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Abstract. Some cryptographic tasks, such as contract signing and other related tasks, need to ensure complex,
branching time security properties. When defining such properties one needs to deal with subtle problems regarding
the scheduling of non-deterministic decisions, the delivery of messages sent on resilient (non-adversarially con-
trolled) channels, fair executions (executions where no party, both honest and dishonest, is unreasonably precluded
to perform its actions), and defining strategies of adversaries against all possible non-deterministic choices of parties
and arbitrary delivery of messages via resilient channels. These problems are typically not addressed in crypto-
graphic models and these models therefore do not suffice to formalize branching time properties, such as those
required of contract signing protocols.

In this paper, we develop a cryptographic model that deals with all of the above problems. One central feature of
our model is a general definition of fair scheduling which not only formalizes fair scheduling of resilient channels
but also fair scheduling of actions of honest and dishonest principals. Based on this model and the notion of fair
scheduling, we provide a definition of a prominent branching time property of contract signing protocols, namely
balance, and give the first cryptographic proof that the Asokan-Shoup-Waidner two-party contract signing protocol
is balanced.

1 Introduction

Cryptographic tasks, such as contract signing [1, 14, 8] and other related tasks, need to ensure complex,
branching time properties, i.e., properties of the overall structure of the set of all possible executions of a
protocol, as opposed to just properties of single execution traces. Examples of such properties are balance
[11] and abuse-freeness [14]. Defining such properties requires to cope with several challenges that are
typically not addressed in cryptographic models. The main challenges include: modeling non-deterministic
behavior of honest parties, resilient (non-adversarially controlled) channels, fair executions in which no party,
honest or dishonest, can unreasonably be precluded to perform its actions, and strategies of adversaries to
achieve certain goals against all possible behaviors of resilient channels and honest parties; the existence or
absence of such strategies is a branching time property of a protocol, not a property of a single execution
trace. Providing a computational model that deals with all such challenges and applying it to branching time
properties of contract signing protocols is the main purpose of this paper.

We illustrate the above points via the balance property for (two-party) optimistic contract signing proto-
cols as first defined by Chadha et al. [11] in a symbolic (Dolev-Yao based) model. These protocols can be
used by two parties, A and B, to obtain each other’s signature on a previously agreed contractual text with the
help of a trusted third party (TTP), which, however, is only contacted in case of a problem. If and when the
TTP is contacted depends on non-deterministic decisions of the parties. For example, A may decide to send
an abort request to the TTP in case she doesn’t want to wait any longer for a message from B, or suspects
that B is dishonest. Contract signing protocols typically assume that A and B communicate with the TTP
over resilient (non-adversarially controlled) channels: without such channels an adversary could block all
messages from/to the TTP. Now, balance for an honest party A and a dishonest party B, as defined by Chadha
et al., requires that in a protocol run it is not possible to reach a state where B has both i) a Strategy to obtain



a signed contract from A (no matter how A, the TTP, and the resilient channels behave) and ii) a (possibly
different) strategy to prevent A from obtaining a signed contract from B (no matter how A, the TTP, and
the resilient channels behave). Since, when following one of these strategies, the adversary, i.e., B, has to
achieve his goal—obtaining a signed contract or preventing A from obtaining a signed contract—against the
behavior of other entities that he cannot control or foresee (non-deterministic choices of A and delivery of
messages on resilient channels), in a computational model it is necessary to determine the behavior of these
entities by a scheduler which is independent of the adversary, and in fact, may work against the adversary.
Moreover, for the balance property to make sense, the scheduler should not stop the run of a system if one
of the entities in the system (A, the T'T P, the resilient channels, the adversary) “can still take an action”.
In other words, the scheduling should be fair for all entities (both honest and dishonest). For example, if at
some point A could still contact the TTP, then the scheduler should not stop the run of the system at this
point but should eventually schedule A: contacting the TTP might enable A to get the contract. Stopping
the system before scheduling A would be unfair and unrealistic since no one stops A from contacting the
TTP in a real protocol run. Note that a scheduler is just an imaginary entity that is only needed to model
how things are potentially scheduled in a real protocol run. Conversely, if B (the adversary) wants to send a
message to the TTP, the scheduler should not stop the run of the system but eventually schedule B: sending
a message to the TTP might enable B to obtain a signed contract which he otherwise might not be able to
get. Again, stopping the system before scheduling B would be unfair and unrealistic since no one stops B
from contacting the TTP in a real protocol run. Note that B is an arbitrary adversary (machine), and hence,
a general notion of fair scheduling is needed to capture whether “B can still take an action” (e.g., send a
message).

Clearly, standard cryptographic models, in which only one adversary is considered controlling the com-
plete communication network, and honest principals can not make non-deterministic choices are insufficient
for dealing with the class of protocols and properties considered here. Some cryptographic models take some
(not all) of the above aspects into account, but with a different focus and in a way not suitable for the classes
of protocols and properties we consider (see the related work).

CONTRIBUTION OF THIS PAPER. In this paper, we propose a computational model that deals with the chal-
lenges mentioned above and allows to specify complex, branching time properties.

More precisely, our model is based on a general computational model for systems of interactive Turing
machines (ITMs); while related to models in [4,9, 13, 16], our exposition follows more closely the one in
[23]. Based on the general computational model, we define a security-specific model where we use ITMs
to capture the behavior of the honest principals, the adversary, the network and resilient channels, and the
scheduler. The purpose of the scheduler is to resolve non-deterministic behavior of honest principals, to
schedule the resilient channels, and to trigger the adversary. As explained above, modeling the scheduler as
an entity independent of the adversary is important. The adversary and the scheduler are each equipped with
what we call a view oracle which can be invoked by these entities to obtain a view on the history of the run of
the protocol so far, and hence, to adapt their actions accordingly; typically, the adversary and the scheduler
have different view oracles, and hence, different views on the history. The view of the adversary typically
includes all messages on the network channels and only messages on those resilient channels which are not
required to be read-protected. Conversely, the scheduler might have complete information about the resilient
channels. The exact definition of the views (view oracles) depends on the security properties considered and
can be adapted depending on the strength of the security guarantee desired. The ITMs that we use cannot
be exhausted and can respond to an unbounded number of requests, as for example needed when modeling
the TTP in contract signing protocols. Also, this, for example, ensures that the scheduler cannot exhaust the



adversary or honest parties, which otherwise would lead to unrealistic runs (recall that the scheduler is only
an imaginary entity that is used to model reality).

As mentioned, fair scheduling is an important ingredient in the definition of many security properties,
and it is non-trivial to define in computational, resource-bounded settings. We provide a general definition of
when a scheduler is fair for a system of ITMs. We emphasize that our definition is independent of the specific
structure of the system or the specific ITMs used in the system. This is important as we need to capture fair
scheduling also for arbitrary dishonest parties, i.e., adversary machines. Intuitively, we call a scheduler fair
for a system if it does not stop the run of the system at a point where at least one of the other machines in
the system, e.g., honest parties, the adversary, resilient channels, “can still take an action”, e.g., an honest
principal could (non-deterministically) decide to start an abort protocol, a resilient channel could deliver a
message, or the adversary is ready to send a message to an honest principal. We formalize that a machine “can
still take an action” in a general way as follows: We say that a machine can take an action if the machine can
be activated by the scheduler with some input so that at the end of the activation the machine has changed its
local configuration, and hence, performed some action. (We note that according to our definition of ITMs, if
an ITM outputs a message, then it changes its local configuration.) The above definition in particular applies
to adversary machines and also to honest parties and resilient channels. For example, if at some point A in a
contract signing protocol could either wait for a message from B or contact the TTP to run the abort protocol
and the scheduler schedules A to run the abort protocol with TTP, then A changes its local configuration, e.g.,
goes from state g4 tO State gupore. Similarly, if a resilient channel is scheduled by the scheduler to deliver a
message, then the resilient channel sends the message and then deletes it from its buffer, and hence, changes
its local configuration. While there does not exist a fair scheduler for every system, we identify sufficient,
reasonable conditions for a system to have a fair scheduler. The way fair scheduling is defined here appears
to be new and is of interest independent of its application to branching time properties (see also the related
work).

Based on our computational model and the notion of fair schedulers, we provide definitions for fairness
and balance of (contract signing) protocols. One should not confuse the concept of fair scheduling with
the notion of fairness of protocols. The concept of fair scheduling is needed in the definition of fairness
(and balance) of protocols. The definition of balance requires to quantify (universally and existentially) over
two different schedulers. The first scheduler may be unfair and may collude with the adversary in order to
reach a certain point in the protocol run. The second one has to be fair, but tries to prevent the adversary
from achieving his goal. As a proof of concept, we apply our definitions to the ASW two-party optimistic
contract-signing protocol [1] and show it to be fair and balanced when implemented with primitives that
satisfy standard security assumptions. Our proof of balance of this protocol is the first computational proof
of this (now rigorously defined) property for a contract signing protocol. Also, while Asokan et al. [1] argue
informally about the fairness of their protocol, our proof of fairness is the first one for this protocol w.r.t. a
rigorous definition of fairness.

RELATED WORK. Rigorous models and security definitions for branching time properties of contract sign-
ing protocols have already been proposed in [11,21,20]. However, these definitions are w.r.t. a symbolic
(Dolev-Yao based) model and do not consider the more involved computational case. Within Dolev-Yao
based models, different contract-signing protocols have been analyzed using finite-state model checkers or
certain logics [24, 21, 5] (see also [12]), and decision procedures for automatic analysis have been proposed
[18, 19].

Backes et al. [7] (see also [6]) proposed a definition of fair scheduling in a computational model. Their
notion and setting differs from ours in several aspects. First, and most importantly, while their notion of fair
scheduling is only w.r.t. the scheduling of buffers (fair message delivery), we need, as explained, a more



general notion which captures fair scheduling also for honest principals and the adversary. We therefore base
our notion on the general concept of change of local configuration, which is essential in the present work, but
has not been considered by Backes et al. The notion by Backes et al. is in fact unsuitable for the properties of
contract signing protocols, fairness and balance, we consider since it does not capture that honest principals
and the adversary finish their execution. Second, they study fair scheduling in a simulation-based setting
which we do not do. Third, the notion of fair scheduling of Backes et al. is parameterized by a polynomial
which determines after what time a buffer has to be triggered. Our definition does not need such parameters.
Other works that use some kind of fairness in specific settings are [3] and [15]. None of the mentioned works,
[7,6,3,15], studies branching time properties or properties of contract signing protocols.

Asokan, Shoup, and Waidner [2] propose a fair contract signing protocol and present a computational
model to study fairness of this protocol. However, the model and the notion of fair scheduling that they use
is tailored to their specific setting and does not apply to branching time properties, which they do not study.
In their setting, fair scheduling is only w.r.t. honest parties and is guaranteed by imposing restrictions on
the adversary; they do not have a separate scheduler. This is insufficient for branching time properties, such
as balance: First, as explained, for branching time properties fair scheduling has to be guaranteed also for
dishonest parties, i.e., the adversary, which is why we propose a general notion of fair scheduling that applies
to arbitrary ITMs. Second, a scheduler independent of the adversary is needed in order to model situations
in which the scheduler plays against the adversary.

Canetti et al. [10] study a computational model based on probabilistic /O automata (PIOAs) in which
non-deterministic behavior of principals can be modeled. However, they focus on simulation-based security
and do not study fairness issues or branching time properties.

STRUCTURE OF THE PAPER. We start with an informal description of the ASW protocol which serves as
our running example throughout the paper. Next, in Section 3, we present the general computational model,
which forms the basis of our security-specific model, introduced in Section 4. We then define fair schedulers
in Section 5. The model and the notion of fair schedulers are then used in Section 6 for defining fairness of
(contract signing). We also show here that the ASW protocol is fair. The more complex notion of balance,
and the proof that the ASW protocol is balanced are in Section 7. We conclude in Section 8. More details
and proofs can be found in the appendix.

2 A Running Example: The ASW Protocol

In this section, we provide an informal description of the ASW protocol [1]. This protocol is our running
example which we use throughout the paper to provide intuition for the models and the notions that we
introduce. A more formal description in terms of the model that we propose in this paper can be found in
Appendix B.

CRYPTOGRAPHIC PRIMITIVES. The ASW protocol uses concatenation, signatures and (keyed) hashing. We
denote the concatenation of bit strings my, ..., m, by (m1,...,m,), and sometimes by m, ..., m,. We
assume that every m; can uniquely be recovered from the concatenation. Verification and signing keys of
principal P are denoted by vp and sp, respectively. The signature of m generated using sp is denoted by
sig,, (m). We require for the associated signature verification algorithm sigver(-, -, -) that sigver(m, s,vp) =
true if s is a signature on m generated using sp, and that sigver(m, s,vp) = false otherwise. We write
sig[m, vp] for (m,sig,, (m)), and write h(m) for the hash of message m.

