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Abstract. The Ate pairing has been suggested since it can be computed

efficiently on ordinary elliptic curves with small values of the traces of

Frobenius t. However, not all pairing-friendly elliptic curves have this

property. In this paper, we generalize the Ate pairing and find a series of

variations of the Ate pairing. We show that the shortest Miller loop of

the variations of the Ate pairing can possibly be as small as r1/ϕ(k) on

more pairing-friendly curves generated by the method of complex multi-

plications, and hence speed up the pairing computation significantly.

Keywords: Tate pairing, Ate pairing, Elliptic curves, Pairing-based cryptosys-

tems.

1 Introduction

Pairing-based cryptosystems have been one of the most active areas in elliptic

curve cryptography since 2000. Some detailed summaries on this subject can

be found in [20] and [15]. There are three early developing contributions which

inspire many other pairing-based cryptographic applications in this area: Sakai

et al.’s pairing-based key agreement [21], Joux’s three-party key agreement [14]

and Boneh and Franklin’s identity-based encryption scheme [4]. A bottleneck for

implementing pairing-based cryptosystems is to compute the pairings.

The pairings can be evaluated in polynomial time by Miller’s algorithm [18].

Many useful techniques have been suggested for optimizing the computation of
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the pairings. Some excellent summaries about pairing computations are recom-

mended (see [12, 22]). One of the most elegant techniques for computing the

pairings efficiently is to shorten the iteration loop in Miller’s algorithm. Inspired

by the Duursma-Lee method for some special supersingular curves in [7], Bar-

reto et al. introduce the Eta pairing which has a half length of the Miller loop

compared to the original Tate pairing on supersingular Abelian varieties. Later,

Hess et al. suggest the Ate pairing which shortens the length of the Miller loop

obviously on ordinary elliptic curves [13]. Matsuda et al. optimize the Ate pair-

ing and the twisted Ate pairing and show that both them are always at least as

fast as the Tate pairing [17]. The Ate pairing has been one of the fastest pairings

till now.

The length of the Miller loop in the Ate pairing depends on the value of the

trace of Frobenius t modulo the subgroup order r. For fast pairing computations,

t − 1 mod r should be made as small as possible. There do exist some special

pairing-friendly elliptic curves with t which can be as small as r1/ϕ(k) [6]. Free-

man has also discussed how to generate some elliptic curves which are suitable

for the Ate pairing [9]. However, not all pairing-friendly elliptic curves have this

excellent property (see examples in [19, 5]), i.e. the Miller loop of the Ate pairing

does not achieve r1/ϕ(k) on these pairing-friendly elliptic curves.

In this paper, we tackle this problem by generalizing the Ate pairing. we

find a series of the variations of the Ate pairing and explore how to choose the

generalized Ate pairing having the Miller loop as small as possible. For more

ordinary elliptic curves suitable for pairing-based cryptosystems, the Miller loop

of the generalized Ate pairing can reach the lower bound r1/ϕ(k) and hence

accelerates pairing computations efficiently.

The rest of this paper is organized as follows. Section 2 introduces basic

mathematical concepts of the Tate pairing and the Ate pairing. Section 3 gen-

eralizes the Ate pairing and shows how to choose the optimal parameter of the

generalized Ate pairing for fast pairing computations. Section 4 gives efficiency

considerations. We draw our conclusion and describe further work in Section 5.
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2 Mathematical Preliminaries

2.1 Tate Pairing

Let Fq be a finite field with q = pm elements, where p is a prime. Let E be an

elliptic curve defined over Fq and O be the point at infinity. #E(Fq) is denoted

as the order of the rational points group E(Fq) and r is a large prime satisfying

r|#E(Fq). Let k be the embedding degree, i.e. the smallest positive integer such

that r|qk − 1 .

Let P ∈ E[r] and Q ∈ E(Fqk). For each integer i and point P , let fi,P be a

rational function on E such that

(fi,P ) = i(P ) − (iP ) − (i − 1)(O).

Let D be a divisor which is equivalent to (Q) − (O) with its support disjoint

from (fr,P ). The Tate pairing [10] is a bilinear map

ê : E[r] × E(Fqk)/rE(Fqk ) → F∗
qk/(F∗

qk)r,

ê(P, Q) = fr,P (D).

