Incorporating Temporal Capabilities in Existing Key Mapatent

Schemes
Mikhail J. Atallaht Marina Blantorh
Department of Computer Science Department of Computer Science
Purdue University Purdue University
nj a@s. pur due. edu nbykova@s. pur due. edu

Keith B. Frikken
Department of Computer Science and Systems Analysis
Miami University
frikkekb@ruohi o. edu

Abstract

The problem of key managementin access hierarchies is hasstgn keys to users and classes such
that each user, after receiving her secret key(s), is alibelependentlgompute access keys for (and thus
obtain access to) the resources at her class and all destetaisses in the hierarchy. If user privileges
additionally are time-based (which is likely to be the casedll of the applications listed above), the
key(s) a user receives should permit access to the resoomtest the appropriate times. This paper
present a new, provably secure, and efficient solution thate used to add time-based capabilities to
existing hierarchical schemes. It achieves the followiegigrmance bounds: (i) to be able to obtain
access to an arbitrary contiguous set of time intervalseaiggequired to store at most 3 keys; (i) the
keys for a user can be computed by the system in constant tilihé&ey derivation by the user within
the authorized time intervals involves a small constantimemoef inexpensive cryptographic operations;
and (iv) if the total number of time intervals in the systemmjghen the increase of the public storage
space at the server due to our solution is only by a small amtinfiactor, e.g.0(log" n loglog n) with
a small constant.

1 Introduction

This work addresses the problem of key management in acoa®lcsystems, with the emphasis on time-
based access control policies. Consider a system whereeb are divided into a set of disjoint classes,
and a user is granted access to a specific access class fao@ @ietime specified by its beginning and
end. In such systems, it is common for the access classesdméanized in a hierarchy, and a user then
obtains access to the resources at her own class and thecessagsociated with all descendant classes in
the hierarchy.

When a user joins the system and is granted access to a adésénfor a specific duration of time, she
is given a key (or a set of keys) which allows heindependentlylerive access keys for all resources she is

*Supported in part by Grants 11S-0325345 and CNS-0627488 ftee National Science Foundation, and by sponsors of the
Center for Education and Research in Information AssurandeSecurity.
fSupported by Intel Ph.D. fellowship.

entitled to have access during her time interval. For hidnaally organized user classes this means that the
key allows the user to access objects at her access clasH dedandant classes in the hierarchy during
the time interval specified. Note that the time interval isrespecific and might be different for each user in
the system.

There is a wide range of applications that follow this mode svhich would benefit from automatic
enforcement of access policies through efficient key mamagé Such applications include:

e Role-Based Access Control (RBAC) models, which are usefutrfany types of organizations with
various access constraints including temporal consgaiitt such systems users are naturally or-
ganized into a hierarchy of classes, and a user higher upeimittrarchy inherits privileges of its
descendant classes. Furthermore, users are normallyedrtrgir privileges for a specific period of
time depending on their work schedule, which is well cagture our model.

e Subscription-based services such as digital librariesicraollections, digital subscriptions to news-
papers and magazines, etc. Here a user may be able to joily &itrenand/or be able to specify
the subscription duration, implying that access only duanspecific time interval is allowed. Also
subscription packages may be organized in a hierarchy demenn the resources included in each
package. For instance, a Gold package will include evergtavailable in a Silver package and ad-
ditional premium services; weekends-only hewspaper sigien is contained within the full-access
subscription; etc.

e Content distribution where users may join at any time andiveccontent of varying quality or reso-
lution.

e Cable TV where, similarly, users join at arbitrary times aeckive different programs based on what
is included in their subscription package.

¢ Project development, where users’ views are organized iararichy and each user obtains access to
the resources determined by her role in the project. For plgrithe managerial view will include the
views of developers assigned to the project and possiblrathta. Also, users can be assigned to a
project only for a specific duration of time.

e Cryptographic directories or file systems, where accessiitasly based on a hierarchical relationship
between users.

In all of the above examples we use the current time to enfiimoe-based policies. Additionally, instead
of being based on the current time, access control poli@ase based on the time in the past and permit
access to historical data. For example, a user might buysa¢oalata such as historical transactions, prices,
legal records, etc. for a specified time interval in the past,, the year of 1920. These different notions of
time can be combined, e.g., a user buys access to 1920 dataentiled to access it for two weeks starting
from today.

If we let the lifetime of a system be partitioned intcshort time intervals, the existence of time-based
access control policies requires the access keys to be etiahging each time interval. In this work, we
concentrate on applications where the system is setup fwsLg large number of such time intervals. For
example, access key to a video stream might change at leasstaaitay (thus, permitting users to subscribe
on any given day). If the system is setup for a few years, #ssilts inn being in thousands. Likewise, if
the application of interest is access to historical datg, fea the last century, the number of time intervals

will tend to be even higher. Thus, a small number of keys per ard efficient access with larges is the
goal of this work.

The notion of security for time-based hierarchical key gasient (KA) schemes was formalized only
recently by Ateniese et al. [4]. Thus, in the current papeus&their security definitions and provide a new
efficient solution to the problem of key management in systesith time-based access control policies. The
approach we propose is provably secure and relies only csethrity of pseudo-random functions (PRFs).
In addition, our solution does not impose any requirement®ostraints on the mechanisms used to enforce
policies in systems where access control is not time-basgd for a hierarchy of user classes). This means
that our solution can be built on top of an existing schemead&ent capable of handling time. In the rest of
this paper, we refer to a scheme without the support for teat@cess control asteme-invariantscheme,
and we refer to a scheme that supports temporal access lqoolinies astime-based

Existing efficient time-invariant key management schermes$er hierarchies are based on the notion of
key derivation: a user receives a single key, and all othegsckeys a user might need to possess according
to her privileges can be derived from that key. In the mosegarformulation of the problem, inheritance of
privileges is modeled through the use of a directed graplerevh node corresponds to a class and a parent
node can derive the keys of its descendants. In this papeoloafthe same model, but, unlike previous
work, apply key derivation techniques to time.

In a setup withn time intervals, the server is likely to maintain informatiahich is linear inn. By
building a novel data structure, we only slightly incredsmgtorage space at the server beyond the necessary
O(n) and at the same time are able to achieve other very attraci@eacteristics. In more detail, our
solution enjoys the following properties:

¢ To be able to obtain access to an arbitrary contiguous sé@nefihtervals, a user is required to store
at most 3 keys.

e The above-mentioned keys to be given to a user can be computeshstant time from that user’s
authorized set of contiguous time intervals.

¢ Key derivation within the authorized time intervals invedva small constant number of cryptographic
operations and thus is independent of the number of timevalein the systems or the humber of
time intervals in the user’s access rights.

¢ If the total number of time intervals in the systemnisthen the increase of the public storage space
at the server due to our solution is only by a small asympfatitor, e.g.O(log* nloglogn) with a
small constant.

e All operations are extremely efficient, and no expensivdiptiey cryptography is used.

We provide several solutions with slightly different chaeaistics, where the difference is due to the building
blocks used in our construction. These solutions are sumethin Table 3 (and, in a more general form, in
Table 5). An extension of our techniques also allows to stpexess rights that can be stated as periodic
expressions.

While the results given above correspond to a time-basedssgnment scheme with a single resource
or user class, we can use them to construct a time-based gigyeent scheme for a user hierarchy. We
show that our construction favorably compares to existatgemes and provides an efficient solution to the
problem (the comparison is given at the end of the paper itidcde8). Additionally, our scheme is balanced
in the sense that all resource consumption such as the'slmivate storage, computation to derive keys,

and the server public storage are minimized with tradeadfadpossible. This allows the scheme to work
even with very weak clients and not to burden the server witlegsive storage. Furthermore, our scheme
is provably secure under standard complexity assumptions.

In the rest of the paper, we first review related literatur&aation 2. In Section 3 we define the model
and give some preliminaries. Section 4 gives a preliminatg dtructure, which we use in Section 5 to build
our improved scheme. Thus, the core of our solution lies tti&e 5 along with its analysis. In Section 6
we show how to use the scheme to build a time-based key assigrsocheme for a user hierarchy. Finally,
Section 7 comments on practical considerations and Se8timmmpares our solution with other existing
schemes and concludes the paper. Several extensions ahame and security proofs can be found in the
appendix.

2 Related Work

The literature on time-invariant key assignment (KA) sckenm a user hierarchy is extensive, and its survey
is beyond the scope of this paper. For an overview of suchqatldns, see, e.g., [2] and [10].

While the list of publications on time-invariant KA schemssvery large, the number of publications
that consider time-based policies and provide schemeséon tis rather modest. The time-based setting
and the first scheme was introduced by Tzeng [17]. The schemmesver, was later shown to be insecure
against collusion of multiple users [22]. Subsequent wdituang and Chang [12], Chien [9], and Yeh [20]
was also shown to be insecure against collusion (in [16],12], and [4], respectively).