PROTOCOL DESCRIPTION. The ASW protocol enables two principals A (the originator) and B (the respon-
der) to obtain each other’s signature on a previously agreed contractual text text (a fixed bit string) with the
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Exchange protocol:
A ciglma. va] B my = (va,vp,vr, text, h(Na))
gima,va mp = (sig[ma,val, h(Np))
abort? siglmp,vg] aa = sig[(aborted, sig[ma, val), va]
ar = sig[(aborted, a 4), vr]
Na - resolve? ||y = (sig[ma, val,siglmp, vi])
resolve? Np rT = siglr, vr]
-
Abort protocol:
A aA T If resolved then ma = rp
L else aborted=true
ma ma = ar
- -
Resolve protocol:
A, B r T If aborted then mr = ar
. else resolved=true
mr mr =rp
-

Fig. 1. The ASW Protocol. We indicate where during the execution of the Exchange protocol parties can choose to run the Abort of
the Resolve subprotocols.

help of a trusted third party (TTP) 7', which however is only invoked in case of problems. In other words,
the ASW protocol is an optimistic two-party contract-signing protocol.

There are two kinds of valid contracts: the standard contract, which is of the form (sig[m 4,v4], N4,
siglmp, vg|, Ng), and the replacement contract, which is of the form sig[(sig[ma,va],sig[mp,vg|), vr],
where m 4 = (va,vp,vr,text, h(Ny4)), mp = (siglma,val, h(Ng)), and N4 and Np are nonces.

The ASW protocol consists of three subprotocols: the exchange, abort, and resolve protocol. These sub-
protocols are explained next (see also Figure 1).

Exchange protocol. The basic idea of the exchange protocol is that A first indicates her interest to sign
the contract. To this end, she sends to B the message sig[m 4,v4] as defined above, where N4 is a nonce
generated by A. By sending this message, A “commits” to signing the contract. Then, similarly, B indicates
his interest to sign the contract by generating a nonce N5 and sending the message sig[m g, vg| to A. Finally,
first A and then B reveal N4 and Np, respectively.

Abort protocol. If, after A has sent her first message, B does not respond, A may contact 7" to abort, i.e.,
A runs the abort protocol with T'. Note that A may wait as long as she wants before contacting 7". (In
our formal model, this is modeled as a non-deterministic action of A and we use schedulers to resolve this
non-determinism.) In the abort protocol, A first sends the message a4 = sig[(aborted, sig[ma,v4]),val.
If T has not received a resolve request before (see below), then T sends back to A the abort token ap =
sig[(aborted, a 4), vr]. Otherwise (if T" received a resolve request, which in particular involves the messages
sig[ma,v4] and sig[mp,vp] from above), it sends the replacement contract rp = sig[r,vr| to A with

r = <sig[mA, UA], Sig[m37 UB]>'



Resolve protocol. If, after A has sent the nonce N 4, B does not respond, A may contact 7" to resolve, i.e.,
A runs the resolve protocol with 7T'. Again, A may wait for as long as she wants before contacting 7". In the
resolve protocol, A sends the message r to 1. If T" has not sent out an abort token before, then 71" returns
the replacement contract v, and otherwise 1" returns the abort token ar. Analogously, if, after B has sent
the nonce Np, A does not respond, B may contact 1" to resolve, i.e., B runs the resolve protocol with T’
similarly to the case for A. Note that contacting 7’ is again a non-deterministic action of B.

We note that the communication with T" (for both A and B) is carried out over resilient channels. More
specifically, these channels are authenticated, so the adversary can read their content but he is not entitled to
modify, delete, or delay messages sent over these channels.

In our formal model, a fair scheduler guarantees, for example, that messages on resilient channels will
eventually be delivered and that if (honest) A in the exchange protocol is in state “abort?” and (dishonest) B
does not respond, then A will start the abort protocol with the TTP.

3 The General Computational Model

Our general computational model talks about systems of interactive Turing machines (ITMs) and is related
to the models in [4, 9, 13, 16]. However, our exposition follows more closely that of [23] since the model in
[23] contains most features needed in the present work. Similar to [23], our general computational model
uses inexhaustible interactive Turing machines; the attribute “inexhaustible” will become clear later. While
in [23] systems with an unbounded number of ITMs have been studied, in the present work, we only need
to deal with systems consisting of a fixed and finite number of ITMs, and therefore, we do not need to
define how new I'TMs are generated and how dynamically generated I'TMs are addressed. Conversely, in the
present work we consider ITMs which may have access to certain oracles. This is a convenient feature of
our setting. We note that while the works mentioned above are concerned with simulation-based security,
simulation-based security is not considered here; we only borrow the definition of systems of ITMs.

SYNTAX OF ITMS. An (inexhaustible) interactive Turing machine (ITM, for short) M is a probabilistic
Turing machine with the following tapes: a read-only tape on which the security parameter is written (the
security parameter tape), a read-only tape on which random coins are stored (the random tape), zero or
more input and output tapes, and work tapes. The input and output tapes have names and, in addition, input
tapes have an attribute with values consuming or enriching (see below for an explanation). We require that
different tapes of M have different names. The names of input and output tapes determine how ITMs are
connected in a system of ITMs: If an ITM sends a message on an output tape named c, then only an ITM
with an input tape named c can receive this message. We require that each I'TM comes with an associated
polynomial ¢ which is used to bound the time taken by the computations of M. An ITM M may use oracles,
called the oracles associated with the ITM. If the oracles O, ..., O, are associated with M we sometimes
write M (O;,...,O,) instead of M to emphasize this fact.

An ITM may have a (consuming) input tape named start which serves a particular purpose: It will be
used to trigger an ITM if no other ITM was triggered. An ITM is triggered by another ITM if the latter sends
a message to the former. An ITM with an input tape named start is called master ITM.

COMPUTATION OF ITMS. To specify the computation of an ITM, let [ denote the length of the security
parameter plus the accumulated length of all inputs written on enriching input tapes of M so far (i.e., the
sum of the lengths of inputs written on enriching input tapes in the current and all previous activations).
Each time when M is activated, it is the case that the security parameter 7 is written on the security
parameter tape, and one message, say m, is written on one of the input tapes, say c (the other input tapes
and the output tapes are empty—or otherwise will be emptied before M starts to run). We require that the



computation in every activation of M satisfies the following conditions: (i) Similar to other models [23, 4,
9,13, 16], at the end of the activation, M has written at most one message on one of its output tapes (i.e.,
only one message can be sent to another ITM at a time), (ii) the number of transitions taken in the activation
is bounded by ¢(n) where ¢ is the polynomial associated with M and n is the security parameter plus the
length of the content of the input and work tapes at the beginning of the activation, (iii) the sum of the lengths
of all outputs written on output tapes so far by M (in all activations) is bounded by ¢({), (iv) at the end of
the current activation, the length of the content of the work tapes is bounded by ¢((), and (v) if (non-empty)
output was written on one of the output tapes, the local configuration of the machine before the activation
is different from the local configuration of the machine after the activation, where a local configuration of
an ITM consists of the current state of the ITM, the content and head positions of all work tapes as well as
the head position of the security parameter tape and the random tape. This last condition guarantees that if a
machine wants to “take an action” by sending a message (see the introduction), then this is indicated by the
change of the local configuration. This is obviously not a real restriction but a useful and natural requirement
in the context of fair scheduling. When activated, M may query oracles associated to it. To query one oracle,
M writes a message on a designated work tape. The answer of the oracle will then immediately be returned
(on some designated work tape). The evaluation of the queries is not part of the computation of M, and in
particular, the steps taken by oracles are not added to M’s runtime. Once M finishes its current activation,
the input tapes are emptied. Hence, at the end of an activation at most one of the output tapes is non-empty
and the other output tape as well as the input tapes are empty.

We emphasize that an ITM M as defined above can not be exhausted (therefore the name inexhaustible
interactive Turing machine): Whenever M is activated it is able to “scan” its complete current configuration,
including the incoming message. As can be seen from the above conditions, by writing messages on enriching
input tapes of M the resources of M, in terms of number and length of messages M may output and the size
of the local configuration M may have, increases. Conversely, messages written on consuming input tapes
of M do not increase M s resources.

SYSTEMS OF ITMS. A system S of ITMs is a parallel composition M || --- || M, of ITMs M;, i =
1,...,n, such that the set of names of input tapes of M is disjoint from the set of names of input tapes
of M; for ¢ # j. In particular, S can only have at most one master ITM, i.e., at most one ITM in S may have
start as input tape. Also, the output tape of an ITM in S is connected to at most one input tape of (another)
ITM. The set of tapes of a system S is defined to be the set of all tapes of ITMs occurring in S. We call a
tape of S internal if it occurs both as an input tape of an ITM in S and an output tape of (another) ITM in
S. Otherwise, a tape is called external. An external tape is called external input tape if it occurs as an input
tape of some I'TM in S. Otherwise, it is called external output tape.

Given § = M || --- || My, we write S(1",ry,...,r,) for the system obtained from S by writing a
security parameter 1) on the security parameter tapes and random coins r; € {0, 1}* on the random tapes of
the M.

RUNS OF SYSTEMS. In a run of S(17,rq,...,r,) at every time only one ITM is active and all other ITMs
wait for new input. The active machine may write at most one message on one of its output tapes, say c.
This message is then delivered to an ITM with an input tape named c, if any (recall that there exists at most
one such machine). The previously active machine goes into a wait state and the receiver of the message is
activated, resulting, after some internal computation, into a new output which is sent to another ITM, and so
on. The first ITM to be activated in a run is the master ITM. It gets € as external input (on tape start). The
master ITM is also activated if an ITM does not produce output (and hence, does not trigger another machine)
or the output is written on an output tape for which there is no ITM with a matching input tape. A run stops
if the master ITM, after being activated, does not produce output. More formally, a run of S(17,71,...,75)



is defined to be a sequence of global configurations ¢ where a global configuration g is a tuple (q1,...,qn)
of the configurations g; of the single machines M;, forevery: =1,...,n.

In general a run of a system does not necessarily terminate. For example, if in S = M7 || M, the ITMs
M7 and M5 are connected via enriching input tapes, then they can send message back and forth between
each other forever.

We say that a system S is a polynomial-time system if there exists a probabilistic Turing machine which
given a security parameter simulates runs of S and runs in polynomial-time with overwhelming probability
(in the security parameter). For polynomial-time systems, we denote by S(7) the random variable that returns
runs of S with security parameter 7 where the coins for the ITMs in S are chosen uniformly at random. It
suffices to choose a polynomial number of coins since the portion of runs exceeding the polynomial bound
is negligible and can be ignored. For a global configuration g, we write S(7) ~ ¢ to say that the final global
configuration in a run returned by S(7) is ¢. If ¢’ is a global configuration for S(n), we write Sy/(n) to
denote the distribution of runs obtained when the initial configuration of the ITMs in S are defined according
to ¢’ (with possibly random coins added on random tapes if needed). In case ¢’ is drawn from a family D =
{Dy,},, of distributions, we write Sp(n) for the random variable that returns a run according to the following
experiment: ¢’ <~ D, output S (). We define S/ (1) ~» ¢ and Sp(n)) ~ ¢ analogously to S(n) ~» ¢. Here,
and in the rest of the paper we only consider families of distributions D that are polynomially samplable,
i.e., that are the output of a probabilistic polynomial-time Turing machine.

Given a system S, we call an ITM &£ an environment for S if i) all input tapes of £ are consuming and
ii) £ is I[/O-compatible with S, i.e., £ only writes to external input tapes of S and £ only reads from external
output tapes of S: formally, the set of input tapes of £ is disjoint from the set of external input tapes and
internal tapes of S, and the set of output tapes of £ is disjoint from the set of external output and internal
tapes of S. Adopting terminology from [17], we call S reactively polynomial if S|| £ is a polynomial-time
system for every environment £ of S where £ does not have an associated oracle.

4 The Security-specific Model

Based on the general computational model introduced above, we define below the security-specific model. In
this model, we consider specific systems of ITMs, called protocol systems. These systems consist of protocol
machines, which determine the actions of honest principals, an adversary machine, a scheduler, and buffers
for network and resilient channels. The adversary does not have complete control over the communication.
Specifically, while we let the adversary control the network, he does not control resilient channels, i.e., the
adversary can not modify, delete, or delay messages sent on this channel. (We often allow the adversary to
read messages sent on resilient channels, though.) The purpose of the scheduler is to schedule messages sent
over resilient channels, i.e., the scheduler decides when and which messages written on the resilient channel
are delivered. Also, the scheduler resolves non-deterministic choices made by honest principals, e.g., whether
to wait for a message of another party or to abort the protocol. Furthermore, the scheduler determines when
the adversary is activated. In particular, the adversary is not necessarily scheduled as soon as an honest
principal outputs a message. Instead some message sent on a resilient channel or an honest principal that
needs to make a non-deterministic decision might be scheduled first (by the scheduler). However, if the
adversary sends a message to an honest principal this principal is activated right away. Allowing the scheduler
to first schedule other entities (honest principals or resilient channels) would significantly weaken the power
of the adversary.

