
Fully Secure Proxy Re-Encryption without Random Oracles

Jun Shao Zhenfu Cao∗ Licheng Wang Xiaohui Liang
chn.junshao@gmail.com zfcao@cs.sjtu.edu.cn wanglc.cn@gmail.com liangxh127@sjtu.edu.cn

Department of Computer Science and Engineering, Shanghai Jiao Tong University
800 Rd. Dongchuan, Shanghai, 200240, P. R. China

July 13, 2007

Abstract

In a proxy re-encryption scheme, a semi-trusted proxy, with some additional information, can
transform a ciphertext under Alice’s public key into a new ciphertext under Bob’s public key on the
same message, but cannot learn any information about the messages encrypted under the public key
of either Alice or Bob. In this paper, we propose two new unidirectional proxy re-encryption schemes,
where a proxy can transform a ciphertext for Alice into a new ciphertext for Bob, but not vice versa.
Note that, unidirectional proxy re-encryption is more powerful than bidirectional one, since a bidirec-
tional scheme can always be implemented by an unidirectional one. Furthermore, these two schemes
can be proved in the standard model, chosen-ciphertext secure based on Decisional Bilinear Inverse
Diffie-Hellman assumption and master key secure based on Extended Discrete Logarithm assumption.
To our best knowledge, our proposals are the first fully secure (CCA-secure and master key secure)
proxy re-encryption schemes in the standard model.

Key words: proxy re-encryption, unidirectional, the standard model, fully secure.

1 Introduction

In many applications, including encrypted email forwarding [BBS98], distributed file systems [AFGH05,
AFGH06], the DRM of Apple’s iTunes [Smi05] and the interoperable DRM architecture [TCG06], it
is desired that the data is encrypted under pk1 can be re-encrypted under pk2. One nice solution to
this problem is proxy re-encryption, introduced by Blaze, Bleumer and Strauss at EUROCRYPT 1998
[BBS98], where a semi-trusted proxy, with some additional information, can transform a ciphertext under
Alice’s public key into a new ciphertext under Bob’s public key on the same message, but cannot learn
any information about the messages encrypted under the public key of either Alice or Bob.

In [BBS98], Blaze et. al. proposed a concrete proxy re-encryption scheme, named BBS scheme, based
on ElGamal public key scheme [ElG85], where the proxy can transform ciphertexts from Alice to Bob, and
vice versa. That is, the BBS scheme is bidirectional. Unfortunately, the BBS scheme suffers from collusion
attacks, i.e., Alice (Bob) can collude with the proxy to reveal Bob’s (Alice’s) secret key. Furthermore,
no unidirectional proxy re-encryption scheme was proposed in [BBS98]. Jakobsson [Jak99], and Zhou et.
al. [ZMSR05] gave a partial solution to the problems in [BBS98] by proposing a quorum-based protocol
where the proxy is divided into sub-components.

∗Corresponding Author.

1

In [ID03], based on key sharing technique, Ivan and Dodis proposed a generic construction for uni-
directional proxy re-encryption, where the delegator’s (Alice’s) secret key is divided into two parts, one
is sent to the proxy, and the other is sent to the delegatee (Bob). Although this generic construction
has advantages over the previous schemes, there are also several disadvantages. (1) Besides his own
secret key, the delegatee (Bob) has to store an additional secret to decrypt re-encrypted ciphertext for
every delegator. (2) Though the delegator (Alice) cannot collude with the proxy to reveal the delegatee’s
(Bob’s) secret key, the delegatee (Bob) can collude with the proxy to reveal the delegator’s (Alice’s) secret
key. Ateniese et. al. [AFGH05, AFGH06] proposed an improvement of Ivan-Dodis construction, which
removes the above disadvantages.