Among very recent publications, Wang and Laih [19] presetim&-based hierarchical KA scheme.
While their scheme is shown to be collusion-resilient, thetam of security, however, is not formalized and
no clear adversarial model is given in that work. Tzeng [18p @lescribes a time-based hierarchical key
assignment scheme, which is used as a part of an anonymaoamiptibn system. The scheme is proven to
resist collusion attacks; however, no formal model of asiagal behavior is provided. The work of Ateniese
at el. [4] is the first result that provides a formal framewéwk time-based hierarchical KA schemes and
gives provably secure solutions, both secure against keyeey and with pseudo-random keys.

Concurrently with and independently from this work, tim&sbd solutions have been developed by De
Santis et al. [15]. We compare performance of all solutionSection 8.

There is extensive literature on broadcast encryption amiticast security, which might be considered
applicable here. There are, however, crucial differencéisa models, which prevent us from using solutions
from those domains. First, broadcast encryption and nagtisecurity schemes permit access to a single
resource instead of a hierarchy and cannot be composed ibvéous way to solve our problem. More
importantly, they assume that each client obtains key @sd@ar each time interval, which is impossible in
our model: no private channels between the server and & elftam the initial issuance of the user keys is
assumed, the client is allowed to remain off-line, and caresg the resources at her own discretion. The
only exception from the above online requirement that weasrare of is the work of Briscoe on multicast
key management [8]. That solution builds a binary tree frbmtime intervals, thus achievin@(logn)
secret keys an@(log n) key derivation time. Our solution, on the other hand, presid constant number
of secret keys and a constant derivation time, thus regultim superior performance when the number of
time intervals is significant.

Finally, the access control literature has a large body akwm temporal access control models (see,
e.g., [6, 7]). These models, however, concentrate on pgl@cification and not on key assignment and
derivation mechanisms.

3 Problem Description and Preliminaries

3.1 The model

While the motivation for this work comes from the need to suppccess control policies with temporal
constraints in user hierarchies, the problem does not nedx fimited to this particular setting. That
is, an efficient solution to the key management problem inptanal access control can find use in other
domains. Therefore, we provide a very general formulatidth® problem, without any assumptions on the
environment in which it is used. Of course, access controkgr hierarchies remains the most immediate
and important application of our techniques. Thus, in $adsi we will show how our solution can be used
to realize temporal access control for user hierarchies.

Now let us assume that we are given a resource, and the owtlés ofsource would like to control user
access to that resource using time-based policies. Foptinpose, the lifetime of the system is partitioned
into short time intervals (normally, of a length of a day oprhr), and the access key for that resource
changes every time interval. Letdenote the number of time intervals in the systdm= {t,...,t,}
denote the intervals, and = {k;,, ..., k:, } denote the corresponding access keys.

Now assume that a uséfris authorized to access that resource during a contigudws e intervals
Ty C T, whereTy = {tstart, - - - tena}- Following the notation of [4], we use thaterval-setover T,
denoted byP, which is the set of all non-empty contiguous subsequentés oe.,T;; € P for any1;,.
With such access right#/ should receive or should be able to compute the kgyg C K, where for
eacht € Ty the keyk; € Kr;,. We denote the private information thidtreceives bySz,,. Obviously,
storing|T;,| keys at the user end is not always practical (especiallysfribmber is large), and significantly
more efficient solutions are possible. Thetime-based key assignment scheamsigns keys to the time
intervals and users, so that time-based access contrdbiced in a correct and efficient manner. Such key
generation is assumed to be performed by a central autl@fityout once a user is issued the keys, there is
no interaction with other entities. More formally, we defeéme-based KA scheme as follows:

Definition 1 LetT be a set of distinct time intervals arfel be the interval-set ovef. A time-based key
assignment scheme consists of algorithien, Assign, Derive) such that:

Gen is a probabilistic algorithm, which, on input a security jpaneter1” and the set of time intervals,
outputs (i) a keyk, for anyt € T, (ii) secret informationSec associated with the system; and (iii)
public informationPub. Let (K, Sec, Pub) denote the output of this algorithm, whekgis the set of
all keys.

Assign is a deterministic algorithm, which, on input a time sequehg € P and secret informatioSec,
outputs private informatioisy,, for 7;,.

Derive is a deterministic algorithm, which, on input a time sequefig, time intervalt € T, private
information.St,,, and public informatiorPub, outputs the ke¥; for time intervalz.

The correctness requirement is such that, for each timeesem1;, € P, each time intervat € T;,,
each private informatiorby,,, each keyk; € K, and each public informatioRub that Gen(1",T")
andAssign (1, Sec) can outputPr[Derive(T, t, S73,, Pub) = k| = 1.

Note that in many cases thessign algorithm can be a part of thgen algorithm, i.e., private valueSy;,
for everyT;, € P are generated at the system initialization time. We, howeeparate these algorithms to
account for cases where retrievifg,, from Sec is not straightforward (which is the case in our scheme). In

such cases, merging these two algorithms together willlasslg complicatésen resulting in unnecessary
complexity.

Also note that since a user accesses the server’s publegstdor key derivation purposes, there is no
need for additional time synchronization mechanisms betwtbe user and the server: the current time
interval can be stored as a part of the public informatiornséreer maintains.

A time-based KA scheme can be secure against static or adautversaries. In [4], however, it was
shown that the security of a time-based hierarchical KA sehagainst a static adversary is polynomial-time
equivalent to the security of that scheme against an adaptiversary for both security goals (key recov-
ery and key indistinguishability). While in the current clission we are not concerned with hierarchical
schemes, our setting can be considered to be a special cageavarchy with a single class. Thus, in this
work we only provide definitions of a time-based KA schemeaise@gainst a static adversary; and a proof
of security under such definitions will imply security agstian adaptive adversary. Furthermore, we distin-
guish between two different notions of security for a tinaséd KA scheme: security agaiksly recovery
and security with respect teey indistinguishabilityi.e., schemes with pseudo-random keys). In the current
version of this paper we focus on security against key ragov@ur construction, however, can be shown
to be secure against the stronger notion of key indistimgngity by introducing only slight modifications
(basically by using different building blocks). Thus, weyide intuition on how pseudo-random keys can
be achieved, but do not provide formal proofs.

In our definition of a scheme secure against static adversdgdversaryd,; attack the security of the
scheme at timeé € T. A, is then allowed to corrupt all users who are not authorizelatze access to
k; and, when finished, is asked to gudss We consider a scheme to be secure onlylif has at most
negligible probability in outputting the correct key. A foal definition of security is given in Appendix B.

In addition to the security requirements, an efficient KAesole is evaluated by the following criteria:

e The size of the private data a user must store;
e The amount of computation necessary to generate an accelw kiee target time interval;
e The amount of information the service provider must mainfai public access.

3.2 Key derivation

Our approach relies heavily on the notion of key derivatiomur solution, we use the same key derivation
techniques that were used in [1]. The crucial differenceayéwer, is that in [1] key derivation was used

between user classes (to provide a time-invariant scheme diger hierarchy), while in this work we use

key derivation for the data structures that we build. Thigdssible because the techniques of [1] work for
an arbitrary directed acyclic graptDAG), and we review them next.

Assume that we are given a DAG denoted®y= (V, E), whereV is the set of nodes anfd is the set of
edges. Letinc(v, G) denote the set of ancestors of nade G includingw itself, and letDesc(v, G) denote
the set of descendants ofin G including v itself. Let F* : {0,1}" x {0,1}* — {0,1}", for a security
parameters, be a family of pseudo-random functions (PRFs) that, ontigbwa x-bit key and a string,
outputs ax-bit string that is indistinguishable from a random strimgpté that a PRF can be implemented
very efficiently as HMAC [5] or CBC MAC). For brevity, insteaaf F'(k, x), we may writeFy(z). Also,
when the grapl@ is clear from the context, we may omit it in the ancestry fiored and usednc(v) and
Desc(v).

To be able to derive keys, we need two algorithms:

The technique can be applied to arbitrary graphs, even thesenay contain cycles. It, however, was formally provebéo
secure for a graph without cycles. Nevertheless, it stilllva adopted to graphs with cycles, if necessary.

Private Key Public
Scheme L
Storage derivation Storage
2HS [2] 1 2 op. O(nlogn)
3HS[1] 1 3 op. O(nloglogn)
ZHS 2] 1 Z op. O(nlog" 1)
log"HS [2] 1 O(log™n) op. O(n)

Table 1: Performance of shortcut schemes for one-dimealsgraphs.

e Set is an algorithm for assigning keys to the graph which takes@# a security parametér and
a DAG G = (V, E) and outputs (i) an access kgy for eachv € V, (ii) a secret informatiort,, for
each node € V, and (iii) public informationPub.

¢ Derive is an algorithm for deriving keys which takes as input nodas € V, secret informatiort,
for v, and public informatiorPub. It outputs the access key, for w, if w € Desc(v, G).

The derivation method we use is from [1], and is sufficientdbieve security against key recovery:

e Set(1%,G): For each node € V, select a random secret kiy € {0, 1}" and setS, = k,. For each
nodev € V, select a unique public labé} € {0, 1}* and store it ifPub. For each edgév,w) € E,
compute public informatiom, ,, = k., & F, (¢,), whered denotes bitwise XOR, and store itfub.

e Derive(v, w, Sy, Pub): Let (v, w) € E. Then givenS, = k, andPub, derivation of the ke, can be
performed a&,, = F, (Yy) D yov,w, Wherel,, andy, ,, are publicly available ifPub. More generally,
if there is a directed path between nodeandw in G, thenu’s key can be derived from’s key by
considering each edge on the path.

