocol interface through which the verifier can
retrieve F in its entirety. Of course, a prover can refuse to
release F even after successfully participating in a POR. A
POR, however, provides the strongest possible assurance of
file retrievability barring changes in prover behavior.

As we demonstrate in this paper, a POR can be efficient
enough to provide regular checks of file retrievability. Con-
sequently, as a general tool, a POR can complement and
strengthen any of a variety of archiving architectures, in-
cluding those that involve data dispersion.

1.1 A first approach
To illustrate the basic idea and operation of a POR, it

is worth considering a straightforward design involving a
keyed hash function hk(F ). In this scheme, prior to archiv-
ing a file F , the verifier computes and stores a hash value
r = hk(F ) along with secret, random key k. To check that
the prover possesses F , the verifier releases k and asks the
prover to compute and return r. Provided that h is resistant
to second-preimage attacks, this simple protocol provides a
strong proof that the prover knows F . By storing multi-
ple hash values over different keys, the verifier can initiate
multiple, independent checks.

This keyed-hash approach, however, has an important
drawback: High resource costs. The keyed-hash protocol re-
quires that the verifier store a number of hash values linear
in the number of checks it is to perform. This characteris-
tic conflicts with the aim of enabling the verifier to offload
its storage burden. More importantly, each protocol invoca-
tion requires that the prover process the entire file F . For
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large F , even a computationally lightweight operation like
hashing can be highly burdensome.

1.2 Our approach
We introduce a POR protocol in which the verifier stores

only a single cryptographic key—irrespective of the size and
number of the files whose retrievability it seeks to verify—as
well as a small amount of dynamic state (some tens of bits)
for each file. (One simple variant of our protocol allows for
the storage of no dynamic state, but yields weaker secu-
rity.) More strikingly, and somewhat counterintuitively, our
scheme requires that the prover access only a small portion
of a (large) file F in the course of a POR. In fact, the por-
tion of F “touched” by the prover is essentially independent
of the length of F and would, in a typical parameterization,
include just hundreds or thousands of data blocks.

Briefly, our POR protocol encrypts F and randomly em-
beds a set of randomly-valued check blocks called sentinels.
The use of encryption here renders the sentinels indistin-
guishable from other file blocks. The verifier challenges the
prover by specifying the positions of a collection of sentinels
and asking the prover to return the associated sentinel val-
ues. If the prover has modified or deleted a substantial por-
tion of F , then it will also have suppressed a number of
sentinels. It is therefore unlikely to respond correctly to the
verifier. To protect against corruption by the prover of a
small portion of F , we also employ error-correcting codes.
We let F̃ refer to the full, encoded file stored with the prover.

A drawback of our proposed POR scheme is the prepro-
cessing / encoding of F required prior to storage with the
prover. This step imposes some computational overhead—
beyond that of simple encryption or hashing—as well as
larger storage requirements on the prover. The sentinels
may constitute a small fraction of the encoded F̃ (typically,
say, 2%); the error-coding imposes the bulk of the storage
overhead. For large files and practical protocol parameter-
izations, however, the associated expansion factor |F̃ |/|F |
can be fairly modest, e.g., 15%.

To illustrate the intuition behind our POR protocol a little
better, we give two brief example scenarios.

Example 1. Suppose that the prover, on receiving an en-
coded file F̃ , corrupts three randomly selected bits, β1, β2, β3.
These bits are unlikely to reside in sentinels, which consti-
tute a small fraction of F̃ . Thus, the verifier will probably
not detect the corruption through POR execution. Thanks to
the error-correction present in F̃ , however, the verifier can
recover the original file F completely intact.

Suppose conversely that the prover corrupts many blocks in
F̃ , e.g., 20% of the file. In this case (absent very heavy error-
coding), the verifier is unlikely to be able to recover the origi-
nal file F . On the other hand, every sentinel that the verifier
requests in a POR will detect the corruption with probability
about 1/5. By requesting hundreds of sentinels, the verifier
can detect the corruption with overwhelming probability.

1.3 Related work
File-integrity assurance is of course one of the fundamen-

tal goals of cryptography. Primitives such as digital signa-
tures and message-authentication codes (MACs) allow an
entity in possession of a file F to verify that it has not been
subjected to tampering.

A more challenging problem is to enable verification of
the integrity of F without explicit knowledge of the full

Figure 1: Schematic of a POR system. An encoding
algorithm transforms a raw file F into an encoded
file F̃ to be stored with the prover / archive. A
key generation algorithm produces a key κ stored
by the verifier / user and used in encoding. (The
key κ is independent of F in some PORs, as in our
main scheme.) The verifier performs a challenge-
response protocol with the prover to check that the
verifier can retrieve F .

file. Clarke et al. [9], for instance, consider the problem
of a trusted entity with a small amount of state, e.g., a
trusted computing module, verifying the integrity of arbi-
trary blocks of untrusted, external, dynamically-changing
memory. Their constructions employ a Merkle hash-tree
over the contents of this memory, an approach that has seen
very fruitful application elsewhere in the literature.

In networked storage environments, cryptographic file sys-
tems (CFSs) are the most common tool for system-level in-
tegrity assurance (see, e.g., [20] for a good, recent survey).
In a CFS, one entity, referred to as a security provider, man-
ages the encryption and/or integrity-protection of files in
untrusted storage providers. The security provider may be
either co-located with a physical storage device or archi-
tected as a virtual file system.

Cryptographic integrity assurance allows an entity to de-
tect unauthorized modifications to portions of files upon
their retrieval. Such integrity assurance in its basic form
does not enable the detection of modification or deletion of
files prior to their retrieval or on an ongoing basis. It is this
higher degree of assurance that a POR aims to provide.

A POR permits detection of tampering or deletion of a re-
motely located file—or relegation of the file to storage with
poor service quality. A POR does not by itself, however,
protect against loss of file contents. File robustness requires
some form of storage redundancy and, in the face of poten-
tial system failures, demands the distribution of a file across
multiple systems. A substantial literature, e.g., [3, 26, 27],
explores the problem of robust storage in a security model
involving a collection of servers exhibiting Byzantine behav-
ior. The goal is simulation of a trusted read/write memory
register, as in the abstraction of Lamport [22]. In such dis-
tributed models, the robustness guarantees on the simulated
memory register depend upon a quorum of honest servers.

While many storage systems operating in the Byzantine-
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failure model rely on storage duplication, an important re-
cent thread of research involves the use of information dis-
persal [29] and error-coding to reduce the degree of file re-
dundancy required to achieve robustness guarantees, as in
[8]. Similarly, we use error-correction in our main POR con-
struction to bound the effects of faults in a storage archive
in our constructions.

While a POR only aims at detection of file corruption
or loss, and not prevention, it can work hand-in-hand with
techniques for file robustness. For example, a user may
choose to disperse a file across multiple service providers.
By executing PORs with these providers, the user can detect
faults or lapses in service quality. She can accordingly re-
distribute her file across providers to strengthen its robust-
ness and availability. In peer-to-peer environments, where
service quality may be unreliable, such dynamic reallocation
of resources can be particularly important.