PrROTOCOLS. A protocol I is defined by a tuple (H,D, {H;}ic) where H and D are finite disjoint sets
of names of honest and dishonest principals, respectively, and {H;};c7 is a family of ITMs, called pro-



tocol machines (see below), which specify honest principals; dishonest principals will be simulated by the
adversary.

We define P = H U D to be the set of all principals. We note that H; may specify the actions of principal
7 in one session of a specific protocol, e.g., it specifies one session of the initiator of the ASW protocol, or
multiple sessions of ¢ in possibly different roles.

PROTOCOL SYSTEMS. A system induced by II consists of the protocol machines of 17, an adversary machine
A, a scheduler machine S, and buffer machines for the network and resilient channels. More precisely, a
(protocol) system S for I is of the form

8= (llierHs) I (IlierjerNety) || (|licrjerRCS) || A ]l S

where H;, ¢ € H, is a protocol machine of /7 modeling an honest principal, Net?, i € H, j € P is a network
buffer (machine) on which ¢ sends messages over the network intended for j, RC;-, 1 € H,j € Pisaresilient
channel buffer (machine) on which ¢ sends messages intended for j, A is the adversary (machine), and S the
scheduler (machine). We call S the system induced by I7, A, and S and denote it by S(I1, A, S). We refer
to the system S with A and S removed by S(I7). Analogously, we refer to the system S with S removed by
S(I1,A).

We now explain informally how the machines of S(I7, A, S) work and how they are connected via tapes
(see Appendix A for details).

A network buffer machine Neté- works as follows: It internally stores a sequence of messages, which is
initially empty. Whenever it receives a message from H; (on some designated tape), it appends this message
at the end of the internal sequence and acknowledges receipt of the message by sending ack on back to H;.
The acknowledgment gives control back to H; thereby allowing H; to send further messages (to possibly
other buffers). In other words, H; can broadcast messages. We do not have tapes between the adversary
machine and the network buffer as the adversary can read the network buffer via its view oracle (see below).

A resilient channel buffer machine RC; works as follows: It internally stores a sequences of messages,
which initially is empty. Whenever RC;- receives a message from H;, it appends it at the end of the internal
sequence and acknowledges receipt of the message by sending ack back to H;. (Again, the purpose of the
acknowledgment is to enable H; to broadcast messages.) The resilient channel buffer is scheduled by the
scheduler who can send a number k to RC; to instruct RC;- to deliver the kth message of the sequence of
messages stored in RC;- (if any). Again, the adversary does not have direct access to RC;-. If RC;- is not
required to be read-protected, then the view oracle of the adversary can be defined in such a way that it
provides the adversary with the messages stored in RC;.

A protocol machine H; may send messages to the network buffers Net;- and the resilient channel buffers
RC;- for every j € P as explained above. If H; does not produce output, the scheduler S (which is declared
to be the master ITM) is activated. A protocol machine H; can be activated in three different ways: a) It
receives a message from the network on netin] supposedly from j for some j € P (these messages will
always come from the adversary who controls the network); b) It receives a message from a resilient channel
rcin] from j for j € P (if j € H, then the message received was in fact sent by j and if j € D, then the
message comes from some dishonest principal, and hence, the adversary); c) It receives a message (on some
designated tape) from the scheduler, where we assume that H; only accepts a fixed, finite set of messages
on this channel and ignores all messages that do not belong to this set. The messages from the scheduler are
meant to resolve non-deterministic choices made by H;. If, for example, in the ASW protocol, at some point
of the protocol run H; has the choice to wait for a message (sent over the network) from the communication
partner or start the abort protocol with the TTP, then the scheduler could send the message abort to H; in
order to instruct H; to start the abort protocol.



We allow all input tapes of network, resilient channel, and protocol machines to be enriching. We there-
fore explicitly require that the system S(I7) is reactively polynomial. (For a given protocol I7 this is typically
not hard to check, see, e.g., Section 6.2 and 7.2.) Note that if all input tapes of protocol machines were con-
suming (the buffers could have enriching input tapes), then reactive polynomiality would follow. However,
if protocol machines may have enriching tapes, then, for example, TTPs (as those in the ASW protocol) can
conveniently be modeled in such a way that they process an arbitrary number of requests, without any fixed
polynomial bound.

The adversary machine A is associated with an oracle, called the view oracle. Recall that if this oracle
is O, we often write A(O) to say that A is an ITM with associated oracle O. This oracle can be invoked
by A to obtain a view on the history of the run of the overall system so far. The exact definition of the view
oracle depends on what A should be allowed to see. Typically, the view contains not full information about
the history but the content of all network buffers (so far) and the content of (some) resilient channel buffers.
The view of the resilient channels depends on the type of the channel. For example, for an authenticated
but not read-protected channel the view oracle returns the complete content of the channel. In addition to
invoking the view oracle, A can send messages to honest principals either via network or resilient channel
connections. A message sent by the adversary on one of these channels is delivered directly. In particular,
the protocol machine connected to this channel will be activated immediately. More precisely, since network
connections are not authenticated, A can send a message pretending to be j directly to honest principals H,
i € H, via the tape netin’ for every j € P. Resilient channels are meant to be authenticated and therefore
the adversary can only send a message pretending to be j’ directly to an honest principal H;, i € H (via
the tape rc1n ) if 7/ € D. A possible alternative to allowing the adversary to send messages directly to
the honest pr1n01pals is to add resilient (scheduler controlled) and/or network channel buffers between the
adversary and honest principals. We note, however, that in this case the adversary would be less powerful,
and therefore the resulting model would yield weaker security guarantees. The adversary machine A can be
activated by the scheduler (and no other machine). For this purpose, the scheduler sends schedule on some
designated tape to A. We require that A ignores all other messages on this tape. All input tapes of A may
be enriching. However, we only allow those adversary machines for which the system S(II, A) is reactively
polynomial, which, for example, includes all adversary machines whose input tapes are consuming. (Recall
that S(I7) is also required to be reactively polynomial.)

The scheduler S is also associated with a view oracle which provides S with a view on the history of
the run of the overall system so far. Typically this view will be different from the view of the adversary and
depending on the security property may contain full information about the history, no information at all,
or something in between. As explained above, the purpose of S is to resolve non-deterministic choices of
honest principals (H;), to schedule messages on resilient channels, and to determine when the adversary A is
triggered. More precisely, S can send messages to H;, ¢ € H, in order to resolve non-deterministic choices,
e.g., in the ASW protocol S could send abort or resolve to H; in order to instruct H; to start the abort or
resolve protocol. As explained above, the scheduler can also send messages to the resilient channel buffers
RC; to determine which message is scheduled next. The message scheduled is then immediately sent to the
intended recipient j. Finally, S can send the message schedule to A in order to trigger A. Note that there
is no direct connection between S and the network buffers since these buffers are under the control of the
adversary. However, the view oracle of S might (or might not, depending on the security property and the
desired strength of the security guarantee) provide S with the messages stored in network buffers.
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5 Fair Schedulers

Intuitively, we define a scheduler to be fair if it does not stop the run of a system when at least one of the
(other) machines in the system can still take an action, e.g., an honest principal could start an abort protocol,
a resilient channel could deliver a message, or the adversary is ready to output a message to an honest
principal. As already explained in the introduction, fair scheduling is important in the definition of many
security properties, such as fairness and balance for contract signing protocols.

The problem of defining fair schedulers is to make precise what it means that a machine “can still take
an action”. Notice that we need a general definition that works for arbitrary machines (honest principal ma-
chines, resilient channel machines, and adversary machines) not only for specific machines, such as specific
buffers as in [7, 6]; these works were only concerned with fair message delivery, which, however, does not
suffice for fairness and balance of contract signing protocols.

Roughly speaking, we say that a machine “can still take an action” if the machine can be activated
by the scheduler with some input so that at the end of the activation the machine has changed its local
configuration, i.e., scheduling the machine causes it to make some progress or to perform some action.
(Recall from Section 3 that if an ITM sends out a message, then it changes its local configuration.) For
example, if an adversary machine wants to send a message to an honest principal, then when it is triggered
by the scheduler it would send the message and change its local configuration. Hence, a fair scheduler has
to eventually trigger the adversary as the adversary “can still take an action” in the above sense. Similarly, a
fair scheduler has to eventually trigger a protocol machine that does not receive a message from the network
but has the option of contacting the TTP, as contacting the TTP causes the protocol machine to change its
local configuration.

We note that a scheduler does not necessarily know when a machine, including the adversary, “can
still take an action” in the sense just explained. Hence, it might schedule such a machine even though this
machine does not want to take an action. However, a machine can always read the message received from the
scheduler (possibly even query the view oracle in case of the adversary) and, in case it does not want to take
an action, it can return to its old local configuration. Note that here we use that ITMs cannot be exhausted.
In case of exhaustible ITMs unrealistic runs would occur.

The above discussion motivates the following definition of fair schedulers. Roughly speaking, the defi-
nition below says that if the run of a system stops, then even if in the system the old scheduler is replaced
by a new one (even one with full information on the history of the run), the new scheduler cannot continue
the run of the system (at least not with non-negligible probability) such that one of the ITMs in the system
changes its local configuration. In other words, a fair scheduler may only stop the run of a system if no ITM
in the system (other than the scheduler itself) can or wants to take a further action, i.e., no other scheduler
can cause an ITM to change its local configuration. We state this definition for general systems rather than
only for protocol systems (Section 4). In this definition, we use what we call a full-information oracle. Called
at some point in a run of a system, a full-information oracle returns the whole history of the run so far for
all machines involved including the random coins used so far by the ITMs. We state the definition for the
case that the initial global configuration comes from a family D = {D,},, of distributions. This is useful for
modeling, for example, an initialization phase.

Definition 1. Let ) be a reactively polynomial system which does not contain a master scheduler. An ITM
Sis a fair scheduler for () and a family D = {D,,},, of distributions on (initial) global configurations if it is
an environment for Q and if for every environment S’ for (Q which has access to a full-information oracle the
probability that the following experiment returns 1 is negligible in the security parameter #:

Exp(n,S,S):
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Run Q with S, i.e.: Sp(n) ~ ¢’ with S = Q|| S

Continue the run with S’ instead of S, i.e.: S}, (1) ~ ¢ with S’ = Q||S and ¢" is obtained from ¢’ by
replacing the configuration of Sby the initial configuration of S’ and writing the history of the run so far on
one of the work tapes of S.

If there exists an ITM M in @ such that the local configuration of M in ¢’ is different from the corresponding
local configuration in ¢”, then output 1, and otherwise, output 0.

Alternatively to using a full-information oracle, the definition could be parameterized with an oracle that S’
is allowed to use.

Applied to protocol systems (Section 4), a fair scheduler may only stop if i) the resilient channel buffers
are empty, since otherwise a scheduler could schedule a message in a non-empty buffer, which would cause
the buffer to deliver the message and delete it, and hence, the buffer would change its local configuration,
ii) triggering a protocol machine with any message (among the finite set of possible once, e.g., abort) does
not change the local configuration of this machine, since otherwise a scheduler could send such a message
causing the protocol machine to change its local configuration (e.g., go from state gt 10 Guport), and iii)
triggering the adversary machine with the message schedule does not change the local configuration of this
machine (which means that the adversary does not want to take a step anymore), since otherwise a scheduler
could send schedule to the adversary and the adversary would change its local configuration.

Since ITMs cannot be exhausted they might change their local configuration whenever they are invoked.
Hence, a fair scheduler would never be allowed to stop. Thus, we observe:

Observation 1 There exist systems for which no fair scheduler exists.

SYSTEMS WITH FAIR SCHEDULERS. We now identify some reasonable restrictions on protocols and adver-
saries as to ensure the existence of a fair scheduler. First, we put a restriction on the adversary. As formalized
in the following definition, we require that the number of configuration changes of the adversary in a run
of a system (and hence, the number of actions, such as sending messages, the adversary can perform) can
polynomially be bounded independently of the scheduler considered. This restriction follows the intuition
that the adversary is the entity which “pushes” the run of a system, and hence, it is mainly the adversary
who determines the runtime of the system. Conversely, the scheduler is not meant to “push” the run of the
system. It is only an imaginary entity which is used to determine how non-deterministic choices are resolved
in real protocol runs and who goes next if anybody wants to take an action. In particular, note that the role of
the scheduler is different from the role of an environment in simulation-based settings: Such an environment
tries to distinguish real from ideal systems, and therefore, “pushes” the run of a system following its own
interests. In the following definition, the number of changes of local configurations of the adversary in a run
q1 - - qn of a system is defined as follows: If qf‘ denotes the local configuration of A in the global config-
uration ¢;, then this number is #{i € {0,...,n — 1} | qf‘ + qﬁ‘rl}; in Definition 3 we use an analogous
definition for protocol machines.