However, as mentioned in [CH07], the above proxy re-encryption schemes achieve at most chosen
plaintext attacks (CPA) security. In fact, applications often require security against chosen ciphertext
attacks (CCA). Recently, based on another key sharing technique, Green and Ateniese proposed the first
CPA and CCA secure ID-based unidirectional proxy re-encryption schemes in the random oracle model
[GA06]. However, since they employed the key sharing technique, the schemes in [GA06] suffer from
the following attack as the schemes in [ID03]: the delegatee (Bob) can collude with the proxy to reveal
the delegator’s (Alice’s) secret key. In a concurrent and independent work [CH07], Canetti and Hohen-
berger proposed the first CCA-secure bidirectional proxy re-encryption scheme, named CH scheme, in the
standard model. Their result is very nice. To achieve CCA-secure, Canetti and Hohenberger applied the
Canetti, Halevi and Katz paradigm [CHK04] (which is for transforming any selective-identity, CPA-secure
ID-based encryption scheme into a CCA-secure encryption scheme) with somewhat modification. That
is, adding an element Z to the ciphertext (X, Y) of a selective-identity, CPA-secure ID-based encryption
scheme, such that the second part of the ciphertext Y and Z will be signed by a strongly-unforgeable
one-time signature scheme, and Z allows anyone to check that unsigned first part of the ciphertext X
wasn’t mutated in any meaningful way. To give the proof in the standard model, they replaced the random
oracles with specific concrete hash functions, in particular, the ones in [CHK03, BB04]. However, like pre-
vious bidirectional proxy re-encryption schemes, the CH scheme suffers from collusion attacks. In [CH07],
Canetti and Hohenberger did not propose any CCA-secure unidirectional proxy re-encryption scheme in
the standard model, but left it as an open problem1. Note that, unidirectional proxy re-encryption is
more powerful than bidirectional one, since a bidirectional scheme can always be implemented by an
unidirectional one.

1.1 Our Contribution

We present two proxy re-encryption schemes secure against chosen-ciphertext attacks. Our schemes
are unidirectional, and efficient enough to be used in practice. We use Canetti-Hohenberger technique
[CH07] (replacing random oracles with concrete hash fucntions) to prove them secure under the Decisional
Bilinear Inverse Diffie-Hellman assumption in the standard model. Our construction is a combination
of the techniques due to Fujisaki-Okamoto [FO99] and Canetti-Hohenberger [CH07]. That is, we use
Canetti-Hohenberger technique (using a strongly unforgeable one-time signature scheme) to achieve pub-
lic verifiability for original ciphertexts, and use Fujisaki-Okamoto technique and Canetti-Hohenberger
technique to achieve CCA-security for both original ciphertexts and re-encrypted ciphertexts.

Unlike other CCA-secure proxy re-encryption schemes [GA06, CH07], our proposals can resist the
collusion attacks, i.e., Alice (Bob) and the proxy cannot cooperate to reveal Bob’s (Alice’s) secret key.
We name this security as master key security, whose formal definition is given in Section 2.

1In [CH07], Canetti and Hohenberger proposed four open problems on proxy re-encryption, such that building (1)
unidirectional CCA-secure schemes in the standard model, (2) multi-hop, unidirectional schemes, (3) unidirectional or CCA-
secure scheme without bilinear groups, (4) secure obfuscations of CCA-secure re-encryption or other key translation schemes.

2

Obviously, our proposals answer the first open problem proposed by Canetti and Hohenberger in
[CH07].

1.2 Paper Organization

The remaining paper is organized as follows. In Section 2, we review the definitions of proxy re-encryption
and its security model against chosen-ciphertext attacks. And then, we review the Bilinear groups and
the underlying complexity assumptions in Section 3. In what follows, we present our schemes and their
security proofs. Finally, we conclude the paper in Section 5.

2 Definitions

The similar definitions can be found in [AFGH05, AFGH06, GA06, CH07].

Definition 1 (Unidirectional PRE) An unidirectional proxy re-encryption scheme PRE is a tuple of
PPT algorithms (KeyGen, ReKeyGen, Enc, ReEnc, Dec):

• KeyGen(1k) → (pk, sk). On input the security parameter 1k, the key generation algorithm KeyGen
outputs a public key pk and a secret key sk.
• ReKeyGen(sk1, pk2) → rk1→2. On input a secret key sk1 and a public key pk2, the re-encryption

key generation algorithm ReKeyGen output an unidirectional re-encryption key rk1→2.
• Enc(pk, m)→ C. On input a public key pk and a message m in the message space, the encryption

algorithm Enc outputs a ciphertext C.
• ReEnc(rk1→2, C1)→ C2. On input a re-encryption key rk1→2 and a ciphertext C1, the re-encryption

algorithm ReEnc outputs an re-encrypted ciphertext C2 or “Reject”.
• Dec(sk, C) → m. On input a secret key sk and a ciphertext C, the decryption algorithm Dec

outputs a message m in the message space or “Reject”.

Correctness. The correctness property has two requirements. For any message m in the message space
and any key pairs (pk, sk), (pk′, sk′)← KeyGen(1k). Then the following two conditions must hold:

Dec(sk, Enc(pk, m)) = m, Dec(sk′, ReEnc(ReKeyGen(sk, pk′), Enc(pk, m))) = m

Chosen Ciphertext Security for Unidirectional Proxy Re-Encryption.2 We say that an unidi-
rectional proxy re-encryption scheme PRE is semantically secure against an adaptive chosen ciphertext
attack if no polynomial bounded adversary A has a non-negligible advantage against the Challenger in
the following Uni-PRE-CCA game.