As we explain in detail in section 2, a POR is loosely
speaking a kind of proof of knowledge (POK) [4] created
by an archive / prover for consumption by a user / verifier
on a file F . A proof of knowledge serves to demonstrate
knowledge by the prover of some short secret y that sat-
isfies a predicate specified by the verifier. Generally, as in
an authentication protocol, the essential design property of
a POK is to preserve the secrecy of y, i.e., not to reveal
information about y to the verifier. The concept of zero-
knowledge [15, 16] captures this requirement in a strict, for-
mal sense. In a POR, the design challenge is different. The
verifier has potentially already learned the value F whose
knowledge the prover is demonstrating (as the verifier may
have encoded the file to begin with). Since F is potentially
quite large, the main challenge is to prove knowledge of F
using computational and communication costs substantially
smaller than |F |.

As such, PORs are akin to other unorthodox cryptographic
proof systems in the literature, such as proofs of computa-
tional ability [34] and proofs of work (POWs) [19]. Memory-
bound POWs [11] are similar to the use of PORs for quality-
of-service verification in that both types of proof aim to
characterize memory use in terms of the latency of the stor-
age employed by the prover. Very close in spirit to a POR is
a construction of Golle, Jarecki, and Mironov [17], who in-
vestigate “storage-enforcing commitment schemes.” Their
schemes enable a prover to demonstrate that it is making
use of storage space at least |F |. The prover does not prove
directly that it is storing file F , but proves that it is has com-
mitted sufficient resources to do so (and therefore, barring
malice, has an economic incentive to store F ).

The use of sentinels in our main scheme is similar is spirit
to a number of other systems that rely on the embedding
of secret check values in files, such as the “ringers” used
in [18]. There the check values are easily verifiable com-
putational tasks that provide evidence for the correct pro-
cessing of accompanying tasks. PORs bear an important
operational difference in that they involve “spot checks” or
auditing, that is, the prover is challenged to reveal check
values in isolation from the rest of the file. The distinguish-
ing feature of the POR protocols we propose here is the way
that they amplify the effectiveness of spot-checking for the
special case of file-verification by combining cryptographic
hiding of sentinels with error-correction.

The only published POR protocol of which we are aware
is that of Filho and Barreto [14]. Making indirect use of a

homomorphic RSA-based hash introduced by Shamir [30],
their scheme is as follows. Let N be an RSA modulus. The
verifier stores k = F mod φ(N) for file F (suitably repre-
sented as an integer). To challenge the prover to demon-
strate retrievability of F , the verifier transmits a random
element g ∈ ZN . The prover returns s = gF mod N , and
the verifier checks that gk mod N = s. This protocol has the
drawback of requiring the prover to exponentiate over the
entire file F .1 Additionally, unlike the basic hash function,
the security of the Filho-Barreto POR would appear to rely
on some sort of strong, non-standard hardness assumption;
there is no clear security reduction to the RSA problem or
any well-known variant.

Organization
In section 2, we introduce a formal definition of a POR,
and explain how this definition differs from the standard
cryptographic view of proofs of knowledge. We introduce
our main POR scheme in section 3, briefly discuss its secu-
rity, and describe several variants. We describe the adap-
tation and application of our POR scheme to the problem
of secure archiving and quality-of-service checking in sec-
tion 4. We conclude in section 5 with a brief discussion of
future research directions. We prove our main theorem in
appendix A.

2. DEFINITIONS

2.1 Standard proof­of­knowledge definitions
and PORs

Bellare and Goldreich (BG) established a standard, widely
referenced definition of proofs of knowledge in [4]. Their
definition centers on a binary relation R ⊆ {0, 1}∗ ×{0, 1}∗.

A language LR = {x : ∃ y s.t. (x,y) ∈ R} is defined as the
set of values x that induce valid relations. The set R(x) =
{y : (x, y) ∈ R} defines the witnesses associated with a given
x. Typically, relations of interest are polynomial, meaning
that the bitlength |y| of any witness is polynomial in |x|.

In the BG view, a proof of knowledge is a two-party pro-
tocol involving a prover P and a verifier V . Each player is
a probabilistic, interactive function. The BG definition sup-
poses that P and V share a common string x. A transcript
includes the sequence of outputs of both players in a given
interaction.

The BG definition relies upon an additional function, an
extractor algorithm K that also takes x as input and has
oracle access to P . Additionally, V has an associated er-
ror function κ(x), essentially the probability that V accepts
transcripts generated by a prover P that does not actually
know (or use its knowledge of) a witness for x. For every
prover P , let p(x) be the probability that on input x, prover
P induces a set of transcripts that V accepts.

Briefly, then, in the BG definition, a poly-time verifier V
characterizes a proof of knowledge with respect to a rela-
tion R and with error κ if the following holds: There exists
a constant c such that for every prover P , the extractor
K outputs a witness y ∈ R(x) in expected time bounded
by |x|c/(p(x) − κ(x)). (The BG definition also has a non-
triviality requirement: There must exist a legitimate prover

1In a brief research abstract, Burns [6] announces an RSA-
based POR-like protocol that does not require processing of
a full file, but details appear to be as yet unpublished.
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P , i.e., a prover that causes V to accept with probability 1
for any x ∈ LR.)

Intuitively, the BG definition states that if prover P can
convince verifier V that x ∈ LR, then P “knows” a witness
y. The stronger P ’s ability to convince a verifier, the more
efficiently a witness y can be extracted from P .

While very broad, the BG definition does not naturally
capture the properties of POR protocols, which have several
distinctive characteristics:

1. No common string x: In a POR, P and V may
not share any common string x: P may merely have
knowledge of some file F , while V possesses secret keys
for verifying its ability to retrieve F from P and also
for actually performing the retrieval.

2. No natural relation R: Since a POR aims to prove
that the file F is subject to recovery from P , it would
seem necessary to treat F as a witness, i.e., to let
y = F , since F is precisely what we would like to
extract. In this case, however, if we regard x as the
input available to V , we find that there is no appro-
priate functional relation R(x, y) over which to define
a POR: In fact, x may be perfectly independent of F .

3. Split verifier/extractor knowledge: It is useful in
our POR protocols to isolate the ability to verify from
the ability to extract. Thus, K may take a secret input
unknown to either P or V .

As we show, these peculiarities of PORs give rise to a
security definition rather different than for ordinary POKs.

2.2 Defining a POR system
A POR system PORSYS comprises the six functions de-

fined below. The function respond is the only one executed
by the prover / archive P . All others are executed by the
verifier / user V . For a given verifier invocation in a POR
system, it is intended that the set of verifier-executed func-
tions share and implicitly modify some persistent state α.
In other words, α represents the state of a given invocation
of V ; we assume α is initially null. We let π denote the
full collection of system parameters. The only parameter
we explicitly require for our system and security definitions
is a security parameter j. (In practice, as will be seen in
our main scheme in section 3, it is convenient for π also to
include parameters specifying the length, formatting, and
encoding of files, as well as challenge/response sizes.) On
any failure, e.g., an invalid input or processing failure, we
assume that a function outputs the special symbol ⊥.

keygen[π]→ κ: The function keygen generates a secret key κ.
(In a generalization of our protocol to a public-key setting, κ
may be a public/private key pair. Additionally, for purposes
of provability and privilege separation, we may choose to
decompose κ into multiple keys.)

encode(F ;κ,α)[π]→ (F̃η, η): The function encode generates
a file handle η that is unique to a given verifier invocation.
The function also transforms F into an (enlarged) file F̃η

and outputs the pair (F̃η, η).
Where appropriate, for a given invocation of verifier V ,

we let Fη denote the (unique) file whose input to encode has
yielded handle η. Where this value is not well defined, i.e.,

where no call by verifier V to encode has yielded handle η,

we let Fη
def
=⊥.

extract(η; κ,α)[π] → F : The function extract is an interac-
tive one that governs the extraction by verifier V of a file
from an archive P . In particular, extract determines a se-
quence of challenges that V sends to P , and processes the
resulting responses. If successful, the function recovers and
outputs Fη.

challenge(η;κ, α)[π]→ c. The function challenge takes secret
key κ and a handle and accompanying state as input, along
with system parameters. The function challenge outputs a
challenge value c for the file η.

respond(c, η, F̃ ) → r. The function respond is used by the
archive P to generate a response to a challenge c. Note that
in a POR system, a challenge c may originate either with
challenge or extract.

verify((r, η); κ,α) → b ∈ {0, 1}. The function verify deter-
mines whether r represents a valid response to challenge c.
The challenge c does not constitute explicit input in our
model; it is implied by η and the verifier state α. The func-
tion verify outputs a ‘1’ bit if verification succeeds, and ‘0’
otherwise.