Definition 2. Given a protocol /7, oracles O,q4, and Oy, and a family of distributions D = {D,}, on
(initial) global configurations, we say that an adversary machine A(Oyq,) for 11, Oy, Osen, and D is
fairness-enabling if there exists a polynomial p such that for all schedulers S(O,.,) for II the probability
that in a run of Sp(n), with S = S(I1, A(Ouav), S(Oser)), the number of changes of local configurations of
A(O,qy) 1s bounded by p(n) is overwhelming (in 7), where the probability is over the random coins used by
D,, and the machines in S.

Analogously to the above definition, we could put a restriction on protocol machines. However, this would
be too restrictive since the number of configuration changes of a protocol machine might depend on the
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number of interactions with the adversary, and hence, depends on the adversary. For example, if a TTP is
modeled in such a way that it reacts to all requests (which could come from the adversary), then the number
of configuration changes of the TTP depends on the adversary. This motivates the following definition.

Definition 3. Given a protocol /7, oracles O,q4, and Oy, and a family of distributions D = {D,}, on
(initial) global configurations, we say that II is fairness-enabling if for all fairness-enabling adversary ma-
chines A(Ouqy) for II, Ouqy, Osen, and D there exists a polynomial p such that for all schedulers S(O.1)
for II the probability that in a run of Sp(n), with S = S(IT, A(Ouav), S(Oser)), the number of changes of
local configurations of every protocol machine of S is bounded by p(n) is overwhelming (in n), where the
probability is over the random coins used by D,, and the machines in S.

The following theorem, proved in Appendix C, states that for every fairness-enabling protocol and every
fairness-enabling adversary, there exists a fair scheduler (even without access to a view oracle). Hence, for
systems built from fairness-enabling protocols and adversaries, fair scheduling is possible. In the rest of the
paper, we concentrate on such systems, which seem to capture all realistic cases. In order to state and prove
the theorem, we first need to be more precise about the view oracle of adversaries.

A view oracle is called an adversary view oracle if it is a deterministic polynomial-time algorithm which
when invoked in a run of a protocol system gets as input the history of the run so far, except for the history of
the scheduler, i.e., the history of the configurations (including the random coins used so far) of all machines in
the system, except for the history of the configurations of the scheduler. We require that if the configurations
of the ITMs, other than the scheduler, in a run of the protocol system have not changed from one point in
the run to the next step in the run, then the adversary view oracle returns the same view as before. Note that
even if the adversary view oracle obtains as input the full history of the system (excluding the scheduler) it
typically will only return a restricted view on that history to the adversary.

Theorem 2. For every fairness-enabling protocol I7, view oracle O, adversary view oracle O,4,, polyno-
mially samplable family of distributions D = {D,}, on (initial) global configurations, and fairness-enabling
adversaries A = A(O,qy), there exists a scheduler S (even one without access to a view oracle) that is fair
for S(I1,A) and D.

6 Fair Protocols and Results for the ASW Protocol

In this section, we define the notion of fairness of protocols and, as a proof of concept, apply it to the ASW
protocol. In the definition of fairness, we use the previously introduced concept of fair schedulers. We note
that fairness is not a branching time property. However, it is a good warming-up for the more complex notion
of balance studied in the next section.

6.1 Definition of Fairness

The definition of fairness of a protocol II is w.r.t. a deterministic polynomial-time algorithm checkfair
which given a global configuration of a run of a system for I/ returns 1 (for fair) or O (for unfair). We do
not put any restriction on checkfair at this point. This function will be defined depending on the protocol
and the party under consideration. In the ASW protocol, for instance, checkfair may return 0 in a global
configuration if dishonest B has a signed contract from honest A but A does not have a signed contract from
B (see Section 6.2). Parameterizing the definition of fairness by checkfair seems unavoidable since, for
example, what a signed contract is and what it means for a party to have a signed contract are details that
may differ from one protocol to another (see, e.g., [1] and [14]).
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The following definition says that I7 is fair (relative to a particular checkfair algorithm) if for every
(fairness-enabling) adversary and every fair scheduler the probability that a run ends in an unfair global
configuration is negligible. (One should not confuse fair scheduling with fair global configurations, the latter
is determined by checkfair.) While in the following definition, we use the notions of fairness-enabling
protocol, fairness-enabling adversaries, and fair scheduler, which were defined w.r.t. a family of distributions
D = {D,}, on (initial) global configurations, we now omit D and simply assume that (standard) initial
configurations, with empty work tapes, are used as starting points of runs.

Definition 4. Let IT be a fairness-enabling protocol, O,., be a view oracle for a scheduler, 0,4, be an
adversary view oracle, and checkfair be a deterministic polynomial-time algorithm as above. Then, II is
called fair w.r.t. Ogcpn, Ouqy, and checkfair if for every fairness-enabling adversary machine A = A(Oq4y)
for IT and every scheduler S = S(O,,y,) fair for S(II, A), we have that the probability that in the following
experiment O is returned is negligible in the security parameter n where the probability is taken over the
random coins of the protocol machines of II, the adversary A, and the scheduler S.

Exp(n, II, A, S, checkfair):

S(n) ~ qgwhere S = S(I1,A,S).
Return checkfair(q).

Note that the above definition would not make sense if our notion of fair scheduling would only talk about
fair message delivery (as, e.g., in [7, 6]) as in this case a fair scheduler could stop the run of the system even
though, for example, an honest principal could still contact the TTP or the adversary still wants to send a
message to some honest principal. Hence, fair message delivery on its own would be insufficient for defining
fairness of, e.g., contract signing protocols.

6.2 The ASW Protocol is Fair

We prove that the ASW protocol is fair for i) the case that an honest initiator A runs an instance of the
protocol with a dishonest responder B (modeled as the adversary) and an honest TTP 7" on the contractual
text text, and ii) the case that an honest responder B runs an instance of the protocol with a dishonest initiator
A (modeled as the adversary) and an honest TTP 7" on text.

More formally, let ITASW~A denote the protocol with honest parties A, T', and T, and dishonest party
B where A acts as an initiator, 7" as a TTP, and W as a “watch dog”. Formal specifications of A and 7" in
terms of ITMs can be found in Appendix B.1 and B.1, respectively (also see the remarks and notation at the
beginning of Appendix B.1). We note that A writes Contract on some of her work tapes if according to
the specification of the protocol she has a valid contract (standard or replacement) with B and 7" on text.
The watch dog W is used to check whether the adversary (dishonest B) has a valid contract. More precisely,
W waits for a message m on some network channel and writes Contract on some of its work tapes if m
is a standard or replacement contract for A,B,T ,text as described in Section 2; W ignores messages if they
do not have the correct format. The protocol ITA5W™B is defined similarly, except that now A is dishonest
and B is honest. The formal specification of the responder B as ITM can be found in Appendix B.1. It is
not hard to check that I7ASW-A (S (11 ASW'A)) and [1ASWB (S (11 ASW'A)) are fairness-enabling (reactively
polynomial).

The algorithm checkfair that checks whether a global configuration is fair for an honest party is defined
as follows: given a global configuration ¢, checkfair(q) = 1 if and only if Contract is not written on the
work tape of TW or Contract is written on the honest protocol machine A and B for ITASW-A and [TASW-B,
respectively, i.e., checkfair returns 1 if the adversary (dishonest party) does not have a signed contract
from the honest party or the honest party has a signed contract from the dishonest party.
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We define the view oracle (’)stzyv for the adversary to be an adversary view oracle (Section 5) which
returns the history of all network and resilient channel buffers in the system (but no other machines). In
particular, resilient channel buffers are not required to be read protected. To get strong security guarantees, we
consider a very weak view oracle Of‘cshw for the scheduler which provides the scheduler with no information
whatsoever about the current status of the protocol run; this potentially makes the job of the adversary easier.
(Note that according to Theorem 2, in this situation fair scheduling is still possible.)

We are now ready to state the theorem on fairness of the ASW protocol. The theorem holds for instances
of the protocol implemented with primitives that satisfy standard cryptographic assumptions (see Appendix F

and G for precise definitions).

Theorem 3. If the signature scheme is existentially unforgeable under chosen message attacks and the hash
function is preimage-resistant, then 7745W-A and 1745W-B are fair w.rt. checkfair and view oracles 023"
and OASW,

sch

The proof, presented in Appendix D, is by reduction to the security of the underlying cryptographic prim-
itives. It cannot be carried out using existing results on relating symbolic and cryptographic methods since
these results do not (and in some cases provably cannot) take into account preimage-resistant hash functions.
Our proof uses in an essential way that schedulers are fair. Without fair scheduling the proof would not go
through and in fact the notion of fairness would not make sense since as soon as the dishonest party has a
valid contract, the scheduler could stop the run of the protocol. We note that the ASW protocol could be
proved to be unfair in our setting, if honest parties are optimistic in the sense that they only contact the TTP
if the dishonest party tells them to do so (see [12] for more on optimistic parties in Dolev-Yao based models).

While in I7ASW-A and ITASW-B the honest initiator and responder, respectively, are modeled in such
a way that they only run one instance of the protocol, we can, as illustrated in Appendix B.2, also model
principals that run an unbounded number of copies of the protocol. The proof of the theorem should extend
to this case if for different instances of the protocol unique session identifiers are used (see remarks in
Section B.2), but this is not the main focus of this paper.

7 Balanced Protocols and Results for the ASW Protocol

In this section, we define the notion of balance and show that the Asokan-Shoup-Waidner protocol is bal-
anced. As in the definition of fairness, the definition uses the previously introduced concept of fair scheduling.

7.1 Definition of Balance

The notion of balance for (two-party) contract-signing protocols was first introduced by Chadha et al. [11] in
the symbolic (Dolev-Yao) setting. In a nutshell, their definition says that a protocol is balanced for an honest
signer, say A, if no “unbalanced” state can be reached in a run of the contract-signing protocol where a run
involves A, the Dolev-Yao intruder playing the role of the dishonest signer B, the TTP, the network and
resilient channels. A state is unbalanced (for A) if in this state B has both i) a strategy to obtain a signature
on the contract from A and ii) a (possibly different) strategy to prevent A from obtaining a signature on the
contract from B. In other words, B can unilaterally determine the outcome of the protocol, which puts him in
an advantageous position, for example, when making a deal with another party. In the first phase of reaching
an (unbalanced) state the non-deterministic choices made by honest principals and the way messages on
resilient channels are scheduled might help B to reach the (unbalanced) state. However, in the second phase,
B needs to have the mentioned strategies to achieve the two goals—obtaining a valid contract and preventing
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A from obtaining a valid contract—, and these strategies have to work no matter what non-deterministic
choices the honest principals make and no matter how messages on resilient channels are scheduled.

Now, we introduce a computational analogue of the notion that we sketched above. We measure the
success probability of an adversary that tries to undermine the balancedness of the protocol via an experiment
which works in two phases (see below for a formal definition): In the first phase, the protocol runs along with
the adversary A and a scheduler S which may resolve non-deterministic choices of honest principals and
schedule messages on resilient channels and the adversary in a way that helps A. At the end of this phase, a
state (global configuration), say ¢, is reached. Now, one of the two goals (having the contract or preventing
the other party from getting one) is picked (by some function challenge) and the adversary is asked to
reach the chosen goal, starting from ¢ but now running with a different scheduler which will try to resolve
non-deterministic choices of honest principals and schedule resilient channels and the adversary in a way
that is disadvantageous for A. Intuitively, for balanced protocols, from any state ¢ that is reached, at least for
one of the two goals the probability that the adversary can reach this goal should be low.

In the following definition, we require that the scheduler used in the second phase of the experiment
is fair in order to ensure that protocol runs are in fact completed both by honest parties and the adversary.
This is crucial for two reasons: On the one hand, the adversary might otherwise be prevented from taking
further actions, but these actions may be necessary for the adversary to achieve the required goal. Hence, the
scheduling would be unfair for the adversary. And in fact, it would be unrealistic since in real protocol runs
no one stops the adversary from taking further actions. On the other hand, honest principals might otherwise
be prevented from taking counter-measures to the misbehavior of the adversary. Hence, the scheduling would
be unfair (and again unrealistic) for the honest parties. Note that achieving fair scheduling for both honest
parties and the adversary is guaranteed by our definition of fair scheduling (Section 5). However, a notion
only based on fair message delivery [7, 6] would, as in case of fairness (Section 6.1), be insufficient.