By Theorem 1 in [2], one can define the reduced Tate pairing as

e(P, Q) = fr,P (Q)
qk

−1

r .

The above definition is convenient since a unique element of F∗
qk is often required

in many cryptographic protocols.

2.2 Miller’s Algorithm

Let P ∈ E[r] and Q ∈ E(Fqk). Let lR,T be the equation of the line through

points R and T , and let vS be the equation of the vertical line through point S.

For i, j ∈ Z, we have

fi+j,P (Q) = fi,P (Q)fj,P (Q)
liP,jP (Q)

v(i+j)P (Q)
.

Using the above formula, fr,P (Q)
qk

−1

r can be computed in polynomial time by

Miller’s algorithm.



4

Miller’s algorithm

Input: r =
Pn

i=0 li2
i, where li ∈ {0, 1}. P ∈ E[r]

and Q ∈ E(Fqk).

Output: e(P,Q)

1. T ← P , f1 ← 1

2. for i = n− 1, n− 2, ..., 1, 0 do

2.1 f1 ← f2
1 ·

lT,T (Q)

v2T (Q)
, T ← 2T

2.2 if li = 1 then

2.3 f1 ← f1 ·
lT,P (Q)

vT+P (Q)
, T ← T + P

3. return f
(qk

−1)/r
1

2.3 Ate Pairing

We recall the definition of the Ate pairing from [13] in this subsection. Let Fq

be a finite field with q = pm elements, where p is a prime. Let E be an ordinary

elliptic curve over Fq, r a large prime with r | #E(Fq) and let t denote the trace

of Frobenius, i.e. #E(Fq) = q + 1 − t. Let πq be the Frobenius endomorphism,

πq : E → E : (x, y) 7→ (xq, yq). For T = t −1, Q∈G2 = E[r]∩ Ker(πq− [q]) and

P ∈ G1 = E[r] ∩ Ker(πq − [1]), we have the following:

- fT,Q(P ) defines a bilinear pairing, which is called the Ate Pairing.

- let N = gcd(T k −1, qk −1) and T k −1 = LN , with k the embedding degree,

then

e(Q, P )L = fT,Q(P )c(qk−1)/N

where c =
∑k−1

i=0 T k−1−iqi ≡ kqk−1 mod r.

- for r ∤ L, the Ate pairing is non-degenerate.

3 Generalizations of the Ate Pairing

3.1 Generalized Ate pairing

The main result of this paper is summarized in the following theorem.

Theorem 1. Let Fq be a finite field with q = pm elements, where p is a prime.

Let E be an ordinary elliptic curve over Fq, r be a large prime with r | #E(Fq)

and let t denote the trace of Frobenius, i.e. #E(Fq) = q + 1 − t. Let k be its

embedding degree and T = t−1. For T i = (t−1)i ≡ qi mod r where 1 ≤ i ≤ k−1,
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we denote Ti = T i mod r. For Q ∈ G2 = E[r] ∩ Ker(πq − [q]) and P ∈ G1 =

E[r] ∩Ker(πq−[1]), we have the following:

- fTi,Q(P ) defines a bilinear pairing, which is called the Atei Pairing.

- let a be the smallest positive integer such that T a
i ≡ 1 mod r. Let N =

gcd(T a
i − 1, qk − 1) and T a

i − 1 = LN , then

e(Q, P )L = fTi,Q(P )c(qk−1)/N

where c ≡ ∑a−1
j=0 T a−1−j

i (qi)j mod N .

- for r ∤ L, the Atei pairing is non-degenerate.

It is easily checked that such a in Theorem 1 must exist and divide k by

Lagrange’s Theorem. The proof of Theorem 1 totally parallels the main proof in

[13, 17].

Proof of Theorem 1: Note that r | N since T a
i ≡ 1 mod r and qk ≡ 1 mod r.

Thus we have

e(Q, P ) = fr,Q(P )(q
k−1)/r = fN,Q(P )(q

k−1)/N .