A set of functions PORSYS = {keygen, encode, extract, chal-
lenge, respond, verify} represents a POR system.

2.3 POR security definition
We define the security of a POR protocol in terms of an

experiment in which the adversary A plays the role of the
archive P . Let us first give some preliminary explanation
and intuition.

2.3.1 Definition overview
The adversary A consists of two parts, A(“setup”) and
A(“respond”). The function A(“setup”) may interact arbi-
trarily with the user / verifier; it may create files and cause
the verifier to encode and extract them; it may also obtain
challenges from the verifier. The purpose of A(“setup”) is
to create an archive on a special file Fη∗ . This archive is
embodied as the second adversarial function A(“respond”).
It is with A(“respond”) that the verifier executes the POR
and attempts to retrieve Fη∗ .

In our model, an archive—whether honest or adversarial—
performs only one function. It receives a challenge c spec-
ifying a position in an encoded file F̃η and returns a block
of data. An honest archive returns the block in position c
in F̃η. An adversary may or may not return the correct file
block. This challenge/response mechanism serves, of course,
as the foundation for proving retrievability in a POR. Ad-
ditionally, however, it is the interface by which the function
extract recovers a file Fη. In the normal course of operation,
extract can submit a sequence of challenges 1, 2, 3... to an
archive, reconstruct F̃η from the corresponding responses,
and then decode to obtain the original file Fη.

In our security definition, we regard A(“respond”) as a
stateless entity. On any given challenge c, A(“respond”) re-
turns the correct corresponding block from Fη∗ with some
probability; otherwise, it returns an incorrect block accord-
ing to some fixed probability distribution. These probabili-
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ties may be different from block to block, i.e., challenge to
challenge, but because of our assumption that A(“respond”)
is stateless, the probabilities remain fixed for any given chal-
lenge value. Put another way, A(“respond”) may be viewed
as set of probability distributions over block values, with one
such distribution for each possible challenge value c.

It may seem at first that the assumption of statelessness
in A(“respond”) is too strong. In practice, after all, since
an extractor must send many more queries than a verifier,
a stateful adversary can distinguish between the two. Thus,
by assuming that A(“respond”) is stateless, our definition
discounts the (quite real) possibility of a malicious archive
that responds correctly to a verifier, but fails to respond to
an extractor. Such a stateful adversary responds correctly
to challenges but still fails to release a file.

We believe, however, that our POR definition is among
the strongest possible in a real-world operational environ-
ment and that it captures a range of useful, practical assur-
ances. There is in fact no meaningful way to define a POR
without assuming some form of restriction on adversarial
behavior. As we have explained, unless the POR protocol
is indistinguishable from extract, a Byzantine adversary can
always fail when it detects an extraction attempt. Thus,
the most appropriate security definition seems to be one
that characterizes the ability of a verifier to extract a file Fη

from a “snapshot,” i.e., from the full state of A(“respond”).
The verifier can then “rewind” the adversary as desired dur-
ing execution to preserve the adversary’s lack of state. In a
real-world environment, this ability corresponds to access to
a memory dump or backup tape for an adversarial server.

On the other hand, for some applications, our modeling of
A(“respond”) may actually seem too strong. For example,
if the purpose of a POR is to ensure availability or quality-
of-service in an archive, then there may be no reason to
assume the possibility of adversarial corruption of a file. An
adversary’s only real economic incentive may be to minimize
its storage requirements, i.e., to delete file blocks or relegate
them to slow storage. Our POR security definition may be
modified to meet this weaker requirement, and we in fact
consider an “erasing” adversary later in the paper. Our
concern here, however, is to create a foundational definition
with broad real-world applicability.

Briefly, our security definition involves a game in which
the adversary A seeks to “cheat” a verifier V . A tries to
create an environment in which V believes that it will be
able to retrieve a given file Fη∗ with overwhelming proba-
bility, yet cannot. Thus the aim of A(“setup”) is to induce
a verifier state α and create state (δ, η∗) in A(“respond”)
such that: (1) V accepts responses from A(“respond”) to
challenges with high probability and (2) V fails with non-
negligible probability to retrieve Fη∗ from A(“respond”) on
invoking extract.

2.3.2 Definition details
We let Oencode, Oextract, Ochallenge, and Overify represent or-

acles respectively for functions encode, extract, challenge,
verify in a single invocation of verifier V . These oracles take
κ and α as implicit inputs, i.e., inputs not furnished by (or
revealed to) the adversary. Additionally, these oracles may,
of course, modify state α, which is initially null. We denote
by the symbol ‘·’ those input values that the adversary has
the freedom to specify in its oracle calls.

We let ‘*’ denote protocol values created by A in the

course of our experiment. We let δ denote adversarial state—
in particular, the state information passed from A(“setup”)
toA(“respond). As above, we let π denote the parameter set
for a POR system PORSYS. Where appropriate for brevity,
however, we drop π from our notation.

In our first experiment Expsetup, the adversary A(“setup”)
is permitted to interact arbitrarily with system oracles. At
the end of the experiment A(“setup”) specifies a file handle
η∗ and state δ as input to the adversarial function
A(“respond”) for the next experiment.

Experiment Expsetup
A,PORSYS[π]

κ← keygen(j);α← φ; % generate key, initialize oracle state

(δ, η∗)← AO(“setup”); % accessing O, A creates archive

output (α, δ, η∗) % output full oracle and archive states

In our next experiment, the adversarial archiveA(“respond”)
responds to a challenge issued by the verifier. The adversary
is deemed successful if it generates a response accepted by
the verifier.

Experiment Expchal
A,PORSYS(α, δ, η∗)[π]

c∗ ← Ochallenge(η
∗;κ,α); % issue “challenge”

r∗ ← A(δ, c∗)(“respond”); % adversary outputs response

β ← Overify((r
∗, η∗);κ,α); % verify adversarial response

output β % output ‘1’ if response correct,

otherwise ‘0’

We define Succchal
A,PORSYS(α, δ, η∗)[π]

= pr
[
Expchal

A,PORSYS(α,δ, η∗)[π] = 1
]
, i.e., the probability that

the adversarial archive succeeds in causing the verifier to
accept.

Given these experiment specifications, we now specify our
definition of security for a POR. Our definition aims to cap-
ture a key intuitive notion: That an adversary with high
probability of success in Expchal must “possess” Fη∗ in a
form that may be retrieved by the verifier, i.e., by an en-
tity with knowledge of κ and α. By analogy with security
definitions for standard proofs of knowledge, we rely on the
extractor function extract. One special feature of a POR
systems is that extract is not just a component of our se-
curity proof. As we have already seen, it is also a normal
component of the POR system. (For this reason, A ac-
tually has oracle access to extract in Expsetup.) A priori,
A(“respond”) cannot distinguish between challenges issued
by challenge and those issued by extract.