3.3 Shortcut techniques

Our constructions use the so-called shortcut edgeshoatcut edgéas an edge that is not in the original
graphG but is in the transitive closure @¢f. Such edges are addeddtfor performance reasons. Note that
addition of shortcut edges does not affect partial ordextieiship between the nodes, i.e., we may add a
shortcut edgév, w) to the graph only if there is already a directed path from nede w in the original
graph.

In this work we rely on efficient shortcut techniques fronopliterature for a graph of dimension 1 (i.e.,
a total order). For completeness of this work, we review sofrteese techniques, as well as the notion of
the dimension of a graph, in Appendix A. Here we only sumneatie performance of existing schemes,
any of which can be used as a building block in our constrastio

Consider a directed graph of dimension 1 consisting: afertices. Then the performance of known
solutions for such graphs is given in Table 1. In the tablegdemote bysHS a solution where the distance
between any two nodes (i.e., the diameter of the graph) isatsmi.e., a so-called-Hop Scheme.

Throughout this work we may us81(n) to denote any shortcut scheme for graphs of dimension 1
applied to a total order of size. We also usepace(S1(n)) andtime(S1(n)) to denote its public storage
and key derivation complexity, respectively.

V21

V2.1

I 2

Figure 1. Building a grid for Figure 2: Adding shortcuts to
the basic scheme. the grid.

4 Building Basic Data Structure

As was mentioned above, all of our constructions are baseith@motion of key derivation in a graph.
Throughout the rest of the paper, when we say that there i®atdd edge fromr to w in G, it implies that
v is capable of derivingu's key using its own key. This means that, for the data strestthat we build (all
of which are DAGS), there will be a public and secret inforimatassociated with each node, and there will
be public information corresponding to each edge.

Our preliminary data structure is rather simple and cosgi$two main steps: building a grid of size
n x n (wheren is the number of time intervals in the system) and applying-dimensional shortcut
techniques to parts of the grid. A more detailed descripiidows.

1. Build half of a grid of dimensiom x n with the time intervalg, .. .,t, being on its diagonal (see
Figure 1). In the grid, we denote by ; the root node; node; ; is located at the rowand columry
(i.e.,v2,1 is “below” v ; andv, 2 is “on the left” of v; ;). There is a directed edge from eagly to
vi+1,j, and from eachy; ; tov; ;1. The time intervat; corresponds to the nodg,,_;.

From this data structure, it should be clear that, given af@ey; ;, all keys for time intervals in the
ranget;, . .., t,—;+1 can be derived from it (in the worst-caékn) time).

2. Next, we apply a one-dimensional shortcut sch&éo each row and column of the grid (see Fig-
ure 2). More precisely, we add shortcuts to the data stre¢tube able to derive; ,'s key fromv; ,,’s
key for anyz > y (and similarlyv, ;'s key fromuv, ;’s key for anyz > y) in a small number of steps
instead of previou®)(n) time. This is done at the expense®@fspace(S1(n))) additional shortcuts
per row or column and therefor@(n - space(S1(n))) total shortcuts.

Having this, now a user entitled to have access during tirtenals7;, = {t,,...,t,} € P can
receive a single key corresponding to nade,_, 1. Key derivation of the key corresponding to the
current time intervat; € 7;, now consists of at most - time(S1(n)) steps: at mostime(S1(n))
steps are needed to derivg,_,1’s key from that ofv, ,,_, .1, and then at mostme(S1(n)) steps
are needed to derivg ,,—;11's key (which corresponds 1) from that ofv; ,,_, 1.

Table 2 summarizes the performance of the basic scheme,wsledrwith various one-dimensional schemes.

Underlying | Private Key Public
scheme | storage| derivation storage
2HS 1 < 4 op. O(n%logn)
3HS 1 < 6 op. O(n?loglogn)
4HS 1 < 8 op. O(n?log™ n)
log"HS 1 O(log™n) op. O(n?)

Table 2: Performance of the basic (and preliminary) scheme.

5 An Improved Scheme

This section describes a solution that achieves significéetter performance than the previous scheme.
We first present a new data structure and then fill other parte provide a full-fledged time-based KA
scheme.

At a high level, to build a new data structure, we partitiohtiahe intervals in the system into coarse
“chunks” (y/n chunks of,/n time intervals each) and apply the basic scheme to the chuflkcess is
to be granted to a large time interval that spans across loi@sdof these chunks, we can use this level
of granularity to assign keys. If, on the other hand, theruatieto which the user should obtain access is
contained within a chunk, we recursively apply this procedio the time intervals within each chunk to
support time-based access control of finer granularity. tifn@ interval spans across different chunks, but
contains partial chunks at the beginning and at the end ofisees sequence of time intervals, then we
utilize the coarse chunk’s keys along with two new types gf&kiat are introduced later.

5.1 Reducing storage space

This section describes the tree data structure we build; ih®wsed is covered in the next sections. For
the purposes of presentation of this work, werdet 22* for some integey. This allows us to avoid using
rounding notatiorjz | and[z] throughout the algorithms and results in a cleaner preent@ote that this
assumption is purely to make the presentation cleaner,tensiaiution will work without this assumption).
Our procedure for building the data structure takes as snputodev and the sef” = {¢4,...,t,}, and
then recursively builds a tree for the set rooted.aDue to the recursive nature of this function, we dse
to denote the working set of the current function invocationl | 7’| to denote the size 6f. Then the data
structure is constructed as follows:

Algorithm DataStructBuild(v, T):

1. If |T| = 2 (i.e.,q = 0), then return. Otherwise, continue with the steps below.

2. Partition? into y/|T| sets ofy/|7’| contiguous time intervals each, call thége. . . T /- Thatis,
if T'= _{tl, .. "tIT\}' thenT; = {ti\/ﬁﬂ’ ... ’ti\/ﬁﬂ/ﬁ}' Create a node; for eachl};, and make
v; a child ofv.

3. Generate a problefioarse(1"), derived from1 by treating eacl; as a black box (i.e., “merging”
the constituents df} into a single item). Note that the size of g&tarse(T) is \/|T.

A

4. Store at node an instance of the basic scheme ¢osarse(T'), denotedD (v). D(v) supports perfor-
mance of: 1 keyQ(time(S1(|T'|))) key derivation, and

o<
<

\ V2
L T
Ay | ‘ } } } ‘ } } } ‘ } } } ‘ } } } ‘ | | | | |
Y th 4 th T T
(a) Initial state. (b) State after Step 2. (c) State after Step 3. (d) State after Step ¢

Figure 3: Construction of the data structure for the impdoseheme (first level of recursion).

O(space(S1(|T))) space; butD(v) can only process an interval if it is the union of a contiguous
subset ofC'oarse(T) (i.e., it cannot handle intervals whose endpoints are @gid7;’s, as it cannot

“see” inside al}).

5. Also store at node two solutions of one-dimensional problems dn One is for intervals all of
which start at the right boundary @ and end insidel’ (we call this theright-anchoredproblem
and denote the one-dimensional structure for itR{y)); another is for intervals all of which start
at the left boundary of’ and end insidel’ (we call this theleft-anchoredproblem and denote the
one-dimensional structure for it By(v)). Note that having?(v) and L(v) enables the handling of an
interval that lies withirll” and also has its left or right endpoint at a boundar§'pfvith performance
of: 1 key,O(time(S1(|T)|))) steps per key derivation, a@(space(S1(|T'|))) space.

6. Recursively apply the scheme to each childpfhat is, callDataStructBuild(v;, T}) in turn for each

i=1,2,...,4/|T].

Figure 3 gives an illustration of how the data structure igtburhe total spaceS(n) of the above data
structure satisfies the recurreng€en) < /nS(yv/n) + c1 - space(S1(n)) if n > 2 andS(2) = co, wherec;
andcy are constants. Thus,(n) = O(space(S1(n))loglogn).

5.2 Key assignment

We now turn our attention to which keys are given to a user aittess to an arbitrary sequence of time
intervalsTy, € P. In what follows,v is a node of the above tree data structdrés the set of time intervals
associated withy, and ! is a sequence of time intervals for which the keys must bengivighe recursive
procedure below, when invoked on affy and our data structure, returns a set of (at most 3) keysiatsdc

with Ty.
Algorithm AssignKeys(I,v,T'):
1. If v is a leaf, then return a key for each of the (at most two) tinterirals in/. Otherwise, continue
with the next step.

2. Letvq,... ’Wﬁ be the children of, and let7?, . .. ,T\/m be the respective sets of times associated
with these children. We distinguish two cases:

(a) I overlaps with only one séf,. Then we return the keys from the recursive dallignKeys(I, v;, T}).