Phase 1. The adversary A issues queries q1, · · · , qn1 where query qi is one of:

• Public key generation oracle Opk: On input an index i,3 the Challenger takes a security
parameter k, and responds by running algorithm KeyGen(1k) to generate a key pair (pki, ski),
gives pk to A and records (pki, ski) in table TK .

• Secret key generation oracle Osk: On input pk by A, where pk is from Opk, the Challenger
searches pk in table TK and returns sk.

2This security notion is a modification of that in [CH07, GA06].
3This index is just used to distinguish the different public keys.

3

• Re-encryption key generation oracle OReKeyGen: On input (pk, pk′) by A, where pk,
pk′ are from Opk, the Challenger returns the re-encryption key rkpk→pk′ = ReKeyGen(sk, pk′),
where sk is the secret key corresponding to pk.

• Re-encryption oracle OReEnc: On input (pk, pk′, C) by A, where pk, pk′ are from Opk, the
Challenger returns the re-encrypted ciphertext C ′ = ReEnc(ReKeyGen(sk, pk′), C), where sk is
the secret key corresponding to pk.

• Decryption oracle ODec: On input (pk, C), where pk is from Opk, the Challenger returns
Dec(sk, C), where sk is the secret key corresponding to pk.

These queries may be asked adaptively, that is, each query qi may depend on the replies to
q1, · · · , qi−1.

Challenge: Once the adversary A decides that Phase 1 is over, it outputs two equal length plaintexts
m0, m1 from the message space, and a public key pk∗ on which it wishes to be challenged. There
are two constraints on the public key pk∗, one is that it did not appear in any query to Osk in Phase
1, the other is that if (pk∗,F) did appear in any query to OReKeyGen, then F did not appear in
any query to Osk.

The Challenger picks a random bit b ∈ {0, 1} and sets C∗ = Enc(pk∗,mb). It sends C∗ as the
challenge to A.

Phase 2: The adversary A issues more queries qn1+1, · · · , qn where query qi is one of:

• Public key generation oracle Opk: The Challenger responds as in Phase 1.

• Secret key generation oracle Osk: On input pk by A, where pk is from Opk and pk 6= pk∗,
and if (pk∗, pk) is not a query to OReKeyGen, and if (pk′, pk, C ′) is not a query to OReEnc,
where (pk′, C ′) is a derivative4 of (pk∗, C∗), the Challenger responds as in Phase 1.

• Re-encryption key generation oracle OReKeyGen: On input (pk, pk′) by A, where pk, pk′

are from Opk and if pk = pk∗, then pk′ is not a query to Osk, the Challenger responds as in
Phase 1.

• Re-encryption oracle OReEnc: On input (pk, pk′, C) by A, where pk, pk′ are from Opk, and
if (pk, C) is a derivative of (pk∗, C∗), then pk′ is not a query to Osk, the Challenger responds
as in Phase 1.

• Decryption oracle ODec: On input (pk, C), where pk is from Opk, and if (pk, C) is not a
derivative of (pk∗, C∗), the Challenger responds as in Phase 1.

These queries may be also asked adaptively.

Guess: Finally, the adversary A outputs a guess b′ ∈ {0, 1} and wins the game if b = b′.
4The definition is from that in [CH07]. Derivatives of (pk∗, C∗) are defined as follows

1. (pk∗, C∗) is a derivative of itself.

2. If (pk, C) is a derivative of (pk∗, C∗) and (pk′, C′) is a derivative of (pk, C), then (pk′, C′) is a derivative of (pk∗, C∗).

3. If A has queried OReEnc on input (pk, pk′, C) and obtained (pk′, C′), then (pk′, C′) is a derivative of (pk, C).

4. If A has queried OReKeyGen on input (pk, pk′), and C′ = ReEnc(OReKeyGen(pk, pk′), C), then (pk′, C′) is a derivative
of (pk, C).

4

We refer to such an adversary A as an Uni-PRE-CCA adversary. We define adversary A’s advantage
in attacking PRE as the following function of the security parameter k:

AdvPRE,A = |Pr[b = b′]− 1/2|.

Using the Uni-PRE-CCA game, we can define chosen ciphertext security for unidirectional proxy
re-encryption schemes.