In our security definition, the function extract is presumed
to have oracle access to A(δ, ·)(“respond”). In other words,
it can execute the adversarial archive on arbitrary chal-
lenges. Since A is cast simply as a function, we can think of
extract as having the ability to rewind A. The idea is that
the file Fη∗ is retrievable from A if extract can recover it. In
essence, the respond function of the archive / adversary is
the interface by which extract recovers F .

We thus define
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Succextract
A,PORSYS(α, δ, η∗)[π] =

pr
[
F = Fη∗

∣∣F ← extractA(δ,·)(“respond”)(η∗;κ,α)[π]
]
.

In other words, Succextract
A,PORSYS is simply the probability that

the extractor successfully recovers Fη∗ .

Let a poly-time algorithm A be one whose running time
is bounded by a polynomial in security parameter j. Our
main security definition, then, is as follows.

Definition 1. A poly-time POR system PORSYS[π] is a
(ρ, λ)-valid proof of retrievability (POR) if for any poly-time
A and for some ζ negligible in security parameter j,

pr
[ Succextract

A,PORSYS(α,δ, η∗) < 1− ζ,
Succchal

A,PORSYS(α,δ, η∗) ≥ λ

∣∣∣ (α,δ, η∗)

← Expsetup
A,PORSYS

]
≤ ρ.

At an intuitive level, our definition establishes an upper
bound ρ on the probability that A(“setup”) generates a
“bad” environment—i.e., a “bad” adversarial archive (δ, η∗)
in A(“respond”) and system state α in the verifier. We re-
gard an environment as “bad” if the verifier accepts adver-
sarial responses with probability at least λ, but extraction
nonetheless fails with non-negligible probability ζ. In other
words, in such an environment the verifier cannot extract
Fη∗ with overwhelming probability, but with probability at
least λ is still convinced that it can do so. Note that we
treat ζ asymptotically in our definition for simplicity: This
treatment eliminates the need to consider ζ as a concrete
parameter in our analyses.

2.3.3 Remarks

• Note that we do not give A oracle access in Expchal.
This is a simplifying assumption: We rule out the pos-
sibility of A learning additional information from the
verifier through Overify or periodic file retrievals. We
believe this assumption to be reasonable in practice:
Given strong cryptographic primitives, the informa-
tion harvested by A through these channels should be
negligible, although a broader model is worth explo-
ration.

• We can also define a (ρ,λ)-valid proof of retrievability
for an erasing adversary. Such an adversary is only
permitted to reply to a challenge with either a correct
response or a null one. In section 4, we consider an
important practical setting for this variant.

• The purpose of encryption in our POR is to render
sentinels indistinguishable from text blocks. A possi-
ble alternative is to embed sentinels as steganographic
inclusions or “watermarks,” drawing them from a dis-
tribution indistinguishable from that of plaintext file
blocks. This approach has the drawback of relying on
file-data specific knowledge.

3. SENTINEL­BASED POR SCHEME
Our main POR scheme of interest is the sentinel-based one

described in the introduction. At root, this POR protocol
is conceptually simple. Before giving details, we outline the
general protocol structure.

The verifier / user V encrypts the file F . It then embeds
sentinels in random positions in F , sentinels being randomly
constructed check values. Let F̃ denote the file F with its
embedded sentinels.

To ensure that the archive has retained F , V specifies
the positions of some sentinels in F̃ and asks the archive to
return the corresponding sentinel values. Because F is en-
crypted and the sentinels are randomly valued, the archive
cannot feasibly distinguish a priori between sentinels and
portions of the original file F . Thus we achieve the follow-
ing property: If the archive deletes or modifies a substan-
tial, ε-fraction of F̃ , it will with high probability also change
roughly an ε-fraction of sentinels. Provided, then, that the
verifier V requests and verifies enough sentinels, V can de-
tect whether the archive has erased or altered a substantial
fraction of F̃ . (Individual sentinels are, however, only one-
time verifiable.)

In practice, of course, a verifier / user wants to ensure
against change to any portion of the file F . Even a single
missing or flipped bit can represent a semantically significant
corruption. Thus, detection of only ε-fraction modification
is insufficient for our purposes in the basic protocol we have
just described. With a simple trick, though, we can ensure
that even if the archive does change an ε-fraction (for ar-
bitrarily large ε), the verifier can still recover its file. Very
simply, before planting sentinels in the file F , the user ap-
plies an error-correcting code that tolerates corruption (or

erasure, if appropriate) of an ε-fraction of data blocks in F̃ .
The verifier also permutes the file to ensure that the sym-
bols of the code are randomly dispersed, and therefore that
their positions are unknown to the archive.

We emphasize one strongly counterintuitive aspect of our
PORs scheme: The sentinels, which constitute the content of
a POR proof, are in fact generated independently of the bit-
string whose retrievability they are proving. By contrast, as
explained above, in an ordinary proof of knowledge (POK),
the content of a proof depends on the values that are the
subject of the proof: Typically the prover derives the proof
from a witness.

3.1 POR efficiency
Of course, application of an error-correcting (or erasure)

code and insertion of sentinels enlarges F̃ beyond the orig-
inal size of the file F . The expansion induced by our POR
protocol, however, can be restricted to a modest percent-
age of the size of F . Importantly, the communication and
computational costs of our protocol are low. As we mention
below, the verifier / user can transmit a short (e.g., 128-
bit) seed constituting a challenge over an arbitrary number
of sentinels; the verifier / user can similarly achieve a high
level of assurance on receiving a relatively compact (e.g.,
128-bit) proof from the archive. Additionally, the user need
not generate sentinel positions and values in a truly random
manner, but may instead generate them pseudorandomly
using a symmetric key κ. In this case, the user need store
only κ and a counter (some tens of bits) in order to perform
the POR protocol.

Perhaps the most resource-intensive part of our protocols
in practice is the permutation step: This operation requires
a large number of random accesses, which can be slow for
a file stored on disk (but less so for random-access mem-
ory). Our POR construction requires only a single permu-
tation pass, however, and it is possible in some measure
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to batch file accesses, that is, to precompute a sequence of
accesses and partition them into localized groups. Such de-
tailed questions of system efficiency lie outside the scope of
our investigation here.

3.2 Sentinel scheme details
We employ an l-bit block as the basic unit of storage in our

scheme. We employ an error-correcting code that operates
over l-bit symbols, a cipher that operates on l-bit blocks,
and sentinels of l bits in length. While not required for
our scheme, this choice of uniform parameterization has the
benefit of conceptual simplicity. It is also viable in practice,
as we demonstrate in our example parameter selections in
section 3.4. We also assume for simplicity the use of an
efficient (n, k, d)-error correcting code with even-valued d,
and thus the ability to corrupt up to d/2 errors.

Suppose that the file F comprises b blocks, F [1], . . . , F [b].
(For simplicity, we assume that b is a multiple of k, a cod-
ing parameter. In practice, we can pad out F if needed.)
We also assume throughout that F contains a message-
authentication code (MAC) value that allows the verifier
/ user to determine if it has recovered F correctly.

The function encode entails four steps:

1. Error correction: We carve our file F into k-block
“chunks.” To each chunk we apply an (n, k, d)-error
correcting code C over GF [2l]. This operation expands
each chunk into n blocks and therefore yields a file
F ′ = F ′[1], . . . , F ′[b′], with b′ = bn/k blocks.