Lemma 1 in [13] implies

e(Q, P )L =fN,Q(P )L(qk−1)/N = fLN,Q(P )(q
k−1)/N

=fT a
i
−1,Q(P )(q

k−1)/N

=fT a
i

,Q(P )(q
k−1)/N . (1)

Using Lemma 2 in [1] and [13], we have

fT a
i

,Q = f
T a−1

i

Ti,Q
f

T a−2

i

Ti,TiQ
· · · fTi,T

a−1

i
Q. (2)

Since πj
qi is purely inseparable of degree qij where 1≤j<a and πj

qi (Q)=[qij ]Q=

[T ij ]Q=[T j
i ]Q (see [23] pages 29-34), we have

(πj
qi )

∗(fTi,π
j

qi
(Q))=qijTi(Q) −qij(πqi(Q)) −qij(Ti −1)(O)

=(f qij

Ti,Q
).

Note that (πj
qi )

∗(fTi,π
j

qi
(Q)) = (fTi,π

j

qi
(Q) ◦ πj

qi) and f qij

Ti,Q
= fσij

Ti,Q
◦ πj

qi with σ

the q-th power Frobenius automorphism of Fq, hence we can obtain

fTi,π
j

qi
(Q) = fσij

Ti,Q.
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Since P ∈ E[r] ∩ Ker(πq − [1]), we have

fTi,T
j

i
Q(P)=fTi,π

j

qi
(Q)(P)=fσij

Ti,Q(P)=(fTi,Q(P))qij

. (3)

Using the above equality (2), we get

fT a
i

,Q(P ) = fTi,Q(P )
Pa−1

j=0
T a−1−j

i
(qi)j

. (4)

Finally, substituting (4) into (1) yields

e(Q, P )L = fTi,Q(P )c(qk−1)/N

where c≡∑a−1
j=0 T a−1−j

i (qi)j mod N . This shows that fTi,Q(P ) is a bilinear pair-

ing, which is non-degenerate provided that r ∤ L. �

Theorem 1 shows that a series of the Atei pairings fTi,Q(P ) can be obtained

as i varies. The reduced Atei pairing can be defined as fTi,Q(P )(q
k−1)/r equal

to a fixed power of the reduced Tate pairing. Notice that Ti = T i ≡ qi mod r

and the Miller loop of fTi,Q(P ) is determined by the bit length of Ti. Lastly, it

is remarked that the twisted Ate pairing could be generalized easily using the

similar idea.

3.2 Selection of the Optimal Ti

In this subsection, we discuss how to choose Ti which has the shortest bit length

for fast pairing computations.

By non-degeneracy, Ti can not be ±1. Note that Ti = −1 yields a trivial

pairing since L = 0 in this case. Let φd(x) be d-th cyclotomic polynomial with

its degree ϕ(d) for some positive integer d [16]. Since xk − 1 =
∏

d|k φd(x) and

T k
i − 1 ≡ 0 mod r, Ti must satisfy the equation φd(x) ≡ 0 mod r for some d.

We can compute Ti = T i ≡ qi mod r, and choose Ti which has the shortest bit

length for efficient pairing computations.

An interesting observation is that the optimal Ti is of size r1/ϕ(k) on some

pairing-friendly elliptic curves ([6, 19, 5]) although parts of them have large values

of Frobenius traces t.

It should be also noted that the optimal Ti maybe not reach the lower bound

r1/ϕ(k) in some special cases (see examples in [3]). An open problem is what

relations about q, k and r of elliptic curves enable the smallest qi mod r to reach

the lower bound r1/ϕ(k).
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4 Efficiency Consideration

Hess et al. have given an explicit efficiency analysis for computing the original

Ate pairing on special pairing-friendly elliptic curves with t as small as r1/ϕ(k)

in [13]. Furthermore, the Miller loop of the optimized Ate pairing equals to

T ≡ q mod r in [17]. This shows that the Ate pairing is at least as efficient as

the Tate pairing.

T mod r is often of size
√

q, which does not achieve the lower bound r1/ϕ(k)

for some pairing-friendly elliptic curves ([19, 5]). However, the optimal Ti can

be as small as r1/ϕ(k) on them in the Atei pairing. Therefore, the optimal Atei

pairing can be computed more efficient than the original Ate pairing in [13]

or the optimized Ate pairing in [17] in this case. In a sense, the optimal Atei

pairing seems to be computed efficiently on more pairing-friendly elliptic curves

compared to the original Ate pairing.