In order to ensure that, in the second phase, fair scheduling is possible, we split the adversary in two
parts, A and A’—one for the first phase and one for the second phase of the experiment—and require that A’
is fairness-enabling. The scheduler used in the first phase is not required to be fair (in particular it can stop
at arbitrary points), and adversary A is not assumed to be fairness-enabling.

The definition of balance is parameterized by two deterministic polynomial-time algorithms, goal; and
goal,, the goal functions, which given a global configuration return 1 (goal reached) or 0 (failed to reach the
goal). Similarly to the function checkfair (Section 6.1), the precise definition of these functions depends
on the protocol under consideration and cannot be avoided in the general definition (see Section 7.2 for
an example of these functions). We call a deterministic polynomial-time algorithm which given a global
configuration returns 1 (requiring the adversary to achieve goal;) or 2 (requiring the adversary to achieve
goal,) a challenge function.

Definition 5. Let II be a protocol and goal, and goal, be deterministic polynomial-time algorithms as
above. Let O, and O, be view oracles, and O,4, and O/, be adversary view oracles. Then, IT is called
balanced W.rt. goal,, goaly, Oudn, O 4 Oschn, and O, if for all adversary machines A = A(O,q,) and

A = A0, ) for IT, and all (not necessarily fair) schedulers S = S(O,.,) for 11, there exists a challenge

adv

function challenge such that if A’ is fairness-enabling for 17, O’ ,, O4,, and a family D = {D,}, of
distributions on (initial) global configurations defined below, then there exists a scheduler S = S(O’,_,)

fair for S(I1, A’) and D such that the probability that the following experiment returns 1 is negligible in the
security parameter 7.

Exp(n, I1,A,A', S, S, goal,, goal,, challenge):

S(n) ~ gwhere § = S(I1,A,S).
i = challenge(q).
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S (n) ~ ¢" where " = S(II, A', S'), the initial configuration of A" is obtained by writing i and the current
configuration of A on the work tape of A’, and ¢’ is obtained from ¢ by replacing the configuration of S by
the initial configuration of S' and the configuration of A by the initial configuration of A’.

Return goal,(q”).

The distribution D,, is defined to be the distribution of ¢’ in the above experiment. (Note that D = {D,} is
polynomially samplable.)

We emphasize that the above experiment can be simulated in polynomial time. This is a crucial fact when
trying to show that a protocol is balanced via a proof by reduction. Note that while one could provide
challenge and S’ with more information, giving them less information only makes the balance property
stronger. We also point out that in typical applications of the above definition the protocol I7 will be fairness-
enabling w.r.t. O’ ,, O! . . and D, and hence, fair scheduling is possible in the second phase of the experi-
ment.

7.2 The ASW Protocol is Balanced

We prove that the ASW protocol is balanced for i) the case that an honest initiator A runs an instance of the
protocol with a dishonest responder B (modeled as the adversary) and an honest TTP 7" on the contractual
text text, and ii) the case that an honest responder B runs an instance of the protocol with a dishonest initiator
A (modeled as the adversary) and an honest TTP 7" on text. More formally, we need to specify the protocols,
oracles, and functions used as parameters in the balance definition.

The protocols that we consider are the same as in Section 6.2, i.e., I] ASW-A (honest initiator A) and
ITASW-B (honest responder B); it is easy to check that these protocols are fairness-enabling w.r.t. the dis-
tribution used in Definition 5. We also define (9553/\/ and Oﬁdsz}iv as in Section 6.2. To get strong security
guarantees, we allow the scheduler in the first phase of the definition of the balance property to see what the
adversary sees plus the history of the configurations of the adversary (including the random coins used by
the adversary); (’)?CShW is defined accordingly. Conversely, we make the scheduler in the second phase weak
by defining O?csh\fv in such a way that it does not provide any information about the history. For a global
configuration ¢ let goal,(¢) = 1 iff the honest party (A in IT ASW-A and B in IT5WB) does not have a
contract, i.e., Contract is not written on one of its work tapes. Let goal,(q) = 1 iff the adversary has a
valid contract, i.e., Contract is written on a work tape of the watch dog. The following theorem is proved

in Appendix E.

Theorem 4. If the signature scheme is existentially unforgeable under chosen message attacks and the hash

function is preimage resistant, then I7ASW"A and I7ASW~B are balanced w.r.t. goal,, goal,, OV, OAW

ASW ASW adv * ~adv'
O3 and 037"

The proof is again done by reduction to the security of the primitives: Assuming that the protocol is un-
balanced, it is shown that one of the primitives would be insecure. As in case of fairness, the proof should
extend to the case that a party runs multiple copies of the protocol (see also Section B.2).

8 Conclusion

In this paper, we introduced the first computational model for the specification and rigorous analysis of com-
plex, branching time properties of protocols. Our model includes schedulers to deal with non-deterministic
behavior of principals and resilient channels. We proposed a general definition of what it means for a sched-
uler to be fair. Our definition not only takes into account fair scheduling for honest parties and certain chan-
nels, but also dishonest parties, and hence, arbitrary ITMs. This definition is of interest independent of our
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application to branching time properties. Using our computational model and the notion of fair scheduling,
we provided definitions of fairness and balance in (contract signing) protocols. The definition of balance
required to talk about different strategies and goals of principals, and involved both schedulers that work
with and schedulers that work against the adversary. As a proof of concept, we applied these definitions to
the ASW two-party contract signing protocol. Our model and the notion of fair scheduling that we intro-
duced form a good basis for also dealing with other branching time properties, such as abuse-freeness, which
is a weak form of balance, or properties studied in [22,21]. Our computational model uses an interleaving
semantics; it might be interesting to study concurrent models as concurrency may have an impact on the
security properties (see, e.g., [20] for the case of Dolev-Yao based models).
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A Specification of the ITMs in Protocol Systems

In this section, we provide more formal definitions of protocol, network buffer, resilient channel buffer,
adversary, and scheduler machines. In particular, we are more precise about how machines are connected via
tapes.

A protocol machine M = A,, i € 'H for principal 7 in protocol I7 is an ITM which has the following
tapes for every j € P:

— Input tapes neting and rcing for receiving input over the network or the resilient channel from 7,
respectively.

— Output tapes netout;'» and rcin;'» for sending messages on the network or the resilient channel to j,
respectively. (Theses messages will be written into a network or resilient channel buffer, which will
acknowledge receipt of the messages).

— Input tapes net acké— and rcacké- on which M receives an acknowledgment that the message sent before
on netoutz- or rcinz-, respectively, has been received. (This allows to broadcast messages since after
sending a message on one of the network or resilient channel output tapes, control is given back to M
such that M can send other messages as well).

— An input tape sch_p, on which M expects a message, such as abort or resolve, after which /M may

or may not take an action (e.g., start the abort or resolve subprotocol).

All input tapes of M are defined to be enriching.
A network buffer (machine) Net%, i € H and j € P, for a protocol IT is an ITM which has the following
tapes:

— An input tape netouté- for receiving messages from A;. (Recall that A; has an identically named output
tape.)

— An output tape net acké- to acknowledge receipt of a message from A;. (Recall that A; has an identically
named input tape.)

All input tapes of Net; are enriching. The machine Net;- works as follows: It internally stores a sequence of
messages, which initially is empty. Whenever Net;- receives a message on netout’, it appends it at the end
of the internal sequence and acknowledges receipt of the message by sending ack on netacké- (to Ay).
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A resilient channel buffer (machine) RC%, i € H and j € P,* for a protocol IT is an ITM which has the
following tapes:

— An input tape rcout;'» for receiving messages from A;. (Recall that A; has an identically named output
tape.)

— An output tape rcacké— to acknowledge receipt of a message from A;. (Recall that A; has an identically
named input tape.)

— Aninput tape rcin_s chz- on which RC;- expects a number (the index of the message to be sent) from the
scheduler.

1

— An output tape rcin

on which RC; sends the messages requested on rcin_sch;'».

All input tapes of RC; are enriching. The machine RC; works as follows: It internally stores a sequences of
messages, which initially is empty. Whenever RC’, receives a message on rcoutj, it appends it at the end of
the internal sequence and acknowledges receipt of the message by sending ack on rcack’; (to A;). Whenever
RC; receives a number k£ on rc in_sché- (from the scheduler),’ it writes the kth message of the sequences
on the tape rcinj (if the kth message exists, otherwise is does nothing) and deletes this message from the
sequence.

An adversary (machine) A for a protocol I7 is an ITM which may have a view oracle as described in
Section 4 and which has the following tapes:

— Output tapes net ing forall j € P and i € H to send a message (as j) to ¢ over the network.
— Output tapes rcin] forall j € D and i € H to send a message (as j) to i over the resilient channel.

— An input tape schadv on which A expects the message schedule after which A may or may not take an
action.

All input tapes of A are enriching. Note that A does not have any direct connection to the network buffers.
This is because A can use the view oracle to obtain all messages sent to the network. Similarly for resilient
channels.

A scheduler (machine) S for a protocol /7 is an ITM which has the following tapes:

— Output tapes sch_p;, for every ¢ € H, on which S may write a message to trigger A;. (Recall that A; will
only accept a message among a finite set of messages and will ignore all other messages.)

— Output tapes rcin_sch’, for every i € H and j € P, on which S may write a number, the index of the
message to be send over the resilient channel from i to 5.

— An output tape schadv on which S may write schedule to trigger A.

— An input tape start, i.e., S is a master ITM.

All input tapes of S are declared to be consuming. As explained in Section 4, the scheduler S is equipped
with an oracle, called view oracle. This oracle can be invoked by S to obtain a view on the history of the run
of the overall system so far.

4 Alternatively, one could consider resilient channel buffer machines also for ¢ € D (and in this case 7 € H), which would mean
that the adversary would also have to write into a resilient channel buffer machine to send a message to a another principal.

3 Alternatively, one could require that RC; only expects a message next which would trigger RC; to send the next message in
its internal sequence.

1f j € D and one wants to model that the channel RC; is controlled by the adversary, then S would not have the output tape
rcin_schj, i.e., Scan not trigger RC].
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B Formal Specification of the ASW Protocol

In this section, we provide a formal specification of the ASW protocol. More precisely, we specify the actions
of honest principals in the ASW protocol as ITMs. While in Section B.1, we consider honest principals
running a single session on their machine, in Section B.2 we specify an honest principal running multiple
sessions.

B.1 Single Session Specification

In this section, we specify A running one instance of the ASW protocol as an initiator with B (Section B.1),
B running one instance of the ASW protocol as a responder with A (Section B.1), and the TTP (Section B.1).

For simplicity of presentation, in the following specifications we implicitly assume an initialization phase
where the parties are provided with a random &k € {0,1}" (the index of the hash function to use) and the
public-keys of the other parties. This initialization phase could be modeled in different ways. For example,
every entity could generate its own public and private keys and then send the public keys over resilient
channels to the other parties. One trusted entity, e.g., the TTP, could in addition randomly choose k and send
it to the other entities. Alternatively, one could model the initialization phase by an additional entity (ITM)
which generates the public and private keys (at least for the honest parties) and the index k and then distribute
the keys over resilient, read-protected channels to the different entities.

In what follows, whenever we say that, for example, A receives message sig[m, v g|, we implicitly require
that A verifies B’s signature. Also, we often simply write h(m) instead of hy(m), i.e., the key (index) for
the hash function is omitted. We assume that h(m) € {0, 1} for a fixed I.

Specification of the Honest Initiator A The honest initiator A of the ASW protocol when talking to B,
using the TTP 7', and running the protocol on the contractual text text performs the following steps: We use
the naming convention for tapes introduced in Section 4 and Appendix A. We model A in such a way that
she non-deterministically decides whether or not to start the protocol, i.e., the scheduler makes this decision.
This property is crucial for proving the balance of the protocol.

E.1 If input init is received on sch_p4 (from the scheduler), then continue with E.2. Otherwise, if input
stop is received on sch_p 4, then stop, i.e., from now on ignore all incoming messages. Otherwise, ignore
the incoming message and continue to wait in state E.1.

E.2 Choose N4 <= {0,1}" and output m; = sig[(v4,vp, vr,text, h(Na)),v4] on netouts; ignore the
subsequent acknowledgment on netackg from Netg and continue with E.3.

E.3 If a message of the form mo = sig[(m1, z), vg] is received on netinf where x € {0, 1}/, then output
N4 on netout; ignore the subsequent acknowledgment on netackg from Netg and continue with
E.4. Otherwise, if the message abort is received on sch_p 4, then continue with A.1 (abort protocol).
Otherwise, ignore the incoming message and continue to wait in E.3

E.4 Ifanonce N € {0,1}7 is received on netin% such that h(IN) = z, then write Contract on some work
tape and stop. Otherwise, if resolve is received on sch_p 4, then continue with R.1 (resolve protocol).
Otherwise, ignore the incoming message and continue to wait in state E.4.