2. Encryption: We apply a symmetric-key cipher E to
F ′, yielding file F ′′. Our protocols require the ability
to decrypt data blocks in isolation, as our aim is to
recover F even when the archive deletes or corrupts
blocks. Thus we require that the cipher E operate in-
dependently on plaintext blocks. One option is to use
a l-bit block cipher. In this case, we require indistin-
guishability under a chosen-plaintext attack; it would
be undesirable, for example, if an adversary in a posi-
tion to influence F were able to distinguish the data
contents of blocks.2 In practice, an appropriate choice
of cipher E would be a tweakable block cipher [24] such
as XEX [31]. A second option is to employ a stream
cipher E. On decryption, portions of the keystream
corresponding to missing blocks may simply be dis-
carded.

3. Sentinel creation: Let f : {0, 1}j×{0, 1}∗ → {0, 1}l
be a suitable one-way function (modelled in our proofs
by a random oracle). We compute a set of s sentinels
{aw}sw=1 as aw = f(κ,w). We append these sentinels
to F ′′, yielding F ′′′.

4. Permutation: Let g : {0, 1}j × {1, . . . , b′ + s} →
{1, . . . , b′ +s} be a pseudorandom permutation (PRP)
[25]. We apply g to permute the blocks of F ′′′, yield-

ing the output file F̃ . In particular, we let F̃ [i] =
F ′′′[g(κ, i)].

The function extract requests as many blocks of F̃ as possi-
ble. It then reverses the operations of encode. In particular,

2In the case of re-use of a file-encryption key, which we dep-
recate here, it might be necessary to enforce security against
chosen ciphertext attacks.

it decrypts ciphertext blocks, permutes the resulting plain-
text blocks under g−1, strips away sentinels, and then ap-
plies error correction as needed to recover the original file F .
Note that if the code C is systematic, i.e., a code word con-
sists of the message followed by error-correction data, then
error-correcting decoding is unnecessary when the archive
provides an intact file.

To bolster the success probability of extract against prob-
abilistic adversaries, i.e., adversaries that do not respond
deterministically to a given challenge value, we do the fol-
lowing. If simple recovery fails, then extract makes an addi-
tional γ − 1 queries for each block and attempts to perform
majority decoding over the resulting responses. Given suf-
ficiently large γ, this approach recovers a given block with
high probability provided that the adversary outputs a cor-
rect response with probability non-negligibly greater than
1/2. We employ this aspect of extract in our security proof.

The function challenge takes as input state variable σ, a
counter initially set to 0. It outputs the position of the σth

sentinel by reference to g, i.e., it outputs p = g(b′ + σ) and
increments σ; it repeats this process q times, i.e., generates
positions for q different sentinels. The prover function re-
spond takes as input a single challenge consisting of a set
of q positions, determines the values of the q correspond-
ing blocks (sentinels in this case), and returns the values.
(See below for some simple bandwidth optimizations.) The
function verify works in the obvious manner, taking a chal-
lenge pair (σ, d) as input and verifying that the prover has
returned the correct corresponding sentinels values.3

3.2.1 Permutation
The permutation step in our protocol serves two purposes.

First, it randomizes the placement of sentinels such that
they can be located in constant time and storage; only the
sentinel generation key need be stored. Although it is pos-
sible instead to insert sentinels into pseudorandomly deter-
mined positions, locating sentinels placed by straightforward
pseudorandom insertion is an operation with time or storage
costs linear in the number of sentinels: A lookup procedure
must keep track of or reconstruct how other sentinel posi-
tions have shifted file contents.

The second purpose relates to error correction. In princi-
ple, we could treat our entire file as a single message in an
error-correcting code with a large minimum distance, e.g., a
Reed-Solomon code. In practice, however, such coding can
be challenging—even for erasure-coding. (See [13] on a re-
cent effort to scale a Tornado code to large block sizes.) It is
for this reason that we consider the carving of our file F into
“chunks.” It is important to disperse the constituent blocks
of these chunks in a secret, random manner. An adversary
with knowledge of the location in F̃ of the blocks belong-
ing to a particular chunk could excise the chunk without
touching any sentinels, thereby defeating our POR scheme.

While pseudorandom-permutation primitives are most of-
ten designed to operate over bitstrings, and thus power-of-
two-sized domains, Black and Rogaway [5] describe simple
and efficient pseudorandom-permutation constructions over
domains Zk for arbitrary integers k. Their constructions are
suitable for use in our POR scheme.

3Of course, it is possible for the verifier to pick σ at random
from {1, . . . , s}, rather than storing it as a counter value. In
this case, by the Birthday Paradox, the power of the verifier
degrades as the number of used sentinels approaches

√
s.
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We note that by treating the file F as a single message and
encoding it as a single codeword in a code with large minimal
distance, we can in principle eliminate the need to compen-
sate for chunking and thus the one of the requirements for
the permutation step in our POR construction. For erasure
codes—and thus against an “erasing” adversary—this pos-
sibility seems to hold the most practical promise [13]. We
consider this possibility in our security analysis below.

3.2.2 Bandwidth optimization
For most practical parameterizations, the verifier will wish

to request a batch of q sentinels in a given session. As a
simple optimization to reduce bandwidth, the position for
each batch of sentinels may be derived from an individual
secret key derived from a master key κsentpos. The verifier
can release the key corresponding to the positions of a given
sentinel batch while keeping κsentpos private.

Similarly, rather than returning the full batch of q sen-
tinels, the prover can return a hash or XOR of the sentinels.
Thus, the prover’s response can consist of a single block,
irrespective of the size of q.

An interesting feature of XORing is that it can be em-
ployed for compression in a hierarchical POR setting. Sup-
pose that an archive A breaks F̃ into pieces and distributes
the pieces among a collection of subordinate archives {Ai}.
On receiving a set of challenges, A can parcel them out ap-
propriately to the {Ai}. Each Ai can return an XOR of its
respective responses, which A itself can them XOR together
as its response to the prover. This process is transparent to
the prover. (And of course, the process can operate recur-
sively over a tree of archives.)

3.3 Security
We formally analyze the security of Sentinel-PORSYS[π],

our sentinel-based POR, in appendix A. Let C = b′/n be
the number of constituent chunks (which include data, not
sentinels). We define ε to be an upper bound on the fraction
of data blocks and previously unused sentinels corrupted by
the adversary. The total number of such blocks is at most
b′ + s, and decreases over time as sentinels are consumed
in verifier challenges. As may be expected, the security of
our POR system depends on q, the number of sentinels per
challenge, not the total number of available sentinels. In a
simplified model that assumes ideal properties for our under-
lying cryptographic primitives (with little impact on practi-
cal parameterization), we prove the following:

Theorem 1. Suppose that γ = ω(log j) log b′. For any
probability ε ∈ (0, 1), then, Sentinel-PORSYS[π] is a (ρ,λ)-

valid POR for ρ ≤ Ce−
µ
3 ( d

2µ −1)2 and λ ≥ (1− ε/4)q, where
µ = nε

1−ε
.

Some explanation of this security bound is in order. Recall
that d is the minimum distance of our error-correcting code;
that is, the code can correct at least d/2 errors.