10

(b) I overlaps with all ofT}, Ty 11, - .., Tk1s, Where? > 1. Thesel + 1 intervals are handled in
3 different ways: Those completely contained/imre collectively processed using tihgv)
structure, resulting in one key. T, overlaps withZ, but is not contained it, then it is right-
anchored and is processed usiR@uy), resulting in one key. Ifko overlaps with/, but is
not contained irY, then it is left-anchored and is processed uditig. (), resulting in one key.
Those (at most) 3 keys are returned.

Faster key assignment:

We store the recursion tree (callRT") for the aboveAssignKeys algorithm, and use it to speed up the key
assignment process. The time-consuming part of the alisignKeys algorithm is the step-by-step descent
from the root until the node of RT at which the keys are actually assigned: The keys we seekoviomul
easy to assign i (time(S1(n))) if we could, in constant time, go directly to that nodeThis, however,

is easy to do once we observe that (i) the parent of RT is the lowest node whose interval contaihs
(i.e.,u is the nearest common ancestorAf’ of the two leaves that correspond to the endpointg) pand

(ii) in any tree it is possible to answeearest common ancestiMCA) queries in constant time (see [11]
for details).

All keys given to users must be labeled with the level at whigdy were retrieved in the data structure, i.e.,
the distance from the root node in the treeTorThis is necessary for achieving constant-time computatio
of access keys, which will be explained in the next sectiomnibke key derivation simpler, we also label
user keys with their type; namely?, R, or L. In addition, if a user receives more than a single key for her
time sequencé;,, each key is labeled with a range of time intervals to whigeitmits access.

To summarize, we assume that a key given to a user will beddbeith four valuegiev, type, t,, tp),
where0 < lev < loglogn, type € {R,L,D}, andt,,t, € T such thatt, < t,. For example, if a
user with access rights t6; = {tstart,- - -, tend} IS given private information consisting of three keys
St,, = {k1, ko, k3}, thenk; could be labeled withl, R, ts;qrt,ta), k2 With (I — 1, D, t441,15), andks with
(I, Ly tyr 1, tend)-

5.3 Content distribution

Attimet € T, the service provider wants to make certain content (plysséry voluminous) available to
the users with access rights at time intemvalo do so, the content is encrypted with the accessikesing

a symmetric encryption scheme and is made available to etkus the encrypted form (by placing it in

a public location, broadcasting it to the users, or by otheams). In our scheme the server also needs to
ensure that the keys that users derivetfatiow them to derivek;. There arg)(loglogn) such keys fort

in the data structure access to which should allow acceks ®ince the data structure hdsglogn + 1)
levels, such keys are:

e Keys from data structur&(v), for somev in the data structure, one from each level.
e Keys from data structuré(v), similarly, for a singlev per level.
¢ Keys corresponding to data structubév), one from each levdl where0 < <loglogn — 1.

We refer to these keys @&nabling keys The server places in the public domain information thatrisr
derivation ofk; from any of the enabling keys above. Additionally, the setabels the public derivation
information associated with each of the enabling keys withlevel and the type (i.eR, L, or D) of the
corresponding enabling key. This is needed to permit fasstemt-time derivation of the access key.

11

level O v D(v), R(v), L(v)
- X
level 1 \ % V, /KDM% R(y), L(y)

level 2 v, v, Ty Vi, D(vi2), R(%,), LAY,
tl t2 t3 t4 t13 t14 t15 t16

Figure 4: An example illustration of the data structure.

5.4 Key derivation

A userl{ with access to the sequence of time intenNBIs= {tsiart, - - -, tena} € P receives private infor-
mation S7;, consisting of 1, 2, or 3 keys that permit her to derive engokays for eacht € Ty,. In the
most general (and common) case, such private informatiogisis of 3 keys — denoted lay, k>, andks —
labeled asl, R, tstart, ta), (I — 1, D, tqq1,tp), @and(l, L, tp11, tena), respectively, for somg a, andb. Let

us assume, without loss of generality, that if the numberegtKs less than 3, then the missing keys are set
to empty strings withk; remaining of typeR, key k, of type D, and keyks of type L. Then to obtain the
enabling key for a time interval € T;,, U executes a derivation algorithm which we sketch here:

Algorithm DeriveKey (T, t;, S13,, Pub):
1. ParseS‘Tu aSkl(ly R1 tstart ta)y k2(l -1, D; ta—i—l’ tb)y k3(l> L» tb—|—1> tend)-

2. Ift; € {tstart,--- ta}, find the nodev at levell such thatR(v) permits access ty (note that such
nodev can be computed in constant time using index the time intervak;). Usek; and the public
information about the edges Rub to derive the key corresponding tpand return that enabling key.

3. Similarly, ift; € {tps1,...,tend}, lOcate the node at levell such thatl(v) permits access tg. Use
ks andPub to derive an enabling key far and return that key.

4. Finally, ift; € {t.+1,tp}, locatev at levell — 1 such thatD(v) permits access t; useks andPub
to derive an enabling key fat and return it.

Key derivation complexity in all of the above case®igime(S1(n))).

5.5 Example

To better illustrate how the above algorithms for buildihg tata structure and assigning and deriving keys
work, we give a toy example. Let = 16. Then the
DataStructBuild(root, T') procedure will result in a tree of depth three. Let us denlageroot of the tree
by v, ith child of the root byv;, and;jth child of nodev; by v;;. Also, letT; and7;; denote the set of time
intervals that; andv;; cover, respectively. For = 16, such a tree is given in Figure 4. In the figure, each
nodew has data structure®(w), R(w), andL(w) associated with it, which we omit for conciseness.

Now consider users(;, U, andUs with the following access rightsTy, = {t1,...,t¢}, Ty, =
{ta,...,ta}, andTy, = {t4,...,t14}. According to the key assignment algorittdssignKeys(-), they
are assigned keys in the following way: Siri¢gs sequence of time intervals starts at the beginning of the
system’s lifetime{{;’s credentials are left-anchored at the levebpéndi/; obtains a single key from(v)
corresponding tdg. Such a key permits derivation of enabling keys for altpthroughts. For userifs,
we determine that her access rights are contained withitirtteeinterval covered by, so we start at that

12

Algorithm Gen (1%, T):

1. Create a root nodevot for the data structure and rubataStuctBuild(root, T'). LetG = (V, E)

denote the tree structure returned.

2. For eachy € V, randomly choose a secret kky < {0,1}* and a unique public labé|, € {0,1}"

associated with each nodein D(v), R(v), andL(v).

3. For eachy € V, construct public information about each edgdifv), R(v), andL(v) using the key

derivation method. That is, for each edge v), its public value igy,, ., € {0,1}".

For eacht € T, randomly choose a secret kkye {0, 1}* and a unique public labé} € {0,1}".

. Foreacht € T, letV; C V denote the set of nodes @f access to which implies accessgtdhen for
eachV;, for eachv € V;:

(@) find in D(v) the node corresponding to the time interyatall it w.

(b) create an edge from to ¢t by computing public information using enabling kky, t's secret
key k., public label?;, and the key derivation method. Mark such an edge with thel lefwv
and typeD.

(c) repeat (a) and (b) faR(v) andL(v), using typesk and L, respectively.

6. Let K consist of the secret keys for eacht € T andSec consist of the remaining secret keys.

Also let Pub consist ofG, all public labels (of the fornd,, and/;), and public information about all

edges generated above.

o

Algorithm Assign(Ty,, Sec):
1. ExecutéssignKeys(Ty,, root, T'), whereroot is the root node ofs.
2. SetSy, to the keys computed and retusi, .

Algorithm Derive(Ty, t, ST, Pub):
1. If t &€ Ty, return a special rejection symhol
2. ExecuteDeriveKey(1y,t, St,,, Pub) to compute an enabling key forcall it k;.
3. Usek; along with its (level-type) label anllub to derive keyk;.

Figure 5: Proposed time-based key assignment scheme.

node. FromD(v;), U» obtains a key corresponding 142 (coversts andt,). The remaining part df,, is
obtained fromR(v11) (coversty). Finally, for useiifs, the access rights cross the boundaries of the nodes at
the first level, so we start at node /3 obtains fromD(v) a key that permits generation of keys 6y and

T5 (their parent) and thus covets throught;2. To cover the remaining parts @i, U5 is given the key
corresponding te, from R(v;) and a key fromL(v,) corresponding te,4 (which permits derivation of the

key fort,3 as well).

To illustrate content distribution and key derivation,debe the current time interval. Our data structure
contains 8 enabling keys fox of level-type(0, R), (1, R), (2, R), (0,L), (1, L), (2, L), (0, D), and(1, D).
The service provider places in the public domain derivatidarmation that, given any of the keys above,
permits computation of the access Kay. U/ then uses its only key anfl(v) to derive the enabling key
for ¢4 and derives;, by using public information marked witfd, L). U uses its key fofl, compute its
enabling key and obtaik,, using public information marked witfl, D). Finally, /s uses its key fot, and
public information with label1, R) to obtaink, .