Some pairing-friendly elliptic curves which have large values of the trace

of Frobenius are listed in Appendix. Here we only compare the bit length of

the Miller loop for various pairings since these ordinary curves are suitable for

different security levels and the cost of finite fields arithmetic depends on various

efficient techniques. Notice that the Atei pairing in Table 1 has the minimal loop

Ti as small as the lower bound r1/ϕ(k). The embedding degrees k for various

elliptic curves are also listed in the parenthesis.

Table 1. The comparisons of bit lengths of loops for the pairings

TypeE1(10) E2(11) E3(22) E4(28) E5(18) E6(26) E7(34)

Tate 187 169 237 234 160 160 183

Ate 140 34 191 60 133 93 103

Atei 47 17 24 20 27 14 12

5 Conclusions and Further Work

A series of the generalized Ate pairings called the Atei pairings fTi,Q(P ) are

presented in this paper. We have discussed how to choose the optimal Ti for

efficient pairing computations and shown that the Miller loop of the optimal
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Atei pairing can achieve the lower bound r1/ϕ(k) on more pairing-friendly elliptic

curves. An open problem is proposed that what relations about q, k and r on

pairing-friendly elliptic curves enable the optimal Ti to reach the lower bound

r1/ϕ(k).
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A Pairing-friendly elliptic curves suitable for the Atei

pairing

Some pairing-friendly elliptic curves with large values of Frobenius traces are

cited as follows. T ≡ q mod r and the optimal value of Ti are listed.

E1 with k = 10 in [19]

r=118497265990650143638940886913063255688422174813106568961(187bits)

q=26916561140498229883766759145747954228067854557496271814329796

276308782360965160815950571330669569 (324 bits)

T=q ≡ −1135746083062455547947511038949266819809535 mod r(140 bits)

The optimal Ti = T 9 ≡ 104334294221056 mod r (i=9)(47 bits)

E2 with k = 11 in [19]

r=449044374966079776811018938862000399066079697680411 (169 bits)

q=1357441919222352203382074016394474770290194297862

981173430741491198729593166465924090047211 (300 bits)

T = q ≡ 13503834436 mod r(34 bits)

The optimal Ti = T 6 ≡ 116206 mod r (i=6)(17 bits)

E3 with k = 22 in [19]

r=146072480042839735410839194855815902380834280400918514359230

300179430401 (237 bits)

q=45382715071996076852244307042606621548796179757008093618976

73464529854935361355207751315895860254566052023874522108253

2592382511(425 bits)

T = q ≡ -854387230496757984093309676917973020089728193676722569

216 mod r(191 bits)

The optimal Ti = T 7 ≡ 13075456 mod r (i=7)(24 bits)

E4 with k = 28 in [19]

r=208276590274254899637564628862472689660689004802935956638554

91908821297 (234 bits)

q=11814340091776338622916432116953176547883084981386837222024

158250310453024971725493343818294887257738637227696700196096

3118937209(426 bits)



11

T = q ≡ -379891970942617223 mod r(60 bits)

The optimal Ti = T 5 ≡ 724247 mod r(i=5) (20 bits)

E5 with k = 18 in [5]

r=730767328960794658374478759845478477419642392323 (160 bits)

q=14821945697041765687773625382217321241579116867133148076094462814

012058758352127 (264 bits)

T = q ≡ 7699855983294175985742107952727180889343 mod r (133 bits)

The optimal Ti = T 11 ≡ 94906623 mod r (i=11) (27 bits)

E6 with k = 26 in [5]

r=764696222581341148650511408773719240195697919573 (160 bits)

q=18285492543987287680645893866289922483693928837435505359 (184 bits)

T = q ≡ 8551870640210380614813972059 mod r (93 bits)

The optimal Ti = T 15 ≡ 9779 mod r (i=15) (14 bits)

E7 with k = 34 in [5]

r=10267261474026538061953029801463094309944057146657157201 (183 bits)

q=19326928722523970823211392049806096197843339094443289507368327

(204 bits)

T = q ≡ 8790878313605026490203306721143 mod r (103 bits)

The optimal Ti = T 19 ≡ 2743 mod r (i=19) (12 bits)