As a technical aspect of our proof, we consider a block
to be “corrupted” if A(“respond”) returns it correctly with
probability less than 3/4. (The constant 3/4 is arbitrary; our
proofs work for any constant greater than 1/2, with changes
to the constants in our theorem.) Recall that our security
definition for a POR treats the extraction probability 1− ζ
in an asymptotic sense for the sake of simplicity. We analyze
γ—the number of queries made by extract on a given block—
accordingly. Given the lower bound γ = ω(log j) log b′, we

can show that the verifier recovers all uncorrupted blocks
from A(“respond”) with overwhelming probability.4

Given the ability to recover all uncorrupted blocks, it is
possible to recover the full file F provided that the adversary
does not corrupt more than d/2 blocks in any chunk. In
this case, it is possible to recover the data associated with
the chunk through error-correction. The value ρ bounds the
probability of more than d/2 corruptions in any chunk when
a random ε-fraction of blocks is corrupted for ε ∈ (0, 1).5

Naturally, the larger the minimum distance d, the lower the
probability of such corruption, as reflected in the theorem
bounds.

Our bound for λ simply reflects the probability of an ad-
versary successfully returning q sentinels when it has cor-
rupted an ε-fraction of blocks.

As remarked above, some erasure codes, e.g., Raptor codes
[2], operate in linear time and may be amenable in some
cases to practical application to entire large files without
any need for “chunking” [13]. Additionally, it is possible (if
not generally practical) to treat a full file as a single message
in an error-correcting code with large minimum distance. In
such cases, we can obtain considerably tighter bounds on the
security of our POR system.

Consider a system Sentinel-PORSYS[π] that is: (1) Imple-
mented against an erasing adversary without chunking using
an erasure code with minimum distance d + 1 or (2) Imple-
mented against a fully capable adversary using an error-
correcting code with minimum distance 2d and no chunk-
ing. In both cases, if ε ≤ d/b′, then the file F is fully re-
coverable. Additionally, we make the following observation
(whose proof follows straightforwardly from the analysis un-
derlying our main theorem):

Observation 1. Suppose that ε > d/b′. Then
Sentinel-PORSYS[π] is a (ρ,λ)-valid POR for ρ = 0 and
λ ≥ (1− ε/4)q).

3.4 An example parameterization
A block size of l = 128 is one natural choice; 128 bits is

the size of an AES block and yields sentinels of sufficient size
to protect against brute-force sentinel-guessing attacks. Let
us consider use of the common (255, 223, 32)-Reed-Solomon
code over GF [28], i.e., with one-byte symbols. By means
of the standard technique of “striping” (see, e.g., [7]), we
can obtain a (255, 223, 32)-code over GF [2128], i.e., over file
blocks, which is convenient for our parameterization in this
example. A chunk consists then of n = 255 blocks.

Let us consider a file F with b = 227 blocks, i.e., a 2-
gigabyte file. This file expands by just over 14% under error-
coding to a size of b′ = 153, 477, 870. Suppose that we add
s = 1, 000, 000 sentinels. Thus the total number of data
blocks b′ + s = 154, 477, 870, the total number of blocks in
the file F̃ . The total file expansion is around 15%.

Consider ε = 0.01, i.e., an adversary that has corrupted
up to 1% of the data blocks and unused sentinels in F̃ . Now

4Since extract needs to perform multiple queries only in the
presumably rare case of a file-retrieval failure against a prob-
abilistic adversary, we can make γ large in most practical
settings, as when an adversarial archive is taken offline and
“rewound” to extract block values.
5While excluded for technical reasons, we can see trivially
that for ε = 0, F is retrievable with probability 1. When
ε = 1, the theorem holds for ρ = 0 and λ ≥ (1− ε/4)q.
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C = b′/n = 601, 874, and µ = nε
1−ε = 2.58. (Recall µ is

an upper bound on the mean number of corrupted blocks

per chunk.) By Theorem 1, ρ ≤ Ce
− µ

3 ( d
2µ

−1)2
= 601, 874 ×

e−23.26 ≈ 4.8 × 10−5. In other words, the probability that
the adversary renders the file unretrievable6 is about 1 in
20,000.

Suppose that we let q = 1, 000, i.e., the verifier queries
1,000 sentinels with each challenge. (Recall that XORing or
hashing compresses a response into 128 bits.) Since the total
number of sentinels is s = 1, 000, 000, the verifier can make
1,000 challenges over the life of the file (a challenge per day
for about three years). The probability of detecting adver-
sarial corruption of the file is 1−λ = 1− (1− ε/4)q ≈ 91.8%
per challenge. This is not overwhelmingly large, but proba-
bly suffices for most purposes, as detection of file-corruption
is a cumulative process.

Of course, for higher ε, the probability of file corruption
is higher, but so too is that of detection by the verifier.

3.5 Variant protocols
To shed light on the architectural choices in our protocol,

it is helpful to make brief mention of a couple of simple
variants on our POR scheme Sentinel-PORSYS.

3.5.1 Authenticated blocks
The role of the sentinels in Sentinel-PORSYS is to per-

mit detection of file corruption. It is possible, however, to
achieve this goal by direct verification of file contents. For
example, we might omit sentinels entirely and instead use
message-authentication codes (MACs) to verify the correct-
ness of file contents. In this case, we would omit the sentinel
insertion step from Sentinel-PORSYS, and add the follow-
ing, final step after permutation. We partition the file F̃
into sequentially indexed segments of v blocks for appropri-
ate parameter v (say, 5). To each segment we append a
MAC under key κ of the contents of the blocks within the
segment, the segment index, and the file handle. For the
purposes here, the bit-length of a MAC can be small, e.g.,
20 bits, since it is the aggregate effect on multiple blocks
that is being measured. Thus, the resulting file expansion
need not be prohibitive. For example, with 20-byte blocks,
v = 5, and 20-bit MACs, the incremental file expansion due
to MACing would be only 2.5%.

There is a straightforward challenge-response procedure
in this variant of Sentinel-PORSYS. The verifier picks a seg-
ment index at random, asks the prover to return the corre-
sponding segment and MAC, and then verifies the MAC.

This MAC-based approach is quite efficient in terms of
file-expansion overhead, computational costs, and bandwidth.
It has an important drawback, though: It does not permit
the prover to return a digest of its reponses, i.e., to hash or
XOR them together. Our MAC-based variant does have the
interesting feature, though, of permitting a model in which
challenges derive from a (fresh) common reference string or
public source of randomness. (Another possible but less ef-
ficient way to verify the correctness of file blocks is use of
a Merkle tree in which each segment corresponds to a leaf,
and the verifier stores the root.)

3.5.2 PIR schemes
6We assume negligible ζ in this example. It may be seen, for
instance, that γ = 1800 yields an extraction failure proba-
bility ζ < 2−80.

Another variant on Sentinel-PORSYS involves the use of
private information retrieval (PIR) [21]. In explicitly re-
questing the value of a sentinel from the prover, the verifier
discloses the location of the sentinel. A PIR scheme, in con-
trast, permits a verifier to retrieve a portion of a file F̃ from a
prover without disclosing what it has retrieved. Thus, by re-
trieving sentinels using PIR, the verifier can re-use sentinels,
i.e., let q = s, with no effective degradation in security.

While capable of communication costs of O(log2(|F̃ |)) per
retrieved sentinel bit [23], PIR schemes require access to all

of F̃ and carry high computational costs. Recent work sug-
gests that PIR schemes may be no more efficient in practice
than transferring all of F̃ [33].