5.6 Putting everything together

In this section we summarize our construction and show iteopaance. All proofs corresponding to our
security theorems can be found in Appendix B. Figure 5 givesmaplete description of our time-based KA
scheme. In addition to the algorithms given in previousieast we specify how they are used. Table 3

13

Underlying | Private Key Public
scheme | storage| derivation storage
2HS <3 <5o0p. O(nlognloglogn)
3HS <3 < 7op. O(n(loglogn)?)
4HS <3 < 9op. O(nlog” nloglogn)
log"HS <3 | O(log" n) op. O(nloglogn)

Table 3: Performance of the improved scheme.

summarizes performance of our solution. The security okolution comes from the way key derivation is
performed in a DAG and is not due to the details of the dataitras built.

Theorem 1 Assuming the security of the family of PRFS, the time-based key assignment scheme given
in Figure 5 is both complete and sound with respect to keywexgoin the presence of a static adversary.

To achieve a stronger notion of key indistinguishabilityur golution will require a slightly different key
derivation method. Intuitively, we decouple the keys usethe public information from the actual access
keys, so that now it is not feasible to test access keys usiagtiblic information. The separation is
performed using an additional invocation of a PRF, wherekiiyes to be used ifPub are computed as
F(0||k) and the access keys are computed @s||k). This key derivation method is described in [1] (full
version only).

Then in our scheme of Figure 5, we use this enhanced key terivmethod in Step 3 of th€&en
algorithm (i.e., in data structure®(v), R(v), andL(v)). This means that now someone with access to
a certain key in, for instancd?(v) and who guesses an unauthorized key correctly, cannot egeutiiic
information for that data structure to test the key. Thisnggimplies the corresponding change in the
Derive algorithm.

So far we devised a solution to support access rights thatapass a contiguous sequence of intervals.
It is also possible to support periodic access rights thai sigross a contiguous set of time periods but the
time intervals themselves might be discontinuous withireaqal. If we treat time as a single dimension
and the solution presented in this work as a solution to omealsional problem, it is possible to extend our
approach to higher dimensions. An extension to dimensiovhi&;h is useful in the geo-spatial context, is
presented in [3]. This two-dimensional solution can be usambnveniently address the problem of periodic
access rights with a small number of keys per user: we useiomendion to specify periods in user access
rights and the other dimension to specify individual timetsiwithin a period. Assuming that the total
number of time intervals within a period is a fixed constam, eser will obtain a constant number of keys
that allow her to access the resources for a predefined segjoéperiods with any subset of time intervals
within the period. See [3] for more information on the keyigwsent and derivation mechanisms.

In Appendix C we show how the lifetime of the system can beredéd to new intervals beyond the
original n. Also, in the same appendix we show one can further decradsi [storage space at a slight
increase in the number of user keys (i.e., a generalizatioerms of keys/space tradeoff).

6 Temporal Access Control for a User Hierarchy
In systems with hierarchically organized access classes, & hierarchy is normally modeled as a directed

acyclic access graph which we denote@y. In such a graph, each node corresponds to an access class
and the edges form a partial order relationship betweenl#isses. An edge from nodeto nodew means

14

that the parent node inherits privileges of the node (while the converse is not true). This implies that
a user with access to a specific class obtains access to theaes at that class and the resources at all of
the descendant classes in the hierarchy. With this setulage pit is possible to assign each class a single
secret key and let users obtain keys of their descendargeslasrough a key derivation process. Similar to
a general graph, in an access gréph a directed path from nodeto w means thatv’s keys are derivable
fromv’s key.

Now if we equip the model with time-based policies, in adufitiio computing keys of descendant
classes, a user should be able to compute keys based on tinad.isTa uset/ entitled to access class
v € Vi during a sequence of time intervdly € P obtains private information that permits her to compute
keys k, . for her access class and eacht € 1;, (time-based key derivation). In addition, the private
information allows/ to compute, for each € 7, keysk,, . for each descendant access clasa the user
hierarchy (class-based key derivation). Thus, key deomabtow consists of two dimensions, which can
potentially be performed using drastically different teicjues.

A definition of a hierarchical time-based KA scheme can besttacted by extending Definition 1 with
user hierarchies. Due to space limitations, we do not peoiiih this version of the paper. We only note that
the private information for access clasand time sequencg, is now denoted by, 7,,. The definition of
a secure time-based KA scheme must also be slightly modifietthis setting to take into account different
access classes. Recall from Section 3.1 that we do needsaeomctive adversaries, and now have a static
adversaryA,; who attacks a class € Vy at timet € T. A, is allowed to obtain access to the secret
information of all classesy € Vi at all timest’ € T, except classeslnc(v) at timet. We say that a
hierarchical key assignment scheme is secure if stigthas at most negligible probability of guessikg;
correctly. The formal definition is given in Appendix B.

We can create a hierarchical time-based KA scheme by agptyum solution independently to each
access class in the user hierarchy. Then for g¢aehT’, the nodes with keys, ; for eachv € Vi are
connected with edges to form the original hierarchy of @das$n more detail, for each € V;; we use the
improved scheme to build the data structureZfoand generate access keys for everyt € T'. This will
result in|Vy| instances of the time-based gra@heach of which permits key derivation for a specific access
class. Since the structure of such graphs is the same fdrtakkim, but the keys assigned to nodes and keys
encoded in the public information will differ, we denote thablic information generated for access class
according ta7 asPuva. Then for anyt € T, the public information foryy; is constructed according to the
current keys for each access class using the key derivatathaa (which was the original use of it in [1]).
We denote the public information at time intervajenerated according @y by PuthU. For a user with
access privileges for time intervd}, € P at access level € Vi consists of time-based key derivation
(using PubUG) of the keyk, ; followed by class-based key derivation of the Key; (using PuthU); this is
assuming that € T;; andw € Desc(v, Gy). A more precise description of our scheme is given in Figure 6

In the figure, we first build the data structugand generate public labels for the time intervals (Steps
1-3). Then for each clagsin the user hierarchy, we pick secret keys for its copya@dnd generate public
information according to those keys (Step 5). Next, we cohtie data structures corresponding to different
user classes according to the partial order relationshipdmn those classes (Step 6). That is, for each time
intervalt, if user classu; is a parent of user clags, we compute public information that permits derivation
of ky, fromk,, ;. Finally, Step 7 is similar to Step 5 in Figure 5 and allows pomtation oft’s access keys
from an enabling key correspondingitat any level of granularity in the data structure

The fact that keys for an access class are assigned indefigndethe keys for other access classes
allows us to state the following result:

Theorem 2 Assuming the security of the family of PRFS, the time-based key assignment scheme for

15

Algorithm Gen(1*,T, Gy):

1.

akrwd

Algorithm Assign(u, T4, Sec):

1.

2.

Algorithm Derive(uy, ua, Ty, t, Sy 1y, , Pub):

1

2.
3.
4,

. Foreach € T, letV, C V denote the set of nodes @n access to which implies accesgtdarhen for

Create a root nodevot for the data structure and rubataStuctBuild(root, T'). LetG = (V, E)
denote the tree structure returned.
For eachy € V, choose a unique public lab&) € {0, 1}~ for every nodev in D(v), R(v), andL(v).
For eacht € T, choose a unique public lab&l € {0, 1}*.
For each: € V7, choose a unique public labg] € {0,1}".
For each node € Vi, perform the following:
(a) Foreach € V, randomly choose a secret key ,, € {0, 1}" associated with each nodein
D(v), R(v), andL(v).
(b) For eachy € V, construct public information about each edgdlitw), R(v), and L(v) using
the key derivation method.
(c) Foreacht € T, randomly choose a secret kky, € {0,1}".

. For eacht € T', compute public information to permit key derivation beéneclasses: for each edge

(u1,u2) € Ey compute public information by setting,, = k., : andsS,, = k,, . and using the key
derivation method and public labélg, and?,,,.

eachV;, for eachv € V;:

(a) FindinD(v) the node corresponding to the time intertatall it w.

(b) For each: € V7, compute public information to permit derivation € access key fronw’s
enabling keyk,, ., using the key derivation method and public labhelMark such an edge witf
the level ofv and typeD.

(c) repeat (a) and (b) faR(v) andL(v), using typesk and L, respectively.

. Let K consist of the secret keys, ; for eacht € T andu € V7, and letSec consist of the remaining

secret keys:, ... Let Pub consist ofG, all public labels, and public information about all edg
generated above.

ExecuteAssignKeys(Ty, root, T') using the data structure storedinb®, whereroot is the root node
of G.
SetS,, 7;, to the keys computed and retusi 7,, .

If t & Ty orue & Desc(uq, G), returnL.
ExecuteDeriveKey (13, t, Suy 11,5 Pubfl) to compute an enabling key forcall it &7, ,.

Usek,,, , along with its (level-type) label ariélubf1 to derive keyk,, .

Usek,, andPuthU to derivek,, ; using the key derivation method.

hierarchically organized access classes given in Figurs 6ath complete and sound with respect to key

Figure 6: Proposed time-based hierarchical key assignaohieime.

recovery in the presence of a static adversary.

To achieve key indistinguishability in this scheme, as befge need to utilize the enhanced key derivation
method that prevents key testing. In this case we need tchissenethod within the data structuéeitself

(in Step 5b ofGen) to prevent a member of clasdrom testing keys of unauthorized time intervals. We also
need to use this key derivation method between user classBtep 6 ofGen) to prevent a member of class

u from testing keys of its ancestor classes.