A.1 Send m, = sig[(aborted, m1),v4] on rcout#}; ignore the subsequent acknowledgment from RC# and
continue with A.2.

A.2 If the message sig[(aborted, m,), vr] is received on rcinl, then stop. Otherwise, if a message of the
form sig[(m1, ma), vr] is received on rcin;, then write Contract on some work tape and stop. Other-
wise, ignore the incoming message and continue to wait in state A.2.
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R.1 Send (mq,m2) on rcoutﬁ?; ignore the subsequent acknowledgment from RC# and continue with R.2.
R.2 Ifsig[(m1, m2), vr] is received on rcin’), then write Contract on some work tape and stop. Otherwise,
ignore the incoming message and continue to wait in state R.2.

Specification of the Honest Responder B The honest responder B of the ASW protocol when talking
to A, using the TTP 7', and running the protocol on the contractual text text performs the following steps:
Similar to the case of A, when B receives the first message, B makes a non-deterministic decision whether
or not to continue the protocol run, i.e., the scheduler makes this decision.

E.1 If amessage of the form m; = sig[(va,vp, vr, text, z), v 4] for some = € {0, 1}! is received on netinf,
then continue with E.2. Otherwise, ignore the incoming message and continue to wait in state E.1.

E.2 If input start is received on sch_pp (from the scheduler), then continue with E.3. Otherwise, if input
stop is received on sch_p 5, then stop.” Otherwise, ignore the incoming message and continue to wait in
state E.2.

E.3 Choose Np <= {0,1}" and output my = sig[(m1, h(Ng)), B] on netout’; then, ignore the subsequent
acknowledgment on netack’ from Net and continue with E.4.

E.4 Ifanonce N € {0,1}" is received on netin% such that h(N) = z, then write Contract on some work
tape, output Np on netoutﬁg (the subsequent acknowledgment can be ignored), and stop. Otherwise,
if resolve is received on sch_pg, then continue with R.1 (resolve protocol). Otherwise, ignore the
incoming message and continue to wait in state E.4.

R.1 Send (m1,ms) on rcout?; ignore the subsequent acknowledgment from RCZ% and continue with R 2.

R.2 If sig[(m1, ma), T] is received on rcinZk, then write Contract on some work tape and stop. Otherwise,
ignore the incoming message and continues to wait in state R.2.

Specification of the Honest TTP T' The TTP 7" maintains a database DB of requests received so far. It can
interact with the parties in the set { P, ..., P, }. Entries of the database are of the form ((vo,vg, vr, text),
token) where vo and vy are public-keys of principals in the mentioned set of principals (the public-key v
is the public key of T'), text is a contractual text, and token is either an abort or a resolve token.

T.0 DB :=e.

T.1 If input of the form m=sig[(aborted, sig[(vo, vg, vT, text, k), vo]), vo] is received on rcout?, then

check whether DB contains an entry ((vo, vg, vr, text), token) for some token. If so, then return token
on rcing; ignore the subsequent acknowledgment from ch and continue with T.1. Otherwise, if DB
does not contain such an entry, then add the entry ((vo, vg, vr, text), sig[(aborted, m), vr]) to DB and
output (the abort token) sig[(aborted,m), vr]; ignore the subsequent acknowledgment from RCY, and
continue with T.1.
Otherwise, if input of the form m' = (m” sig[(m”, '), vg]) for some m” = sig[(vo,vr, vy, text,
h),vo] is received on rcout?, then check whether DB contains an entry of the form ((vo, vg, vr, text),
token) for some token. If so, then return token on rcing; ignore the subsequent acknowledgment
from RCS and continue with T.1. Otherwise, if DB does not contain such an entry, then add the entry
{{(vo,vR,vr, text),sigm’, vr]) to the DB and output (the resolve token) sig[m’, vr]; ignore the subse-
quent acknowledgment from RCS and continue with T.1.

The model of the TTP as just described corresponds to the TTP as specified by Asokan et al. [1], although
Asokan et al. only specify the TTP for handling one session of the protocol, and therefore, they do not specify
how the database the TTP has to maintain looks like.

7 Alternatively, B could go back to E.1.
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As pointed out by Chadha et al. [11] for the GIM protocol [14] (and the same it true for the ASW pro-
tocol), in case multiple runs of the protocol (with the same contractual partners and on the same contractual
text) are carried out, a session identifiers is needed that uniquely identifies a session. Such identifiers need to
be part of the entries that the TTP stores in the database. Without such identifiers the ASW protocol would
neither be fair nor balanced: Consider the situation of an honest initiator O and a dishonest responder R. If,
in a first session of the protocol, R does not respond to the first message O sends, then O sends an abort
request to the TTP. If later, in a second session of the protocol, O agrees to run the protocol again with R (on
the same contractual text), and the session gets to a point where O sent the nonce, then R has a valid contract
from O. If at this point R doesn’t return his nonce, then O cannot get a valid contract since when contacting
the TTP, O would get back the abort token from the previous session. Hence, this state of the protocol is
unfair and unbalanced for O. We note that including in the database the digest 1(N o) computed by O would
still not solve the problem: It is not hard to see that if O is dishonest, the protocol would be unbalanced for
R.

B.2 Multi-Session Specification

In this Section B.2, we specify a principal willing to run multiple sessions of the ASW protocol. As pointed
out at the end of Section B.1, in this case every session should have a unique session identifier. Such an
identifier can easily be established by the initiator and responder: At the beginning of the session, both
parties contribute to one part of the identifier. Even if one party is dishonest, if the honest party ensures that
the part of the identifier that he/she contributes is different from the parts contributed in other sessions, then
the combined identifier will be unique. We note that the TTP as defined in Section B.1 can already deal
with an unbounded number of requests, which possibly come from different sessions. However, now the
messages the TTP receives should include the session identifiers and these session identifiers will be part of
the database entries.

Now, let us turn to the principal, say A, willing to run multiple sessions of the protocol. We will model
principal A in such a way that she can run an unbounded number of sessions with B, using the TTP 7',
on the contractual text text. However, A will only start another session with B if the previous session has
been aborted. This models the realistic situation that even though A has aborted the protocol, she might be
convinced by B to start another session because, for example, technical problems prevented B from sending
his willingness to sign the contract in time. More precisely, A first receives a request from B asking whether
A wants to take part in a protocol run. If she is currently running a session with B, she ignores such requests.
If she is not running a session with B she can non-deterministically decide whether or not to start a (new)
session with B, i.e., the scheduler makes this decision. Before starting a new session, A and B establish an
identifier for the session which is required to be unique for all sessions and which will be part of the messages
signed. As explained above, the uniqueness of the identifier is easily guaranteed if both parties contribute to
the identifier. The formal specification follows:

E.0 counter :=0.3

E.1 If input of the form (request, id) is received on netinf, then continue with E.2. Otherwise, ignore the
incoming message and continue to wait in state E.1.

E.2 If input start is received on sch_p 4 (from the scheduler), then continue with E.3. Otherwise, if input
stop is received on sch_p,, then stop, i.e., from now on ignore all incoming messages.” Otherwise,
ignore the incoming message and continue to wait in state E.2.

8 Instead of a counter, one could define A to choose a random number bit string in {0, 1}".
? Instead of stopping for ever, one could alternatively go back to E.1.
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E.3 Set counter := counter + 1. Next, chose a random nonce N 4 <- {0, 1}" and output the message m =
sig[(A, B, T, text, hi,(Na), ((A, counter),idp)), A] on netout4 (see Section 2); ignore the subsequent
acknowledgment on netackf from Net7 and continue with E.4.

E.4 If a message of the form sig[(m, z), B] is received on netin® where z € {0, 1}/, then output N4 on
net outg; ignore the subsequent acknowledgment on net ackg from Netg and continue with E.5. Other-
wise, if the message aborted is received on sch_p 4, then continue with A.1 (abort protocol). Otherwise,
ignore the incoming message and continue to wait in E.4

E.5 Ifanonce N € {0,1}" is received on netin% such that h;(N) = z, then write the message Cont r act
on some work tape and stop. Otherwise, if resolve is received on sch_p 4, then continue with R.1
(resolve protocol). Otherwise, ignore the incoming message and continue to wait in state E.5.

A.1 Send m' = sig[(aborted,m), A] on rcout#; ignore the subsequent acknowledgment from RC# and
continue with A.2.

A.2 If the message sig[(aborted, m’), T] is received on rcin’, then continue with E.1. Otherwise, if a mes-
sage of the form sig[(m, sig[(m, z), B]), T is received on rcin?), then write the message Cont r act
on some work tape and stop. Otherwise, ignore the incoming message and continue to wait in state A.2.

R.1 Send (m, sig[(m,x), B]) on rcout#; ignore the subsequent acknowledgment from RC# and continue
with R.2.

R.2 If sig[(m, sig[(m, x), B]), T is received on rcin?, then write Cont r act on some work tape and stop.
Otherwise, ignore the incoming message and continue to wait in state R.2.

In a similar way, a responder running multiple sessions could be specified. It is also straightforward (but
tedious) to model principals that run multiple sessions with different principals, on different contractual
texts, and in different roles at the same time (and these parameter could be determined by the adversary). In
particular, one could model principals in such a way that they run several instances of the ASW protocol with
the same contractual partner and the same TTP on the same contractual text at the same time. This may or
may not be realistic. Also, one could add to the protocol specification a signing oracle (formally modeled as
an honest party in the protocol specification, similar to the watch dog) which allows the adversary to generate
signatures of the honest party, e.g., A, on messages of his choice, subject to certain restrictions, as otherwise
the adversary could simply simulate A.

C Proof of Theorem 2

PROOF. We denote the protocol machines of /7 by H; fori € H.

Since A is fairness-enabling, we know that there exists a polynomial pa (1) such that the number of
configuration changes of A in a run of Sp(n) with S(I1, A, S') is bounded by pa (1) (with overwhelming
probability) for any scheduler S’. Also, since IT is fairness-enabling we know that there exists a polynomial
prr(n) such that the number of configuration changes of every protocol machine of I/ in a run of Sp(n)
is bounded by p;7(n). Hence, given IT and A there exists a polynomial p(n) such that the overall number
of configuration changes of A and the protocol machines of /I in a run of Sp(n) is bounded by p(n) (with
overwhelming probability).

Since, by definition, ITMs can only output messages if they change their local configuration, we know
that the number of messages written on output tapes by A and the ITMs in I is bounded by p(n) (with over-
whelming probability). In particular, the overall number of messages sent to resilient channels is bounded by
p(n) (with overwhelming probability). Since D is polynomially samplable, the number of messages initially
stored in resilient channel buffers is also bounded by some polynomial p’(n). Hence, with overwhelming
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probability, not more than p”(n) = p(n) + p’(n) messages are stored in a resilient channel at any point in a
run.

By definition, protocol and adversary machines only accept a fixed and finite set of messages from a
scheduler. For A the set is the singleton M p = {schedule}. Let M; denote the (finite) set of messages
that H; accepts from a scheduler.

We are now ready to define a scheduler S and then show that it is fair for S(I1, A) and D. The scheduler S
works in rounds. Every round consists of two phases. In the first phase of a round, S does the following: First,
S sends schedule to A. When activated again, S sends for every ¢ € H and every m € M, the message m
to H;. Note that after sending one message m, S has to wait to be scheduled again before another message
can be sent. Once the first phase of a round is completed, S sends, in the second phase of the round, to every
resilient channel the index 1 p”(n) times. (Again, after every activation of a resilient channel, S has to wait
to be activated again.) Note that since, as explained above, the number of messages in a resilient channel is
bounded by p”(n), after the second phase of a round, the resilient channels are guaranteed to be empty. We
define S to perform p(n) rounds. We now argue that S is fair.

We first observe that if in one round no ITM in S(I1, A) has changed its local configuration, then these
ITMs will also not change their configuration in subsequent rounds.

For the ITMs in S(I7) this is obvious: If such a machine is activated by the scheduler again, the machine
will perform exactly the same computation as before and will as before return to the local configuration at the
beginning of the activation. Note that the head position on the random tape is part of the local configuration,
and hence, the random coins used in these activations do not change.

For A, we use that if the ITMs in S(I1, A) do not change their local configuration, then the adversary view
oracle of A will return the same view when invoked by A. As a result, A’s computation will be unchanged.
In particular, the local configuration of A at the beginning and at the end of the activation will be the same.