Definition 2 (Uni-PRE-CCA security) We say that the unidirectional proxy re-encryption scheme
PRE is semantically secure against an adaptive chosen ciphertext attack if for any polynomial time Uni-
PRE-CCA adversary A the function AdvPRE,A is negligible. As shorthand, we say that PRE is Uni-PRE-
CCA secure.

Definition 3 (Uni-PRE-MK security) 5 We say that an unidirectional proxy re-encryption scheme
PRE has master key security if for any polynomial bounded adversary A, the following probability is
negligible.

Pr[A(pk1, pk2, sk2, rk1→2, rk2→1) = sk1|(sk1, pk1)(sk2, pk2)← KeyGen(1k)]

Definition 4 (Uni-PRE-Full security) We say that an unidirectional proxy re-encryption scheme PRE
has full security if and only if it is Uni-PRE-CCA secure and Uni-PRE-MK secure.

3 Preliminaries

3.1 Bilinear Groups

In this subsection, we briefly review the definitions about bilinear maps and bilinear map groups, which
follow that in [BF01, BF03].

1. G and GT are two (multiplicative) cyclic groups of prime order q;
2. g is a generator of G;
3. e is a bilinear map e : G×G→ GT .

Let G and GT be two groups as above. A admissible bilinear map is a map e : G × G → GT with the
following properties:

1. Alternation: For all P,Q ∈ G, e(P,Q) = e(Q,P)−1;
2. Bilinearity : For all P,Q,R ∈ G, e(P ·Q,R) = e(P,R) · e(Q,R) and e(P,Q ·R) = e(P,Q) · e(P,R).
3. Non-degeneracy : If e(P,Q) = 1 for all Q ∈ G1, then P = O, where O is a point at infinity.

We say that G is a bilinear group if the group action in G can be computed efficiently and there exists
a group GT and an efficiently computable bilinear map as above. We denote BSetup as an algorithm
that, on input the security parameter 1k, outputs the parameters for a bilinear map as (q, g, G, GT , e),
where q ∈ Θ(2k).

5This security notion is from [AFGH05, AFGH06].

5

3.2 Complexity Assumptions

The security of the schemes proposed in this paper are based on the Decisional Bilinear Inverse Diffie-
Hellman assumption (DBIDH), and the Extended Discrete Logarithm assumption (EDL). 6

DBIDH Problem. Let (q, g, G, GT , e) ←BSetup(1k). The DBIDH problem is as follows: Given
〈g, ga, gab〉 for some a, b ∈ Zq and Q ∈ GT , decide whether Q = e(g, g)b. An algorithm A has advantage
ε in solving DBIDH problem if

|Pr[A(g, ga, gab, e(g, g)b) = 0]− Pr[A(g, ga, gab, Q) = 0]| ≥ ε

where the probability is over the random choice of a, b in Zq, the random choice of Q in GT , the random
choice of g ∈ G∗, and the random bits of A.

Definition 5 (DBIDH Assumption) We say that the ε-DBIDH assumption holds if no PPT algo-
rithm has advantage at least ε in solving the DBIDH problem.

The DBIDH assumption is used in [AFGH05, AFGH06] to build an unidirectional proxy re-encryption.
Furthermore, one can easily show that DBIDH problem is equal to 2-DBDHI problem7, which is used to
constructed many schemes [BB04, DY05].

EDL Problem. Let (q, g, G, GT , e)←BSetup(1k). The DBIDH problem is as follows: Given 〈g, ga, g1/a〉
for some a ∈ Zq, compute a. An algorithm A has advantage ε in solving DBIDH problem if

Pr[A(g, ga, g1/a) = a] ≥ ε

where the probability is over the random choice of a in Zq, the random choice of Q in GT , the random
choice of g ∈ G∗, and the random bits of A.

Definition 6 (EDL Assumption) We say that the ε-EDL assumption holds if no PPT algorithm has
advantage at least ε in solving the EDL problem.

It is easy to see that the EDL problem is easier than the Discrete Logarithm problem (DL), and is
equal to 2-DL problem8, which is also used in [AFGH05, AFGH06].

4 Fully Secure Unidirectional Proxy Re-Encryption Constructions

Following the approach of Canetti-Hohenberger [CH07], we first propose a simple construction in the
random oracle model, and then we use the same method of [CH07] to replace the random oracles with
concrete hash functions.