4. PRACTICAL APPLICATION TO STOR­
AGE SERVICES

We now describe an application of our POR scheme to
an archive or back-up service provided by a Storage Ser-
vice Provider (SSP). Multiple service levels may be offered,
corresponding to different storage “tiers” (disks of varying
speeds, tape, etc.) or a combination (see, e.g., [32]). An SSP
and a client typically operate under a service level agreement
(SLA) specifying properties such as throughput, response
time, availability, and recovery-time objectives [28].

The price of the service is set by the SSP at some profit
margin above the cost of providing the service at a given
level (equipment, maintenance, staff, facilities, etc.). An
SSP is thus motivated legitimately to increase its profit
margin by reducing cost while maintaining the same service
level; in a competitive marketplace this will ultimately re-
duce the price, which is a benefit to clients as well. (Indeed,
one of the reasons for outsourcing to an SSP is the clients
belief that the SSP can reduce the price more effectively
than the client alone.)

Internet Service Providers (ISPs) and Application Service
Providers (ASPs) follow a similar economic model, but with
an important difference. An ISP or ASPs service levels are
effectively tested continuously by clients for most functions
as a part of their regular interactions with the services. An
SSP’s service levels, on the other hand, particularly for its
restore and retrieve services (corresponding respectively to
backup and archive functions) are only tested when those
functions are actually run, which in general is infrequent.7

Furthermore, the situations in which those functions are run
are the very ones for which the client is paying for service
levels: The client does not (in general) pay a higher price
to have backup or archive data stored faster, but rather to
ensure that it can be accessed faster.

Without a requirement to provide continuous service level
assurances, an SSP may also be willing to take the risk of de-
creasing its cost by not maintaining an agreed service level.
For instance, an SSP may place files it considers less likely
to be accessed to a lower tier of storage than agreed. Or, an
SSP may not move files to higher speed disks when they be-
come available, despite agreeing to do so. These lapses are
exacerbated by the possibility that the SSP may itself rely

7In the general case where an SSP also provides primary
read/write file storage, the service levels would be tested
continuously, at least for those primary files that are ac-
cessed frequently. Here, the focus is on secondary storage
with less frequent reads.
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on other SSPs to store files or parts of them. For instance,
to meet an agreed availability level, an SSP may replicate
or otherwise store data on geographically distributed sites,
perhaps employing information dispersal techniques as sug-
gested in section 1.3. Some of these sites may be operated by
other SSPs, who in turn may have their own motivations to
reduce cost, legitimate or otherwise. If a site knows that its
occasional outage will be overlooked (indeed, planned for)
due to the presence of its replication peers, it may opt to
increase its frequency of “outages” by placing a fraction of
files on lower tiers—or not storing them at all.

Cost reduction is one reason an SSP might not store files
as directed. Another relates to the information in the files
themselves. A malicious SSP may also wish for certain files
(or portions of them) not to be accessible due to their con-
tent. Encryption partially mitigates this threat since an SSP
does not directly know the content of encrypted files, but it
may still be possible for other parties to inform the SSP by
back channels of which files to “misplace” or to cause the
misplacement themselves by physical attack. E-discovery of
documents is one scenario motivating these concerns.

Equipment failures and configuration errors may also re-
sult in file placement that does not meet an SLA; the breach
of agreement may simply be due to negligence, not malice.

One way for a client to obtain assurance that a file can be
accessed at a given service level, of course, is for the client
actually to access the file from time to time. Indeed, file
access is part of a typical “fire drill” operation for disaster
recovery testing. Such spot checks may also be beneficial for
operational recovery. If randomly chosen files are accessible
at a given service level, then it is reasonable to assume that
other files will be accessible as well. However, the highest
assurance for a specific file requires access to the file itself.
An occasional full read of the file is one way to obtain this
assurance, but at a significant operational cost over the life
of the file. The POR schemes presented here aim to provide
this assurance less expensively.

We envision that a POR scheme would be applied to
backup or archive as follows. As part of its SLA, an SSP
would offer periodic, unannounced execution of a POR for
selected files. In the POR, a block would be considered to
be an erasure if it cannot be read within the agreed response
time.8 The client, taking the role of verifier, would thereby
obtain (probabilistic) assurance that the agreed service level
continues to be met for the file. If the SSP is trusted to pro-
vide file integrity, then an erasure code would be sufficient
for error correction.

A POR scheme can also be applied by a third party to
obtain assurance that files are accessible. For instance, an
auditor may wish to verify that an SSP is meeting its SLAs.
To ensure that the POR corresponds to a file actually sub-
mitted for storage, the auditor would rely on the client to

8The agreed response time is a composition of the latency
and the throughput—a delay until file access begins, a data
rate thereafter. The agreed time for POR acceptance may
need to be calculated differently in file systems optimized
for data streaming, where the SLA promises a data rate for
sequential access but not necessarily for the random access
in the POR. Furthermore, if the SLA for the SSP does not
directly govern network latencies, then the SLA for the ISP
may need to be factored in as well; over open networks, the
agreed response time would take into account “expected”
behavior, e.g., compared to general network latencies at the
time of the proof.

provide a storage “receipt” including the keys the verifica-
tion operations. (The key for decrypting the file need not be
provided—thus enforcing privilege separation between the
auditor and the client.) As another example, one party’s
legal counsel in a dispute may wish to verify that an archive
stored at an SSP correctly corresponds to a document man-
ifest submitted by another party. The separation of en-
cryption and verification enables the legal counsel (and the
court) to verify that the other party has met a requirement
to archive a collection of files, without yet learning the con-
tent of those files—and, due to the POR, without having to
access every block in every file.

5. CONCLUSION
Thanks to its basis in symmetric-key cryptography and ef-

ficient error-coding, we believe that our sentinel-based POR
protocol is amenable to real-world application. As storage-
as-a-service spreads and users rely on external agents to
store critical information, the privacy and integrity guaran-
tees of conventional cryptography will benefit from extension
into POR-based assurances around data availability. Con-
tractual and legal protections can, of course, play a valuable
role in laying the foundations of secure storage infrastruc-
ture. We believe that the technical assurances provided by
PORs, however, will permit even more rigorous and dynamic
enforcement of service policies and ultimately enable more
flexible and cost-effective storage architectures.

Our introduction of PORs in this paper leads to a number
of possible directions for future research. One of these, of
course, is how to perform the most effective error-coding in
our POR protocols. Another broad area of research stems
from the fact that our main POR protocol is designed to
protect a static archived file F . Any näıvely performed,
partial updates to F would completely undermine the secu-
rity guarantees of our protocol. For example, if the verifier
were to modify a few data blocks (and accompanying error-
correcting blocks), the archive could subsequently change
or delete the set of modified blocks with impunity, having
learned that they are not sentinels. A natural question then
is how to construct a POR that can accommodate partial
file updates—perhaps through the dynamic addition of sen-
tinels. A related question arises from the one-time nature of
sentinels in our main POR protocol. Our construction as-
sumes an initial embedding in F of sentinels sufficient for a
lifetime of use. Of course, sentinels can be updated through
wholesale re-coding of F . Similarly, our PIR-variant per-
mits sentinel re-use (and our MAC variant avoids it). A
natural open question is whether there is a practical means
of improving on one-time sentinel use.
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APPENDIX

A. PROOFS
For simplicity, we make ideal assumptions on our under-

lying cryptographic primitives. We assume an ideal cipher,
a one-way permutation instantiated as a truly random per-
mutation, and a PRNG instantiated with truly random out-
puts. Given well-constructed primitives, these ideal assump-
tions should not impact our security analysis in a practical
sense. Viewed another way, we assume parameterizations of
our cryptographic primitives such that the probability of an
adversary distinguishing their outputs from suitable random
distributions is negligible. The error terms in our theorems
should therefore be small. (In a full-blown proof, we would
create a series of games/simulators that replace primitives
incrementally with random distributions.)
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This ideal view yields a system in which block values are
distributed uniformly at random in the view of the adver-
sary. Thus the adversary cannot distinguish between blocks
corresponding to message values and those corresponding to
sentinels, and cannot determine which blocks are grouped in
chunks more effectively than by guessing at random.