As explained above, after every round the resilient channels are empty, and hence, they do not change
their configuration in the next round unless they receive a new message in the next round. Hence, if the
adversary and the protocol machines do not change their local configuration in one round (and hence, do not
produce output), then no machine in S(I7, A) will change its local configuration again. Since the adversary
and the protocol machines can only change their local configurations at most p(7) times (only with negligible
probability they can change their local configurations more often) it follows that after p(n) rounds, no ITM in
S(I1, A) will change its local configuration again (only with negligible probability). Thus, since S performs
p(n) rounds, it follows that S is fair. O

D The ASW Protocol is Fair

We provide a proof sketch of Theorem 3. The case of an honest initiator is restated in Proposition 1 and the
case of an honest responder in Proposition 2.

ASW and OASW

adv sch

Proposition 1. ITASW"A js strongly fair w.r.t. checkfair and view oracles O

We prove Proposition 1 by contradiction. Assume that there exist an adversary A and a fair scheduler S such
that Exp(n, IT*W"A A, S, checkfair) = 0 with non negligible probability. There are three cases.

1. Either the agent A has not sent her first message sig[m 4, 4],
2. Or A has sent sig[m 4, A] but has not received any valid answer from the adversary,
3. Or A has sent sig[m 4, A] and has received a valid answer from the adversary.
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At least one of the three cases must happen with non negligible probability. For each case in turn, we show

how to turn an adversary A that wins against 775" into adversaries against that break the primitives used
. TTASW-A
in I1 .

Case 1 The agent A has not sent her first message sig[ma, A] thus A cannot have the contract. Since

checkfair=0 it follows that the adversary succeeded in getting a valid contract of the form (sig[m 4, 4],
Ny, siglmp, B], Ng) or of the form sig[(sig[m 4, A], sig[mp, B]), T]. Either the adversary did not make
any valid query to the trusted party (for the instance of the protocol under consideration), in which case,
it means that he forged a valid signature of A or 7. Or the adversary made a valid query to the trusted
party, which means that he sent a message of the form (sig[m 4, A], sig[mp, B]) to T Thus the adversary
has forged a valid signature of A. In both cases, the adversary must have forged a valid signature of an
honest agent.
The above intuition can be easily transformed into a reduction from the security of the protocol to that of
the underlying signature scheme. Given an adversary A (that plays the role of party B) we construct an
adversary Aps against the signature scheme DS. Recall that Apg has access to a signing oracle Ops(sk, -)
and takes as input the verification key pk that corresponds to sk. Adversary Aps simulates the experiment
Exp(n, IT ASW-A A 'S checkf air). It uses A as a subroutine and it simulates the environment of A, i.e.
it simulates parties A and T, as well as the execution of S. Moreover, it also simulates oracles Oﬁcshw and
(’)sdszyv . In particular, Apg sets the public key of A to pk. The adversary Apg starts the execution of A
and answers all its queries (essentially only queries to Oédstyv .) Adversary Aps tracks the messages sent
to the “watch dog” and verifies if any of the messages is a valid contract which (by definition) contains a
valid signature on some message, with respect to pk. Since Aps did not make any queries to its signing
oracle, such a signature is a valid forgery, and thus Apg breaks the security of DS. We note that Apg can
simulate any adversary oracle, as long as it does not need the secret key of A to do so (i.e. the simulation
works virtually for all reasonable adversaries).

Case 2 The agent A has sent sig[m 4, A] but has not received any valid answer from the adversary. Since S is
fair, A must have contacted the trusted party, asking for aborting. Either 7" sent a valid contract in return,
which means the adversary has sent a valid resolve request to S and thus has received a valid contract, in
which case checkfair = 1. Or 7" replied with an abort message to A so, A does not have the contract.
Since checkfair = 0 it must be the case that the adversary succeeded in obtaining a valid contract. We
distinguish two cases, depending on the form of the contract.

First, assume that the contract is of the form sig[(sig[m 4, A],sigmp, B]), T]. Since A should not be
able to obtain a contract, it must be the case that A did not send a resolve request to T', and therefore the
contract must have been obtained by forging a signature of 7.

Under these circumstances, we show how construct an adversary Apg against DS. Adversary Apg sim-
ulates the experiment Exp(n, I1 ASW-A A S checkf air). In the execution, A plays the roles of parties
A and T'. Tt generates a pair of signing verification keys for A, via (sk 4, pk 4) & K(n), it generates a
key k for the hash function via k < hkg(n), and then sets pk as the public key of T'. It then simulates
the execution of the experiment answering the adversary’s queries to oracle O ?CShW (using the parameters
set as above). When S schedules A to output its first message, Aps generates a nonce N 4 and com-
putes a signature o = S(ska, ma) on message ma = (A, B, T, text, hy(N4)) and sends (m4,0) to
the adversary. Since we are in the case when A obtains a replacement contract, it must be the case that
the replacement contract was created by A itself (without involving 7', since otherwise when A contacts
T (this event happens because S is fair)), then A would also obtain a replacement contract). Since Apg
never makes a query to its signing oracle, the replacement contract output by A is in fact a successful
forgery against DS.
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In the case that A obtains a standard contract (sig[m/y, A], N'y,siglmp, B], Ng), we further distinguish

two cases, depending on whether hy(N',) = hj(N4) or not.

First we construct an adversary Ay, against H which is successful if hy(N'y) = hy(N4) (here N4 is the

nonce that A sends in its first message and N/, is the nonce in the contract that A’ obtains.) As before,

the adversary Ay simulates the execution of Exp(n, IT"SW"A A S, checkfair): it plays the role of
both A and T (in particular generates signing/verification keys for both) and simulates the execution of

S. Recall that Ay takes as input a key k and a hash value iy «— hy(x) for some z <-€ {0,1}". The

key of the hash function is set to k. When A has to output its first message, Ay composes message

ma = (A, B, T, text, y), computes a signature o on m 4, and sends (m 4, o) to the adversary. When the
adversary outputs a contract (sig[m/y, A], Ny, sigmp, B], Np) such that hy,(N;) = hy(N4), adversary

Ay outputs Ny as a forgery. Notice that if A is successful in Exp(n), IT ASW-A A'S checkfair) (and

the contract that A outputs is as above) then A, outputs a preimage of y with non-negligible probability.

Finally, if hy,(N'y) # hi(N4) we show how to construct an adversary Aps against signature scheme DS.

Adversary Aps simulates the execution of the experiment Exp(n, I1 ASW-A A 'S checkf air) where it

simulates the parties A and 7'. In particular, it generates signing/verification keys for 7', and the key & for

the hash function. The public key of A is set to pk (the key that Aps has as input). When A has to output

its first message, Aps selects N4 <= {0,1}"7, computes the message m4 = (A, B, T, text, hy(N4)),

sends m 4 to its signing oracle Ops(sk, -) and receives a signature o on m 4. It sends (m4,0) to A. It

the continues execution, answering all queries that A may make to oracle O stlyv , until A outputs the
forgery contract (sig[m’y, A], N'y,sig[mp, B], Ng). At this point, Aps outputs (m/y, sig[m’y, A]) as its
attempted forgery. Since the contract is valid, sig[m’,, A] is a valid signature on m’,. Moreover, since
hi(Na) # hi(N), it follows that the message m'y # m 4, and therefore m’y was not queried by Aps
to its signing oracle. We conclude that the forgery that Apg outputs is valid.

Case 3 The agent A has sent sig[m 4, A] and has received a valid answer from the adversary. Since A is
honest, she must have sent her nonce NV, to the adversary thus the adversary has the contract. Either the
adversary sent his nonce IV}, to A, which means that A has also a valid contract or A did not get any valid
answer from the adversary. Since S is fair, A must have contacted the trusted party, asking for resolving.
If the trusted party did not receive previously a valid abort request, he must have returned a valid contract
to A. Otherwise (if 7" did receive a valid abort request), the adversary must have sent of message of the
form sig[aborted, sig[m 4, A], A] to T on the secure channel between A and T' (which is impossible in
our model).

Conversely, the ASW protocol is fair to B, the second participant.

Proposition 2. I7A5W<B s strongly fair w.r.t. checkfair and view oracles O3B and OASW™B,

adv

The proof is quite similar to the previous one. Assume that there exist an adversary A and a fair scheduler S
such that Exp(n, IT"SW"B A|S checkfair) = 0 with non negligible probability.
There are four cases.

1. Either the agent B has not received any valid message of the form sig[m 4, A] from the adversary,

2. The agent B has or has not received a valid message of the form sig[m 4, A] from the adversary but he
has chosen not to answer

3. The agent B has received a valid message of the form sig[m 4, A] from the adversary and he has sent his
promise to sign sig[m g, B] but he did not get a valid answer from the adversary,

4. The agent B has received a valid message of the form sig[m 4, A] from the adversary, he has sent his
promise to sign sig[m g, B] and he got a valid answer from the adversary.
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At least one of the following four cases must happen with non-negligible probability. Here, we describe
how a successful forgery would relate to the security of the underlying primitives of the protocol. Security
reductions similar to those for Proposition 1 can be easily constructed.

Cases 1 and 2 are similar. In both cases, B has not sent his promise to sign sig[m g, B]. Since checkfair =
0 it follows that the adversary obtained a valid contract of the form (sig[m 4, A], N4, siglmp, B], Np) or
sig[(sig[ma, A],siglmp, B]), T]. Either the adversary did not make any valid query to the trusted party,
in which case, it means that he forged a valid signature of B or 7. Or the adversary made a valid query
to the trusted party, which means that he sent a message of the form (sig[m 4, A], sig|mp, B]) to T Thus
the adversary has forged a valid signature of B. In both cases, the adversary must have forged a valid
signature of an honest agent.

Case 3 The agent B has received a valid message of the form sig[m 4, A] from the adversary and he has
sent his promise to sign sigmp, B] but he did not get a valid answer from the adversary. Since S is
fair, B must have contacted the TTP, asking for resolving. Either 71" sent a valid contract in return,
in which case checkfair = 1. Or 7' sent an abort message to B thus B does not have the con-
tract. Since checkfair = 0, it must be the case that the adversary obtained a contract of the form
(siglma, A], Na,siglmp, B], Ng) or sig[(sig[ma, A],siglmp, B]),T]. Since B get an abort message,
this means that 7' did not sent a valid contract to the adversary even if he sent valid resolve requests
afterward. Thus the adversary must have forged a valid signature of an honest agent or computed N g out
of siglmp, B].

Case 4 The agent B obtained a valid contract. However, this can not be the case since checkfair = 1.

E Proving the ASW Protocol to be Balanced

We provide a proof sketch of Theorem 4. The case of an honest initiator is restated in Proposition 3 and the
case of an honest responder in Proposition 4.

Proposition 3. I7A5WA js balanced w.r.t. goal, goal,, OV, OASW OASW ‘and OASW.

adv * ~adv' * sch

Proof (sketch): The proof is done by contradiction. Assume there exist restricted adversary machines A =
A(OAW) and A" = A/(OA3W) for ITASWA and a scheduler S = S(OASW) for ITASW-A and A such that,
for any fair scheduler S’ = &' (Oﬁcsh\fv) for ITASW-A and A’ and for any challenge function challenge, it is
the case that Exp(n, I1 ASW-A A A/'S S goal;,goal,, challenge) = 1 with non negligible probability.

Let ¢ be such that S(n) ~» ¢ where S = S(ITASW-A  A|'S). We distinguish several cases for ¢:

Either the agent A has not sent her first message sig[m 4, A],
. Or A has sent sig[m 4, A] but has not received any valid answer from the adversary A and the TTP has
answered a valid resolve query from the adversary for this contract,

3. Or A has sent sig[m 4, A] but has not received any valid answer from the adversary A and the TTP has
not answered a valid resolve query from the adversary for this contract,

4. Or A has sent sig[m 4, A] and has received a valid answer from the adversary A (thus she has sent her
nonce IV 4) but did not get the last message from the adversary,

5. Or A has finished her protocol, that is, she got the last message from A.

[\

At least one of the five cases must happen with non negligible probability.

Case 1 The agent A has not sent her first message sig[m 4, A]. For all states ¢ as above this case, we set
challenge(q) = 2, and show that there exists a fair scheduler S’ for ITASW~A such that adversary A’
cannot achieve goal,.
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Consider the scheduler S’ that causes A to stop the execution of the protocol before sending its first
message to A’ (recall that stopping the execution is one of the valid actions that a protocol participant can
take at any point). Since A’ achieves goal,, it follows that there are three possibilities regarding how A’
to obtains a valid contract. The first two are to compute by itself (with no interaction with 7") a contract
(siglma, A], Na,siglmp, B], Ng), or a contract sig[(sig[m, A],sig[mp, B]),T| (which would imply
forging a signature of A), or to contact the TTP with a message of the form (sig[m 4, A}, sigmpg, B])
(which would also imply that A’ has forged a signature of A).

As we did in the case of fairness, we turn this intuition into a reduction. Assume that there exists adver-
saries A and A’, scheduler S such that for all schedulers S’ adversary A" achieves goal goal, from state
q (Where S(n) ~ q).