4.1 Unidirectional PRE Construction,
∏

Uni−RO, in the Random Oracle Model

Notations and Configuration. Let 1k be the security parameter and (q, g, G, GT , e)← BSetup(1k), and
Sig = (G,S,V) be a strongly unforgeable one-time signature scheme, where l = l(k) denotes the length
of the verification keys output by G(1k). Moreover, we assume that any given key in Sig has a negligible
chance of being sampled9. Let H1 : {0, 1}≤l → G, H2 : {0, 1}∗ → {0, 1}n, H3 : {0, 1}∗ → {0, 1}k1 be

6We thank Susan Hohenberger for pointing out the relations among DBIDH (EDL) and exsiting assumptions.
7The 2-DBDHI problem is: given the tuple (g, gx, · · · , g(xq)) as input, to distinguish e(g, g)1/x from random.
8The 2-DL problem is: given (g, ga, ga2

) as input, to compute a.
9It requires that G has super-logarithmic minimum entropy.

6

three hash functions, where k1 is another security parameter, and we will treat H1 as a random oracle
and other hash functions as any concrete collision-resistant hash function, such as SHA-1.

Define the algorithm Check on input a ciphertext tuple (A,B, C, D, E, F, S) and a key pk as follows:
1. Run V(A, (C,D,E, F), S) to verify signature S on message (C,D,E, F) with respect to key A.
2. Check that e(B,H1(A)) = e(pk, D).
3. If any of these checks fails, output 0; else output 1.

Scheme
∏

Uni−RO = (KeyGen, ReKeyGen, Enc, ReEnc, Dec) is described as follows:

Key Generation (KeyGen): On input 1k, select random x ∈ Zq. Set pk = gx and sk = x.

Re-Encryption Key Generation (ReKeyGen): On input a public key pkY and a secret key skX = x,
output the unidirectional re-encryption key rkX→Y = (pkY)1/x = gy/x.

Encryption (Enc): On input pk and a message m ∈ {0, 1}n, do:
1. Select a one-time signature key pair as G(1k)→ (svk, ssk). Set A = svk.
2. Select two random numbers r ∈ Zq, σ ∈ GT and compute

B = pkr, C = e(g, g)r · σ, D = H1(A)r, E = H2(σ)⊕m, F = H3(σ||m).

3. Run the signing algorithm S(ssk, (C,D,E, F)), where the message to sign is the tuple (C,D,E, F),
and denote the signature S.

4. Output the ciphertext (A,B, C, D, E, F, S).

Re-Encryption (ReEnc): On input a re-encryption key rkX→Y and a ciphertext K = (A,B, C, D, E, F, S)
under key pkX , if Check(K, pkX) = 0, output “Reject” and terminate; otherwise, re-encrypt the
ciphertext to be under key pkY as:

1. Compute B′ = e(B, rkX→Y) = e(g, g)yr.
2. Output the new ciphertext (A,B, (B′, pkX), C, D, E, F, S).

Decryption (Dec): On input a secret key sk and any ciphertext K, parse K,
Case K = (A,B, C, D, E, F, S): If Check(K, gsk) = 0, output “Reject” and terminate; otherwise,

compute σ = C/e(B, g)1/sk, m = E ⊕H2(σ).
Case K = (A,B, (B′, pkX), C, D, E, F, S): If Check(K ′, pkX) = 0, where K ′ = (A,B, C, D, E, F, S),

output “Reject” and terminate, otherwise, compute σ = C/B′1/sk, m = E ⊕H2(σ).

If F = H3(σ||m), output m; otherwise, output “Reject” and terminate.

Correctness. The correctness property is easily observable.
It is easy to prove that this scheme is fully secure in the random oracle model. However, in this paper,

we are interested in the scheme fully secure in standard model. Hence, we omit this proof.

7

4.2 Unidirectional PRE Construction,
∏

Uni, without Random Oracles

In this subsection, we apply the technique of [CH07] to convert
∏

Uni−RO to
∏

Uni, the latter one can be
proved in the standard model. The only difference between

∏
Uni−RO and

∏
Uni is the function H1. In∏

Uni−RO, H1(y)
def
= gy

2 · g3
10 instead of a random oracle, where g2 and g3 are two random numbers in G.

Theorem 1 If the DBIDH assumption holds in (G, GT), then scheme
∏

Uni is Uni-PRE-CCA secure in
the standard model.