It is not difficult to show how dynamic changes to the hiergrchn be addressed, but we leave this

discussion to the full version of this paper.

16

es

Public Private Key Operation Complexity
Scheme information information| derivation type assumption
Encryption-based [4] O(|Vu|?|T]?) 1 1 decryption| one-way functiong
Pairing-based [4] o(|[Vu?) O(|T)) 1 pairing Bilinear Diffie-
evaluation Hellman
Binary tree O(|Ev||T]) OQog[T]) | O(log [T+ PRF one-way function
diam(Gy))
ISPIT+(3,1)-CSBT | O(|Ey||T| + [V ||T|x <3 O(diam(Gy)) | decryption| 1 ND- P1- CO
+EBC [15] log |T'|(log log |T|)?) encryption [13]
Our 4HS-based | O(|Ey||T| + [Vu||T|x <3 O(diam(Gy)) PRF one-way functions
log* nloglog|T|)
ISPIT+(3,1)-CSBT | O([Ey[[T] + Vo |[Tx <3 O(log™ [T|+ | decryption| I ND- P1- CO
+EBC [15] log |T'| loglog |T|) diam(Gy)) encryption [13]
Ourlog"HS-based | O(|Ey||T| + |Vul|T|x <3 O(log™ | T+ PRF one-way functiong
loglog |T|) diam(Gy))

Table 4: Comparison of time-based hierarchical KA schemes.

7 Practical Considerations

As was mentioned earlier, the goal of this work is efficienager the assumption that the number of unit
intervalsn in the system is large. In systems when this is not the caber,aimpler solutions will suffice
(e.g., asimple binary tree built on topwofintervals), and it is common sense to assume that the maéabki
solution for the context will be chosen. We, however, baithat our solution will find its uses in a number
of domains such as, for instance, access to historical dattd.even in applications where access is based
on the current time, the service provider will be free to dwthe level of granularity for time-based access
rights. For instance, for broadcast-based services, th@@overhead in changing keys often.

Another consideration is that, in subscription-basediseswvhere access is based on current time, dues
might be paid in installments. That is, a user subscribeg tink rather short sequence of intervals and
renews her subscription on a periodic basis. But even sustiersg might be setup for a long time in the
future, and the service provider will choose a solution thatimizes system and user resources.

8 Comparison with Existing Solutions

Table 4 compares performance of our scheme with other egistlutions; only security against recovery
was considered. In the tabl&am (G) denotes the diameter of the graph (i.e., maximum distanivecea
nodes) that bounds the number of operations which, giveass dey, are necessary to derive the key of
the target descendant class within the user hierarchy. , Algg| denotes the number of edges in a user
hierarchyGy. The table does not list private storage at the server siriseeuivalent for all solutions.
Before proceeding with comparing existing results, weflyriexplain what these parameters mean.

In the great majority of cases, the depth of user hierardhi@small constant, resulting in small constant
diam(Gy). In cases where the depth of the original gréph is fairly large and it is unacceptable to have
the user perforndiam (G) operations, the graph can be modified to significantly redliee: (G). This
is done by inserting shortcut edges at randordigin (G) = O(Vyy)) or using the techniques of [1] and [2]
that reduceliam (G) to a small constant at the expense of small increase in tHemtbrage associated

17

with the hierarchy. Thus, in this casdiam(Gy) is also a small constant, and paraméfey | will need to
be replaced with a slightly larger value.

We also would like to mention that the schemes [19, 18] ardisted in the table due to the difference
in the expressive power. These solutions allow a user tdrobtaess to an arbitrary subsequence of time
intervals, but require significantly slower key derivationO(|V;;| - |T'|) modular exponentiations.

Considering that small private user storage and fast kayatiem, followed by reasonable server storage
are the main evaluation criteria, we can analyze the salsitas follows. The Pairing-based scheme of [4]
will have the slowest key derivation time among all of theegules listed here, as it uses pairing evaluation
rather than fast encryption or PRF operations. Additigh#ifle number of secret keys a user has to maintain
is large.

Compared to the Encryption-based scheme of [4], our keyatéwn time is higher by a constant factor,
private storage is similar (i.e., three keys instead of pha) the amount of public information the server
must maintain is much lower than in that scheme. That is, fodest values off’| = 1000 and|V;| = 10,
the encryption-based schemes requires storing on the@irdét1 labels, while in our case it will be bounds
by the order ofl0° labels.

While the simple binary-tree approach has asymptoticatijpdr performance, for small values (|
it will be preferred due to its simplicity. However, for the@ications we envision, other solutions exhibit
better performance. Thus, our recommendation is to useithglest approach suitable for a particular
setup.

The work of De Santis et al. [15] lists solutions with diffatgoerformance parameters, and we include
only selected two here. That is, we chose two schemes thaiteegjuser to store 3 private keys (just like in
our solutions) and where time-based key derivation i€l) andO(log* n) decryptions, respectively.
This allows us to directly compare the schemes of [14] withsithemes. As can be seen from the table,
the solutions exhibit very similar performance with CSBasbd constructions having an additional factor
of log |T'| in the public storage space. Moreover, they do not discusassignment but it does not look like
their key assignment can be done in constant time, whereasmmweéo it in constant time; recall that this
is the issue of coming up with the keys to be given to a useemgiliat user’'s authorized set of contiguous
time intervals.

To summarize, our solution offers very attractive chamdsties and superior performance compared to
other existing solutions: each user in the system receigesadl (< 3) number of keys, constant-time key
assignment to a user, (off-line) computation of any accegsikvolves a small number of very efficient
operations, and the public storage required by our solusia@mly slightly higher than the number of access
keys that the system must maintain. It is the most balandeti@m among all available in the literature and
appears to be close to the optimal bounds.

Acknowledgments

The authors would like to thank Michael Rabinovich for hiselient suggestion of using the geo-spatial
key assignment scheme to address temporal key assignmgrfodic expressions.

2The techniques of [1] and [2] may fail on hierarchies of higimenhsions, but we believe that such cases are very raredor th
applications we consider in this work.

18

References

[1]

2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

M. Atallah, M. Blanton, N. Fazio, and K. Frikken. Dynamind efficient key management for access
hierarchies. Preliminary version appearedA@M Conference on Computer and Communications
Security (CCS’05)Full version is available a$sechnical Report TR 2006-09, CERIAS, Purdue Uni-
versity, 2006.

M. Atallah, M. Blanton, and K. Frikken. Key management foon-tree access hierarchies. AGM
Symposium on Access Control Models and Technologies (SADB)Apages 11-18, 2006. Full
version is available asechnical Report TR 2007-26, CERIAS, Purdue University

M. Atallah, M. Blanton, and K. Frikken. Efficient technigs for realizing geo-spatial access control.
In ACM Symposium on Information, Computer and Communicat8awrity (ASIACCS’07)pages
82-92, 2007.

G. Ateniese, A. De Santis, A. Ferrara, and B. Masucci.vRinty-secure time-bound hierarchical key
assignment schemes.ACM Conference on Computer and Communications Securit${@s), 2006.

M. Bellare, R. Canetti, and H. Krawczyk. Keying hash ftions for message authentication. In
Advances in Cryptology — CRYPTO,;9®lume 1109, 1996.

E. Bertino, C. Bettini, E. Ferrari, and P. Samarati. Arcess control model supporting periodicity
constraints and temporal reasonid®gM Transactions on Database Systems (TOR(3):231-285,
1998.

E. Bertino, P. Bonatti, and E. Ferrari. Trbac: A tempam@k-based access control model. AGM
Symposium on Access Control Models and Technologies (SADMApages 21-30, 2000.

B. Briscoe. MARKS: Zero side effect multicast key manamggmt using arbitrarily revealed key se-
quences. IrFirst International Workshop on Networked Group Commutiica(NGC'99) LNCS,
pages 301-320, 1999.

H. Chien. Efficient time-bound hierarchical key assigsmmhschemelEEE Transactions of Knowledge
and Data Engineering (TKDEL6(10):1301-1304, 2004.

J. Crampton, K. Matrtin, and P. Wild. On key assignmentHgerarchical access control. 1BEE
Computer Security Foundations Workshop (CSFW’Q6D6.

D. Harel and R. Tarjan. Fast algorithms for finding nsareommon ancestorsSIAM Journal of
Computing 13(2):338—-355, 1984.

H. Huang and C. Chang. A new cryptographic key assigrimeneme with time-constraint access
control in a hierarchyComputer Standards & Interface26:159-166, 2004.

J. Katz and M. Yung. Characterization of security notidor probabilistic private-key encryption.
Journal of Cryptology19:67-95, 2006.

A. De Santis, A. Ferrara, and B. Masucci. Enforcing teeusity of a time-bound hierarchical key
assignment scheménformation Scienced 76(12):1684-1694, 2006.

19

[15] A. De Santis, A. Ferrara, and B. Masucci. New constaorgdifor provably-secure time-bound hier-
archical key assignment schemes. AGM Symposium on Access Control Models and Technologies
(SACMAT’07) 2007.

[16] Q. Tang and C. Mitchell. Comments on a cryptographic &esignment scheme for access control in
a hierarchy.Computer Standards & Interface®7:323-326, 2005.