We show how to use the above adversaries and schedulers, together with the scheduler S’ described also
above in order to build an adversary Apg against DS.

Adversary Aps simulates Exp(n, IT ASW-A A A/'S S goal,,goal,, challenge). In the execution A
plays the role of parties A and 7'. In particular it generates keys for signing/verifying for party 7', and
sets the public verification key of A to pk (the key that Apg takes as input). It keeps tracks of the global
state of the system, until simulator S finishes its execution. If in the resulting state ¢ party A had already
sent its first message the adversary Aps aborts. Otherwise, it continues its simulation with scheduler S’.
It answers all queries that A’ makes to its oracle (this is possible since Aps knows the local states of all
parties, except the signing key that corresponds to pk). It answers the queries that A’ makes to 7. If A/
sends a valid contract to the “watch dog”, Apg extracts an appropriate forgery (the part of the contract
that consists of a valid signature of A) and outputs it as its own attempted forgery. Since Aps does not
make any oracle requests to its own oracle, any valid signature with respect to pk is a valid forgery, and
therefore Aps wins.

Case 2 The agent A has sent sig[m 4, A] but has not received any valid answer from A’ and the TTP has
answered a valid resolve query from A’ for this contract. Let us show that the adversary A’ cannot
achieve goal; (A does not have a contract). In particular, consider the scheduler S’ that schedules A
such that she immediately contacts the TTP, with the abort request sig[aborted, sig[m 4, A], A]. Since T'
has already answered a resolve request from A’ for this contract, A would receive a valid contract from
the TTP thus goal, is not achieved.

Case 3 The agent A has sent sig[m 4, A] but has not received any valid answer from the adversary A and the

TTP has not received a valid resolve query from the adversary that corresponds to this message of A. For
such a state ¢, we set challenge(q) = 2 and show that there exists a scheduler S’ such that adversary A’
cannot achieve goal, (“having a valid contract”). Consider the schedule S’ that as soon as A outputs its
first message (i.e. sig[m, A]) schedules A to send an abort request sig[aborted, sig[m 4, A], A] to TTP
T.
By assumption 7" has not received a resolve request from the adversary so 7" would send a valid abort
message to A. Since we only consider fair schedulers, this abort message would eventually be delivered
to A so no party would receive a valid contact from 7". We now distinguish two different cases depending
on the contract that A’ obtains.

If the contract is a replacement contract, sig[(sig[m 4, A], sig|lm g, B]), T], then A’ managed to forge a
signature of 7T'.

We turn this intuition into a proof by reduction. We construct the following adversary A7, against the
hash function family. As before, adversary Aps simulates Exp(n, IT ASW-A A A/'S S goal,,goal,,
challenge), and in the execution Aps uses A, A", S as subroutines. Here, Aps plays the roles of both

parties A and 7. It generates a pair of signing verification keys for A, via (sk 4, pk 4) & K(n), it
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generates a key k for the hash function via k <- hkg(n), and then sets pk as the public key of T (recall
that pk is the key that Apg receives as input.)

It then simulates the execution of the experiment answering the adversary’s queries to oracle OSACShW
(using the parameters set as above). When S schedules A to output its first message, Aps generates
a nonce N4 and computes a signature 0 = S(ska,ma) on message ma = (A, B, T, text, h;(Na))
and sends (m 4, o) to the adversary. At this point the scheduler S is changed with scheduler S” (which
schedules A to contact 7" with an abort message, and carries out the abort protocol). Since we are in the
case when A obtains a replacement contract, it must be the case that the replacement contract was created
by A itself (since 7" would not provide one due to the abort message described above). The replacement
contract is a valid signature with respect to pk. Furthermore, Aps never makes a query to its signing
oracle, the replacement contract output by A is therefore a successful forgery against DS.

If A obtains a standard contract (sig[m’,, A], N;,siglmp, B], Ng), we further distinguish two cases,
depending on whether hy(Ny) = hj(N4) or not (here N4 is the nonce that A sends in its first message
and N A is the nonce in the contract that A’ obtains).

Assume for now that h(N'y) = hy(N4) Therefore, the only way for the adversary A’ to obtain a valid
contract of the form (sig[m/y, A], Ny, sigmp, B], Np) orsig|(sig[m 4, 4], siglmp, B]), T is to compute
N 4 in the first case or compute a valid signature of 7" in the second case.

Adversary Ay simulates Exp(n, IT ASW-A A A ,S,S', goal,, goal,, challenge) and it uses adver-
saries A, A’ soubroutines. In the simulation, Ay, plays the roles of both A and 7" (in particular generates
signing/verification keys for both). Recall that Ay, takes as input a key k and a hash value y «— hy(z)
for some z <-¢ {0,1}". The key of the hash function is set to k. Adversary Ay uses in its simula-
tion the scheduler S up to the point when A sends its first message to the adversary A. It then starts
using the scheduler S', which as before, directs A to request 7" to abort the protocol. Next, it continues
the execution up to the point when the adversary outputs a contract (sig[m’y, A], N'y,sig[mp, B], Ng)
such that hy(N') = hi(Na), adversary Ay outputs Ny as a forgery. Notice that if A is successful
in Exp(n, IT ASW-A A S, checkfair) (and the contract that A outputs is as above) then Ay outputs a
preimage of y with non-negligible probability.

Finally, if the adversary outputs a contract such that hy(N'y) # hj(N4), then we construct an adversary
against DS.

Adversary Apg uses adversaries A, A’ and the scheduler S as subroutines by simulating the experiment
Exp(n, ITASW-A A A S S goal,,goal,, challenge) as above, and simulates parties A and 7". The
public key of A is set to pk (the key that A receives as input). When A has to output its first message, Aps
selects N4 <= {0,1}", computes the message m 4 = (A, B, T, text, hy(N4)), sends m 4 to its signing
oracle Ops(sk, -) and receives a signature o on m 4. It sends (m4,0) to A. At this point, it switches
the scheduler to S’ (which directs A to carry out the abort protocol with T'). In the remainder of the
execution, Apg answers all queries that A may make to oracle (’)g\iyv , until A outputs the forgery contract
(siglm/y, A], Ny, sigmp, B], Np). At this point, Aps outputs (m/y, sig[m’,, A]) as its attempted forgery.
Since the contract is valid, sig[m/,, A] is a valid signature on m/,. Moreover, since hy(N4) # hi(N'y),
it follows that the message m’, # m 4, and therefore m/, was not queried by Apg to its signing oracle.
We conclude that the forgery that Apg outputs is valid.

Case 4 The agent A has sent sig[ma, A] and has received a valid answer from the adversary A’ (thus
she has sent her nonce N4) but did not get the last message from A’. We show that the adversary
A cannot achieve goal; (A does not have a contract). In particular, consider the scheduler S’ that
schedules A such that she immediately contacts the TTP, sending a resolve request with the message
(siglma, Al],siglmp, B]). Since A did not send any abort request, the TTP will return a valid contract to
A that S’ will immediately deliver to A thus goal, is not achieved. Note that the adversary cannot have
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sent an abort request to the TTP, masquerading A, since the communications between A and the TTP are
made over a secure channel.

Case 5 The agent A has finished her protocol, that is, she got the last message from the adversary. She has
the contract thus goal; cannot be achieved.

Conversely, the ASW protocol is balanced w.r.t. the second participant B. Let goal, be “B does not
have a contract” and goal, be “the adversary has a valid contract”.

Proposition 4. I7A5WB is balanced w.rt. goal,, goal,, OA3W™B, OASWB OASW=B ‘and OASW-E,

adv adv’ sch

Proof (sketch): The proof is again done by contradiction. Assume there exist restricted adversary machines
A = AOBW) and A’ = A(O23W) for ITASWB and a scheduler S = S(OASW) for ITASWB and A such
that, for any fair scheduler S’ = S'((’)SACS,LW) for ITASW-B and A’ and for any challenge function challenge,
with non negligible probability it holds that Exp(n, ITASW"B A A’'S'S' goal,,goal,, challenge) = 1.

We have S(n) ~» ¢ where S = S(ITASW"B  A|'S). We consider several cases for ¢.

Either the agent B has not received any valid message of the form sig[m 4, A] from the adversary,

. The agent B has or has not received a valid message of the form sig[m 4, A] from the adversary but he

has chosen not to answer,

3. The agent B has received a valid message of the form sig[m 4, A] from the adversary and he has sent his
promise to sign sig[mp, B] but he did not get a valid answer from A, and the TTP has answered a valid
abort query from A for this contract,

4. The agent B has received a valid message of the form sig[m 4, A] from the adversary and he has sent his
promise to sign sig[mp, B] but he did not get a valid answer from A, and the TTP has not answered a
valid abort query from A for this contract,

5. The agent B has received a valid message of the form sig[m 4, A] from the adversary, he has sent his

promise to sign sig[m g, B] and he got a valid answer from the adversary.

N —

At least one of these cases must happen with non negligible probability. Bellow we give the intuition
that shows how attacks against the protocols can be translated into attacks against the primitives used in
the construction. The intuition can be transformed into reduction proofs similar to the ones in the proof of
Proposition 3.

Cases 1 and 2 are similar. In both cases, B has not sent his promise to sign sig[mp, B]. Let us show
that A’ cannot achieve goal, (“having a valid contract”) for every scheduler S’ fair for IT ASW-B and
A, In particular, consider the scheduler that schedules B such that he refuses to initiate any contract-
signing protocol with the adversary A’. The only way for A to obtain a valid contract either of the form
(siglma, A], Na,siglmp, B], Ng) or of the form sig[(sig[m 4, A],sig[mp, B]), T} is to forge a valid sig-
nature of B or T or to contact the TTP sending a message of the form (sig[m 4, A],siglmp, B]) to T. In
that case A’ has forged a valid signature of B. In both cases, A’ must have forged a valid signature of an
honest agent.

Case 3 The agent B has received a valid message of the form sig[m 4, A] from the adversary and he has
sent his promise to sign sig[m g, B] but he did not get a valid answer from the adversary, and the TTP
has answered a valid abort query from A for this contract. Let us show that the adversary A’ can-
not achieve goal, (“having a valid contract”). The TTP has not provided and would not provide any
valid contract to any party. The only way for the adversary A’ to obtain a valid contract of the form
(siglma, A], Na,siglmp, B], Ng) or sig[(sig[ma, A],sig[mp, B]),T] is to forge compute Np in the
first case or compute a valid signature of 7" in the second case.
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Case 4 The agent B has received a valid message of the form sig[m 4, A] from the adversary and he has
sent his promise to sign sig[mp, B] but he did not get a valid answer from A, and the TTP has not
answered a valid abort query from A for this contract. Let us show that the adversary A’ cannot achieve
goal, (B does not have a contract). In particular, consider the scheduler S’ that schedules B such that
she immediately contacts the TTP, sending a resolve request with the message (sig[m 4, A], sigm g, B]).
Since 7" has not answered a valid abort request from A’ for this contract, B would receive a valid contract
from the TTP thus goal, is not achieved.

Case 5 The agent B has has the contract thus goal; cannot be achieved.

F Security for Digital Signature Schemes

Definition 6. [Security of a digital signature scheme] Let DS = (G,K,S,V) be a digital signature
scheme. Consider an adversary A that is given input a public key pk and access to a signing oracle O s(sk, -),
where pk and sk are matching keys generated via (pk, sk) < K(17). The oracle takes input a message M
and returns a signature o <- S(sk, M). A queries this oracle on messages of its choice, and eventually out-
puts a forgery (M, o). The adversary’s advantage in attacking the scheme is the probability that it outputs a
pair (M, o) such that o is a valid signature for message M and this message was not queried to the signing
oracle. DS is said to be secure against existential forgery under adaptive chosen-message attacks (or, simply,
secure) if the advantage of any efficient A is negligible in k. Here and for other definitions in the paper we
adopt the convention that the time complexity of adversary A is the execution time of the entire experiment,
including the time taken for parameter and key generation, and computation of answers to oracle queries.

G Preimage Resistant Hash Functions

Definition 7 (Hash Functions.). A hash function family {/(-)}xe0,13» consists of algorithms for key gen-
eration and function evaluation. We assume that for security parameter ), key generation consists in choosing
k < {0,1}". Hash function evaluation for key k takes an arbitrary input in {0,1}* and returns a bit string
y € {0,1}!, for some constant /. We write y < hy,(z) for the process of evaluating the hash function on
for key k.

In this paper we use hash functions that are preimage resistant.

Definition 8 (Preimage resistance). We say that the hash function family {%(-) }xc(0,1}» IS preimage resis-
tant if for probabilistic polynomial time algorithms A

Pr [y — hp(x); o' & Ak, y) - hp(a!) = ZJ}

is a negligible function in 7. The probability is taken over the random choices k& < {0,1}7 ; = & {0,1}7,
as well as the coins used by the adversary.
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