Additionally, in this model, because A(“respond”) is as-
sumed to be stateless, i.e., subject to rewinding, the verifier
can make an arbitrary number of queries on a given block.
These queries are independent events, i.e., for a given block
i, the probability p(i) that A(“respond”) responds correctly
is equal across queries. Hence we can model the adver-
sary A(“respond”) as a probability distribution {p(i)} over
blocks in the archived file.

Furthermore, if p(i) is non-negligibly greater than 1/2
(as a technicality in our proof, if p(i) ≥ 3/4), it is pos-
sible for an extractor to recover block i with overwhelm-
ing probability via majority decoding after a small number
(γ = ω(log j) log b′) of queries. Thus, we can simplify our
model still further. Once we have bounded out the prob-
ability of the adversary failing to retrieve a block i with
p(i) ≥ 3/4, we may think effectively of A(“respond”) in our
ideal model as a collection of “bins,” each corresponding to
a given block i. The adversary is modelled as corrupting a
block by throwing a “ball” into the corresponding bin. If a
bin contains a ball, then we assume p(i) < 3/4, and thus that
the corresponding block is not retrievable. If a bin doesn’t
contain a ball, the corresponding block is retrievable.

Let us define b′′ as the total number of data blocks and
previously unused sentinels; thus, b′ + q ≤ b′′ ≤ b′ + s. Re-
call that we define ε as the fraction of the b′′ such blocks
corrupted by the adversary. In the ball-and-bin view, there-
fore, the adversary throws a number of balls εb′′ into the b′′

bins representing this aggregate of blocks. Provided that no
chunk receives too many balls, i.e., provided that no chunk
of n error-correcting blocks in a codeword has more than
d/2 corruptions, extract can recover the file F completely.
We use the ball-and-bin model to achieve bounds on the
probability of success of extract. We also use the ball-and-
bin model to bound the probability of detecting adversarial
corruption of F .

As the only adversarial function we refer to explicitly in
our proofs is A(“respond”), we write A for conciseness.

A.1 Bounding lemmas
We begin with some technical lemmas to establish bounds

within our ball-and-bin model of A(“respond”). The lynch-
pin of these lemmas is the well-known Chernoff probability
bounds on independent Bernoulli random variables, as ex-
pressed in the following lemma.

Lemma 1 (Chernoff Bounds). Let X1,X2, . . . ,XN be
independent Bernoulli random variables with pr[Xi = 1] = p.

Then for X =
∑N

i=1 Xi and µ = E[X] = pN , and any

δ ∈ (0, 1], it is the case that pr[X < (1− δ)µ] < e−µδ2/2 and

pr[X > (1 + δ)µ] < e−µδ2/3.

Now let us consider a simple algorithm that we refer to
as a γ-query majority decoder. It operates in two steps: (1)
The decoder queries A on a given block i a total of γ times,
receiving a set R of responses and then (2) If there exists a
majority value r ∈ R, the decoder outputs r; otherwise it
outputs ⊥.

We state the following lemma without proof, as it follows
straightforwardly from Lemma 1.

Lemma 2. The probability that a γ-query majority de-
coder operating over b′ blocks correctly outputs every block i
for which p(i) ≥ 3/4 is at least 1− b′e−3γ/72.

Lemma 2 is a bound on the probability that the ball-and-
bin model correctly models the behavior of A. Our next
lemma operates within the ball-and-bin model. It bounds
the probability, given εb′′ bins with balls, i.e., corrupted
blocks, that any chunk is corrupted irretrievably.

Lemma 3. Suppose εb′′ (for ε ∈ [0, 1]) balls are thrown
into b′′ bins without duplication, i.e., with at most one ball
per bin. Suppose further that a subset of b′ < b′′ bins is
partitioned randomly into C = b′/n chunks, each comprising
n distinct bins. Let µ = nε

1−ε . Then the probability that

any chunk receives more than d/2 balls is bounded above by

Ce−
µ
3 ( d

2µ−1)2 .

Proof: Since balls are thrown without duplication, the
maximum probability that a given chunk receives a ball is
achieved under the condition that εb′′− 1 balls have already
landed outside the chunk. Thus, the conditional probability
that a ball lands in a given chunk is bounded above by p =
n/(b′′ − εb′′).

The number of balls that lands in a given chunk is there-
fore bounded above by a Bernoulli process in which Xi is
the event that the ith ball lands in the chunk, pi = p, and

X =
∑εb′′

i=1 Xi. We have E[X] = µ = pεb′′ = nε/(1− ε).

Now pr[X > d/2] = pr[X > (1 + δ)µ] for δ = d
2µ
− 1.

Thus, by Lemma 1, we have pr[X > d/2] < e
− µ

3 ( d
2µ −1)2

.
Since there are C chunks, the lemma follows.

Our next lemma offers a lower bound on the probability
that the verifier detects file-corruption by Awhen at least an
ε-fraction of bins contain balls, i.e., A responds incorrectly
with probability at least 1/4 on an ε-fraction of data blocks
and unused sentinels.

Lemma 4. Suppose that εb′′ (for ε ∈ [0, 1]) balls are thrown
into b′′ bins without duplication. Suppose that A is queried
on q bins, each chosen uniformly at random (and indepen-
dently). The probability that A provides at least one incor-
rect block is at least 1− (1− ε/4)q.

Proof: Let Xi be a Bernoulli random variable s.t. Xi = 1
if A provides an incorrect block on the ith query. Since
a bin contains a ball with probability ε, and a bin with a
ball corresponds to a block incorrectly emitted by A with
probability at least 1/4, pr[Xi = 0] ≤ 1 − ε/4. It is easy
to see that pr[Xi = 0 |X1, . . . ,Xi−1,Xi+1, . . . ,Xq = 0] ≤
pr[Xi = 0]. Therefore pr[X = 0] ≤ (1− ε/4)q.

A.2 Main theorem
We state the following theorem about our sentinel-based

practical scheme Sentinel-PORSYS[π]:

Theorem 1. Suppose that γ = ω(log j) log b′. For any
ε ∈ (0, 1), then, Sentinel-PORSYS[π] is a (ρ, λ)-valid POR

for ρ ≤ Ce
− µ

3 ( d
2µ

−1)2
and λ ≥ (1− ε/4)q, where µ = nε

1−ε .
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Proof: Consider a given value of ε in our balls-and-bins
model. By Lemma 4, the probability for this value of ε
that A causes the the verifier to accept is bounded above
by λ = (1 − ε/4)q. (To achieve a higher verfier acceptance
probability than λ would require a larger value of ε.)

Given this value of ε, by Lemma 2, the probability of
recovering correct values for all blocks that have not received
balls is at least 1−ζ for ζ = b′e−3γ/72. For γ = ω(log j) log b′,

we have ζ = j−ω(1), which is negligible in j.
Assuming, then that no “chunk” has received more than

d/2 balls, the verifier can recover data associated with every
chunk of the file. By Lemma 3, this condition fails to hold

with probability at most Ce
− µ

3 ( d
2µ

−1)2
.
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