[17] W. Tzeng. A time-bound cryptographic key assignmehtsee for access control in a hierarchyEE
Transactions on Knowledge and Data Engineering (TKE)1):182-188, 2002.

[18] W. Tzeng. A secure system for data access based on aoosyauthentication and time-dependent
hierarchical keys. IACM Symposium on Information, Computer and Communicagaasirity (ASI-
ACCS’06) pages 223-230, 2006.

[19] Shyh-Yih Wang and Chi-Sung Laih. Merging: an efficiealugion for a time-bound hierarchical key
assignment scheméEEE Transactions on Dependable and Secure CompuBifig:91-100, 2006.

[20] J. Yeh. An RSA-based time-bound hierarchical key aswignt scheme for electronic article sub-
scription. INACM International Conference on Information and Knowleditgnagement (CIKM’05)
pages 285-286, 2005.

[21] X.Yi. Security of Chien’s efficient time-bound hierduical key assignment schemHEEEE Transac-
tions of Knowledge and Data Engineering (TKDEY(9):1298-1299, 2005.

[22] X. Yiand Y. Ye. Security of Tzeng's time-bound key aswigent scheme for access control in a
hierarchy.l[EEE Transactions on Knowledge and Data Engineering (TKE§4):1054-1055, 2003.

A Shortcut Techniques for One-Dimensional Graphs

This section reviews selected techniques from existimgdttire which are used as a building block in our
construction. The techniques we present here work for amestsional directed graphs and significantly
decrease the distance between any two nodes (measurednasrther of edges on the path from one node
to another) by inserting additional shortcut edges.

Before we proceed with the description, we would like to medrihe reader that any DAG is a partial
order and thus can be represented as the intersectioriotél orders. The smallestfor which this is
possible is thalimensionof the partial order. Thus in this section we deal with a greyslich has a total
order relationship defined over its nodes. Throughout taiien we assume that the nodes are sorted
according to the total order, where nodg is the parent of node;. Since there is a directed edge from
eachv;1 to v;, the graph can be viewed as a linked list. The set of ancestaorsdev; is then all nodes;
such thatj > 4. Similarly, the set of descendants«gfis all nodesv; such thatj < i.

Here we concentrate only on a single scheme, to give the readenderstanding of how such schemes
are built. The scheme, an overview of which we provide, is@wpéon of the shortcut technique from [1]
to one-dimensional graphs. Others solutions for one-daioeral schemes can be found in [2].

For ann-vertex graph, this scheme results(xin log log n) additional edges and the distance between
any two nodes being at most 3 edges (which implies that thekepdev can be derived from the key of
nodew in at most 3 steps, if: is an ancestor of). The idea behind the technique is that the grépts
decomposed intg/n chunks of,/n nodes each. The nodes used in the decomposition are cadlegédhial
nodes, and the chunks are denoted’as.. ., C. The special nodes are connected to each other, so that

20

e graph node —— regular edge
O special node ------s > shortcut edge

Figure 7: Addition of shortcut edges for the three-hop oimeethsional solution: (a) the original hierar-
chy, (b) the hierarchy after selection of special nodes amdtcucting their transitive closure, and (c) the
hierarchy after adding shortcut edges to and from the speotkes.

the distance between any two of them is one edge. All noddsndt specific chunk are connected to the
corresponding special node, so that the distance betweenamspecial node and a special is also one
edge. Then the special nodes are served as a “beltway” hetlweehunks, and reaching a node from any
other node involves at most three steps: one is to reach @bpede, another is to just to a new chunk, and
the third one is to reach the target node.

The algorithm for adding shortcut edgesiaises a notion of a reduced graph. A reduced graph, denoted
G, that consists of the special nodes and edges that satisfipltbwing condition: there is an edge from
nodev to nodew in G if and only if (i) v is an ancestor ofy in G, and (ii) there is no other node 6f on
the v-to-w path inG. Then the following procedure adds shortcut edges.tin what follows,|G| denotes
the number of nodes iy

AddShortcuts(G):
1. If |G| < 4 then return an empty set of shortcuts. Otherwise contintie twe next step.
2. Compute the special nodes@®f Initialize the set of shortcutS to be empty.

3. Create,AfronG, the reduced grapt¥ and add taS a shortcut edge between every ancestor-descendant
pair in G (unless the ancestor is a parent of the descendant, in whgghtbere is already such an
edge inG).

4. For every chunlC; inturn ¢ = 1,...,k), add toS a shortcut edge from the node with the highest
index inC;, denoted by, to every node irC; that is not a child of that node.

5. For every chunlC; in turn ¢ =1,...,k), add toS a shortcut edge from each nodéin C; (othgr
thanvc,) to all nodes inG that are both: (i) descendants@fand (ii) children of the root of’; in G.

6. For every chunkC; inturn @ = 1,..., k), recursively callAddShortcuts(C;) and, if we letS; be the
set of shortcuts returned by that call, then we updaby doingS = S U S;.

21

ExperimentExpycy (1%)
(K, Sec, Pub) « Gen(1%,T)
corr «— Corrupt;(Sec)
k — Ag (1%, Pub, corr)
if £ = k; thenreturn 1
else return 0

Figure 8: An experiment in which a static adversary parétag.

7. ReturnsS.

Figure 7 illustrates the first level of recursion. There i®aespondingrindPath procedure that, given two
nodesv andw, finds a path from node to nodew of length at most 3 edges in the graph. We omit its
description here. The number of shortcut edges added bythealgorithm i (n log log n).

B Security Definitions and Proofs

B.1 Security of a time-based key assignment scheme

In our definition of a scheme secure against a static adyefsaradversary4,; attack the security of the
scheme at timeé € T. A, is then allowed to corrupt all users who are not authorizebige access th,.
We capture this notion using algorithGorrupt, (-) that takes the secret informati6ac as input and outputs
a sequence of private information denotedcbyr. The adversary then usesrr to try to compute the key
kt.

Definition 2 LetT be a set of distinct time interval®, be the interval-set ovef, andKA = (Gen, Assign, Derive)
be a time-based KA scheme fBrand a security parametet. ThenKA is secure against key recovery in
the presence of a static adversary if it satisfies the folhgwiroperties:

o CompletenessA user, who is given private informatid,, for a sequence of time intervalg, < P,
is able to compute the access Kegyfor eacht € 1, using only her knowledge ¢f7;, and public
information Pub with probability 1.

e Soundnesstet A, be a static adversary who attacks the schéfAeat time intervalt € T'. If we let

the experimenExpkKOK:;:tC be specified as in Figure 8, the advantage4af is defined as:

Advﬁeg\”;ric(l"ﬂ”) = Pr[Expﬁ?’;jC(l“) =1]

We say thaKA is sound with respect to key recovery if for each 7', for all sufficiently largex, and

key—rec

every positive polynomial(-), Advy, 4. (1) < 1/p(x) for each polynomial-time adversar.

Proof sketch of Theorem 10ur proof uses a standard hybrid argument. Per Definitione2are dealing

with adversaryA,; who participates in the experimelﬁlé(pllie;‘(;f;C for time intervalt € T. We construct a
sequence of experimerﬁp&A,Ast, - EXpia 4., In which we modify the way the scheme is constructed

while ensuring that the distributions of,;’ views remain indistinguishable in any two consecutive ex-
periments. Our modification consists of replacing, in thbligudata structure corresponding K&\, one

22

(pseudo-random) output produced by the functidhwith a random sequence. FormaIE/pokA, A, for
anyi=20,...,qis:

ExperimentExpj, 4., (1%)
(K, Sec, Pub’) « Gen®(1%,T)
corr « Corrupt,(Sec)
k — Ag (1%, Pub’, corr)
if £ = k; then return 1
else return 0

Here the algorithnGen® corresponds to the original algorithGen, while Gen‘™! is constructed fronGen’

by replacing one edge in the data structure with a randomgstifhe edges that we replace are those that
were constructed using. or any other key material that can lead to derivatiorkof More precisely, for
each level in the data structuré;, there is a unique € G that coverg. For each such, we replace the
edges:

1. In D(v), letw denote the leaf node that coveérsThen replace each edge on the path between any
two nodes inAnc(w, G) and replace each outgoing edge from every nodérin(w, G).

2. In R(v) and L(v), replace each edge on the path from the root to the node porrdg tot (call it
w) and the edge fror.

The edges are replaced in the top-down fashion to completalude from the data structure information
about each key on the way from the root to the node correspgriditime intervak.