Proof. If there exist an adversary A break
∏

Uni, then we can construct an algorithm B that uses A to
solves DBIDH problem, i.e., on DBIDH input (g, ga, gab, Q), B decides if Q = e(g, g)b or not. B sets up
the global parameters for A as follows: the description of the groups 〈g〉 = G, GT , their prime order q,
and the mapping e : G×G→ GT , (svk∗, ssk∗)← G(1k), A∗ = svk∗, g2 = gα1 , g3 = gaα2−α1A∗

, where α1

and α2 are two random numbers from Zq. The system parameters are (q, g, g2, g3, G, GT , e, H1,H2,H3).
The security parameter is k ≥ |q|.
B interacts with A in an Uni-PRE-CCA game as follows (B simulates the Challenger for A). In

the following we use starred letters (A∗, B∗, C∗, D∗, E∗, F ∗, S∗) and to refer to the challenge ciphertext
corresponding to an uncorrupted pk∗.

Phase 1. B builds the following oracles.
• Opk: B first selects a random coin ∈ {0, 1} so that Pr[coin = 0] = δ for some δ11. And

then, B picks a random xi ∈ Zq. If coin = 0, B computes pki = gxi ; otherwise, B computes
pki = (ga)xi . At last, B records the tuple (pki, xi, coini) in TK , and responds A with pki.
• Osk: On input pki, B checks whether pki exists in TK , if not, B aborts. Otherwise, if coini = 1,
B reports failure and aborts. If coini = 0, B responds A with xi, and records pki in table Tsk.

• OReKeyGen: On input (pki, pkj), B checks whether pki and pkj both exist in TK , if not, B
aborts. Otherwise, B does the following performances.

– If coini = coinj , B responds A with gxj/xi , and records (pki, pkj) in table Trk.
– If coini = 0 and coinj = 1, B responds A with (pkj)1/xi , and records (pki, pkj) in table

Trk.
– If coini = 1 and coinj = 0, B reports failure and aborts.

• OReEnc: On input (pki, pkj ,K), B checks whether pki and pkj both exist in table TK , if not,
B aborts. Otherwise, if Check(K, pki) = 0, then the ciphertext is not well-formed, B outputs
“Reject” and aborts; otherwise, B parses K = (A,B, C, D, E, F, S), and does the following
performances.

– If coini = 1 and coinj = 0, B computes:

t =
D

Bα2/xi
, λ =

1
α1(A−A∗)

.

Then B gets B′ = e((tλ)xj , g), and responds A with (A,B, (B′, pki), C, D, E, F, S).
Note that when A 6= A∗,12 then B can solve for tλ = gr since:

t =
H1(A)r

(pkr
i)α2/xi

=
grA
2 gr

3

pk
rα2/xi

i

=
(gα1)rA(gaα2−α1A∗

)r

(gaxi)rα2/xi
=

grα1(A−A∗)+raα2

graα2
= grα1(A−A∗).

10In fact, as mentioned in [CH07], we use y instead of ỹ for simplicity, where ỹ is a fixed one-to-one representation of y in
Zq. This one-to-one mapping from y to ỹ can be implemented by an additional hash function.

11It can be determined by the same method of that in [BF01, BF03, GS02].
12We assume that any given key of the one-time signature scheme has a negligible chance of being sampled, hence, the

probability of the event A = A∗ is negligible.

8

– Otherwise, B calls OReKeyGen on input (pki, pkj) to get the re-encryption key rki→j ,
executes ReEnc(rki→j ,K), and responds A with the result.

• ODec: On input (pki,K), B checks whether pki exists in table TK , if not, B aborts. Otherwise,
B does the following performances.

– If coini = 0, then ski = xi, B responds A with Dec(ski,K).
– If coini = 1, B parses K,

Case K = (A,B, C, D, E, F, S): If Check(K, pki) = 0, B outputs “Reject” and aborts;
otherwise, B solves for gr as it does in OReEnc, and computes σ = C/e(gr, g), m =
E⊕H2(σ). If F = H3(σ||m), B outputs m; otherwise, B outputs “Reject” and aborts.

Case K = (A,B, (B′, pkX), C, D, E, F, S): If Check(K ′, pkX) = 0, where
K ′ = (A,B, C, D, E, F, S), B outputs “Reject” and aborts; otherwise, B does

∗ If the value of coinX , corresponding to pkX , is 0, then B computes gr = B
1

xX , and
checks B′ ?= e(gr, pki). If not, B outputs “Reject” and aborts; otherwise, B returns
the result of Dec(xX ,K ′), where K ′ = (A,B, C, D, E, F, S).

∗ If the value of coinX , corresponding to pkX , is 1, then B solves for gr as it does
in OReEnc, and checks B′ ?= e(gr, pki). If not, B outputs “Reject” and aborts;
otherwise, B computes σ = C/e(gr, g), m = E ⊕ H2(σ). If F = H3(σ||m), B
outputs m; otherwise, B outputs “Reject” and aborts.