Additionally, we replace edges from each of t€log logn) enabling keys, which correspond #an
G, 10 ky. Thus,Exp?(A, A,, corresponds to the case whete, operates on the data structure of experiment

key—rec

EXpia ., » While Expg, 4, corresponds to the case whetg; operates on the data structure with no in-
formation related td@:;. Since all of the keys (including;) are chosen at random,;; has at most negligible
probability in succeeding iEquKAASﬁ. The total number of edges replacedléspace(S1(n)loglogn)
(and thus is polynomial in the security parametir

Using a standard reduction argument, we can show that amyegligible difference in behavior be-
tween experiment&xpjc, 4., and Expfj;{ 4., €an be used to construct an algorithm tBatis able to break
the pseudo-random functioR' with non-negligible advantage. Thus, we conclude tAgt has at most
negligible advantage in breaking the security of the scheme O

B.2 Security of a hierarchical time-based key assignment keme

Now a static adversaryl,; who attacks a class € Vy; at timet € T obtains access to the secret infor-
mation of all classes € Vj; at all timest’ € T', except classednc(v) at timet. This is modeled by an
algorithmCorrupt, ,(-), which now is class-based. The rest of the security defirstfor key recovery and
key indistinguishability mimic our previous definitionstivbut a hierarchy of classes.

Definition 3 Let Gy = (Vy, Ey) be a DAG corresponding to a hierarchy; be a set of distinct time
intervals, P be the interval-set ovef, and KA = (Gen, Assign, Derive) be a time-based hierarchical KA
scheme fol7y;, P, and a security parametet. ThenKA is secure against key recovery in the presence of a
static adversary if it satisfies the following properties:

23

ExperimentExpycy <" (1%)
(K, Sec, Pub) «— Gen(1%, Gy, T)
corr « Corrupt,, ;(Sec)
k «— Ag (1%, Pub, corr)
if £ =k, thenreturn 1
else return 0

Figure 9: An experiment in which a static adversary attagldrhierarchical scheme participates.

e CompletenessA user, who is given private informatid, 7;, for a sequence of time intervély, € P
and a classy € Vyy, is able to compute with probability 1 the access kgy for eacht € 73, and
w € Desc(v, Gy) using only her knowledge &, 1;, and public informatiorPub.

e Soundnesstet A, be a static adversary who attacks the clasat time intervalt € T. If we let the

experimenExpcy 1" be specified as in Figure 9, the advantageof is defined as:

AV (1) = PrlBxpl 35717 = 1
We say thaKA is sound with respect to key recovery if for each T', for eachv € V, for all suffi-
ciently largex, and every positive polynomial-), Advﬁe,{’;rf:_h(l’*) < 1/p(k) for each adversary
A that runs in polynomial time.

Proof sketch of Theorem 2Similar to the proof above, in this case we also use a hybgdraent and
construct a sequence of experimeﬁi@ep?< Adgys o EXPia 4., for adversaryA,; who attacks the scheme
at classv during time intervak, defined as follows:

ExperimentExpya 4., (17)
(K, Sec, Pub’) « Gen’ (1%, Gy7, T)
corr « Corrupt,, ,(Sec)
k — Ag (1%, Pub’, corr)
if K=k, thenreturnl
elsereturn 0

In the experimentsGen” corresponds to the original algorith@en, andGen’*! is constructed fronGen®
by replacing public information about a single edge in theaddructure by a random string. The edges
replaced are:

1. For each access clagsc Anc(v, Gy), replace inPubff all of the edges that were replacedRnb
for a single resource in the proof of Theorem 1[Mw), R(w), andL(w) for all w of interest and in
the top-down fashion).

2. Replace irPuthU, starting at the rodt information about edge:, w) € Ey for eachu € Anc(v).

Thus, Expla 4, is the same aBxpicy 4", while Exp}, , , has no information related to,; at the

level of v or any of its ancestors. This means thig has at most negligible probability in succeeding in
EXPRa 4.,

3If several roots exist ity sort the nodes using any topological ordering.

24

Since the number of edges replaced is clearly polynomifldrsecurity parameter, we can use a standard
reduction argument to shoyv that any non-negligible a_dwbe_tween anExp@_A’ A,, and Exp?;\{ A, Can
be used to break the security of pseudo-random functiomee3iy our assumptions the PRF is secure, thus
the scheme is secure as well. O

C Extensions

C.1 Extending the lifetime of the system

So far in all of our discussion we considered the lifetime hed system to consist of a fixed set of time
intervals{ty,...,t,}. In many applications, however, there might eventually beead to support time
intervals beyond the original intervals. In this section, we briefly describe techniquaseiktending the
number of time intervals. The full details of these appreschre not given, but will appear in the full
version of the paper.

One simple approach is to apply the techniques of Sectiorastrond set of intervals. The interesting
case is when a user’s access rights straddle the boundaryt.(iandt,,+1), and this case results in two
sets of keys being issued to that user. This is particulaeapyy in applications where users purchase
a subscription for a period of time (e.g., they can view aemtibn of media objects on a specific day or
month), after expiration of which there is no need to mamtays for that period. However, this approach
is less desirable in applications where objects are as$igmate (e.g., a user requests access to all movies
released in 1977), because previous intervals need to beaimesd even after they have elapsed.

Suppose that the keys for previous time intervals need to &ietained. One approach is to extend
the time intervals, rebuild the data structure, and recdenthe public information. The downside of this
approach is that all of the public information has to be regotad (previous shortcuts may no longer
be necessary and other shortcuts may need to be added), eodenisions to the time intervals are rare
(which we assume is the case almost all of the time), thenntlaig be acceptable. If recomputing all of
the public information is unacceptable, then in some caseganm reuse the previous information. The
simplest technique to achieve this is to set the new numbgmefintervals ton? (recall that building the
tree data structure involves partitioning the time intéswato chunks of size of square-root of their number).
Unfortunately, squaring the number of intervals is praiibly expensive, but if we assume thats a power
of 2 and is a perfect square, then we can achieve full reuse@frevious information by doubling the length
of a time interval. The basic idea of this approach is thathédata structure fat? intervals, the subset of
the data structure that effects the fi2éh (¢ < logn) intervals has siz€®(space(S1(2°n)) log log (2°n)).
Thus, we can use this subset for the intervals, and when weetoesdd more intervals we can simply add
the new information from the data structure for intervals. We omit a detailed justification of the claim,
but it will be in the full version of this paper.

C.2 Further decreasing the space or a key-space tradeoff

The purpose of this section is to substantiate Table 5. We dsisg the fact that the claims of Table 3 have
already been established. For the sake of definiteness, pla@rexn detail how the last entry of Table 5 is
obtained from the last entry of Table 3. A similar partitiogischeme works for every pair of corresponding
rows in those two tables.

Let A; be the scheme (described earlier in the paper) that achiekegs, O(log* n) derivation time,
andO(nlog® n) public space, where the notatitig*) is a shorthand for applying theg functiont times.

25

Underlying | Private Key Public
scheme storage derivation storage
2HS <2k+1 <5 op. O(n lognlog@k) n)
3HS <2k+1 < 7op. O(nlog 1ognlog(2k) n)
4HS <2k+1 < 9op. O(nlog” nlog@k) n)
log"HS | <2k+1 | O(log" n) op. O(n log@k) n)

Table 5: Key/space tradeoff of generalized scheme, wheése positive integer.

We now give the construction of a family of schemés, As, ... such thatAd; achieve2k + 1 keys,
O(log™ n) derivation time, and(n log(zk) n) public space. We describe the construction inductivelyh wi
k = 1 being the base casd,, 1 is constructed fromd; as follows:

1. Partition the range of sizeinto n’ = n/ log®") chunks of sizdog®") n each.

2. Considering each chunk as one unit of time, ds®n the resulting (“reduced”) problem of size.
This useO(n’ log") n’) public space, which i®(n). The number of keys and key derivation times
are those of4; (2 + 1 andO(log* n’), respectively). The resulting structure (callif) can handle
time intervals that consist of a whole number of chunks, tesimnot handle intervals that start and/or
end inside of a chunk. These are handled as explained in ¥isteps.

3. The structure built in this step is for handling intervidlat start and end inside different chunks (those
that start and end inside the same chunk are handled diff@refror each chunkj, we build two
separate 1-dimensional structures: One strudiyfer intervals that start at the chunk’s left boundary
(calledleft-anchoredintervals), and another structuf; for intervals that start at the chunk’s right
boundary (calledight-anchoredintervals). Note thal ; and R; are 1-dimensional structures that are
implemented using thizg*HS scheme of Table 1 (which includes shortcut edges). Tt public
space is0(n/(log'*) n) = O(n). These structures, together with thé structure described in the
above, enable the handling of any intervahat starts and ends inside different chunks as follows:
We break! into 3 pieces, the leftmost of which overlaps with only 1 ckeall it v), the right most of
which overlaps with only one chunk (calliit), and the middle one consists of the union of a number
of whose chunks. The middle piecelofs handled using thé/ structure. The left (right) piece dfis
handled using?, (resp.,L,,). The derivation time and public space @&€log* n) and (respectively)
O(n). However, the number of keys now includes 2 more than forreeht;, because each @, and
L,, introduces an extra key, hence the total number of kegs4s1 + 2 = 2(i + 1) + 1, as required.

4. We are left with the case where both endpoints of the iatdrare in the same chunk. To handle such
cases, we associate a structure for scheimeith every chunk, thereby enabling a performance of
2i + 1 keys andD(log* n) derivation time. The space for each chunk is:

2i+1)

(10g(2i) n) log(zi) (log(zi) n) = log(zi) nlog! n

Since there are’ = n/log®) chunks, the total space @(nlog® ") n), as required.

26