Challenge: At some point, A outputs a challenge tuple (pk∗,m0,m1). If pk∗ is not in table TK , or pk∗

is table Tsk, or (pk∗, pki) is in table Trk, and pki is in table Tsk, then B aborts. If the value of coin∗,
corresponding to pk∗, is 0, B reports failure and aborts. Otherwise, B responds choosing a random
d ∈ {0, 1} and setting:

A∗ = svk∗, B∗ = (gab)x∗ = (pk∗)b, C∗ = Q · σ,

D∗ = (gab)α2 = ((gα1)A∗ · gaα2−α1A∗
)b = (gA∗

2 · g3)b = H1(A∗)b,

E∗ = H2(σ)⊕md, F ∗ = H3(σ||md), S∗ = S(ssk∗, (C∗, D∗, E∗, F ∗)),

where x∗ is in the same item with pk∗ in table TK . B returns K∗ = (A∗, B∗, C∗, D∗, E∗, F ∗, S∗) to
A, and records (pk∗,K∗) in table Tre.

Phase 2: B builds the following oracles.

• Opk: B responds as in Phase 1.

• Osk: On input pki, if pki = pk∗, or (pk∗, pki) is in table Trk, then B aborts. Otherwise, B
responds as in Phase 1.

• OReKeyGen: On input (pki, pkj), if pki = pk∗, and pkj is in table Tsk, B aborts. Otherwise, B
responds as in Phase 1.

• OReEnc: On input (pki, pkj ,K), if (pki,K) = (pk∗,K∗) and pkj is in table Tsk, B aborts.
Otherwise, B responds as in Phase 1.

• ODec: On input (pki,K), if (pki,K) = (pk∗,K∗), or K = OReEnc(pk∗, pki,K
∗), then B aborts.

Otherwise, B responds as in Phase 1.

Guess: Finally, the adversary A outputs a guess d′ ∈ {0, 1}. If d = d′, then B outputs 1 (i.e., DBIDH
instance), otherwise B outputs 0 (i.e., not a DBIDH instance).

If any of the failure conditions (below) are false, B can use A to solve DBIDH problem.

9

1. The value of coin corresponding to pk∗ is 0.
2. For each of A’s queries Osk(pki), where pki 6= pk∗, coini = 1.
3. For each of A’s queries OReKeyGen(pki, pkj), where pki 6= pk∗, coini = 1 and coinj = 0.

Suppose A makes a total of qsk queries to secret key generation oracle, and qrk queries to re-encryption
key generation oracle. Then the probability that B does not abort in phases 1 or 2 is δqsk ·(1−(1−δ)δ)qrk .
The probability that it does not abort during the challenge step is 1− δ. Therefore, the probability that
B does not abort during the simulation is δqsk(1 − δ)(1 − δ + δ2)qrk . Now, we assume that qmax =
max{qsk, qrk}, then we have δqsk(1− δ)(1− δ + δ2)qrk ≥ δqmax(1− δ)(1− δ + δ2)qmax .

According to result of [BF01, BF03], δqmax(1 − δ) reaches maximal value, i.e., 1
e(1+qmax) , when δ =

qmax

1+qmax
. At this time, the value of the rest part (1 − δ + δ2)qmax approximate 1/e when qmax is large

enough. Thus, we have

δqmax(1− δ)(1− δ + δ2)qmax ≥ 1
e2(1 + qmax)

Now, we can finish this proof. �

Theorem 2 If the EDL assumption holds in (G, GT), then scheme
∏

Uni has Uni-PRE-MK security.

Proof. One can easily show that an algorithm for against master key security in G (given (g, ga, gb, b, ga/b, gb/a),
compute a) gives an algorithm for solving EDL problem G (given (g, g1/a, ga), compute a). �

Combining the above two theorems, we have

Theorem 3 Under DBIDH assumption and EDL assumption,
∏

Uni has Uni-PRE-Full security in the
standard model.

4.2.1 Discussion of scheme
∏

Uni

The scheme
∏

Uni is the first unidirectional CCA-secure scheme without random oracles, which answers
the first problem asked by Canetti and Hohenberger in [CH07]. However, it still has three disadvantages
as follows:

• The delegator can also decrypt the re-encrypted ciphertext without any more information.13

• The size of ciphertext is expanded after re-encryption.
• The delegatee knows the delegator from the re-encrypted ciphertext.

Can we remove the above disadvantages to construct a new scheme which is also CCA-secure without
random oracles? Fortunately, the answer is “Yes”. In next subsection, we propose such a scheme, named∏′

Uni, which also applies Canetti-Hohenberger technique.

4.3 A Variation
∏′

Uni

Notations and Configuration. (q, g, G, GT , e,Sig) are the same as those in
∏

Uni, g2 and g3 are two
random numbers of G. Let H1 : {0, 1}∗ → Zq, H3 : {0, 1}∗ → {0, 1}n be two hash functions, and

H2(y)
def
= gy

2 · g3.

Define the algorithm Check on input a ciphertext tuple (A,B, C, D, E, S) and a key pk as follows:
13In [AFGH05, AFGH06], the authors considered this disadvantage as a good property, named original-access. However,

we point that non-original-access scheme is more powerful than original-access one, since original-access one can always be
implemented by non-original-access one with the re-encrypted ciphertext containing the original ciphertext.

10

1. Run V(A, (C,D,E), S) to verify signature S on message (C,D,E) with respect to key A.
2. Check that e(B,H2(A)) = e(pk, D).
3. If any of these checks fail, output 0; else output 1.

Scheme
∏′

Uni = (KeyGen, ReKeyGen, Enc, ReEnc, Dec) is described as follows:

Key Generation (KeyGen): The same as that in
∏

Uni.

Re-Encryption Key Generation (ReKeyGen): The same as that in
∏

Uni.

Encryption (Enc): On input pk and a message m ∈ GT , do:
1. Select a one-time signature key pair as G(1k)→ (svk, ssk). Set A = svk.
2. Select a random number σ ∈ GT and compute

r = H1(σ||m), B = pkr, C = e(g, g)r · σ, D = H2(A)r, E = H3(σ)⊕m.

3. Run the signing algorithm S(ssk, (C,D,E)), where the message to sign is the tuple (C,D,E),
and denote the signature S.

4. Output the ciphertext (A,B, C, D, E, S).

Re-Encryption (ReEnc): On input a re-encryption key rkX→Y and a ciphertext K = (A,B, C, D, E, S)
under key pkX , if Check(K, pkX) = 0, output “Reject” and terminate; otherwise, re-encrypt the
ciphertext to be under key pkY as:

1. Compute B′ = e(B, rkX→Y) = e(g, g)yr.
2. Output the new ciphertext (A,B′, C, D, E, S).

Decryption (Dec): On input a secret key sk and any ciphertext K, parse K = (A,B, C, D, E, S),
Case B ∈ G: If Check(K, gsk) = 0, output “Reject” and terminate; otherwise, compute σ =

C/e(B, g)1/sk, m = E⊕H3(σ). If B = pkH1(σ||m) and D = H2(A)H1(σ||m), output m; otherwise,
output “Reject” and terminate.

Case B ∈ GT : Run V(A, (C,D,E), S) to verify signature S on message (C,D,E) with respect
to key A. If yes, compute σ = C/B1/sk, m = E ⊕ H3(σ). If B = e(pk, g)H1(σ||m) and
D = H2(A)H1(σ||m), output m; otherwise, output “Reject” and terminate.

Correctness. The correctness property is easily observable.

The main difference between
∏

Uni and
∏′

Uni is that in
∏′

Uni, r = H1(σ||m) instead of r is a random
number in Zq.

Similar with
∏

Uni, we have the following three theorems on
∏′

Uni.

Theorem 4 If the DBIDH assumption holds in (G, GT), then scheme
∏′

Uni is an Uni-PRE-CCA secure
in the standard model.

Proof. If there exist an adversary A break
∏′

Uni, then we can construct an algorithm B that uses A to
solves DBIDH problem, i.e., on DBIDH input (g, ga, gab, Q), B decides if Q = e(g, g)b or not. B sets up
the global parameters for A as follows: the description of the groups 〈g〉 = G, GT , their prime order q,
and the mapping e : G×G→ GT , (svk∗, ssk∗)← G(1k), A∗ = svk∗, g2 = gα1 , g3 = gaα2−α1A∗

, where α1

and α2 are two random numbers from Zq. The system parameters are (q, g, g2, g3, G, GT , e, H1,H2,H3).
The security parameter is k ≥ |q|.
B interacts with A in an Uni-PRE-CCA game as follows (B simulates the Challenger for A). In the

following we use starred letters (A∗, B∗, C∗, D∗, E∗, S∗) and to refer to the challenge ciphertext corre-
sponding to an uncorrupted pk∗.

11

Phase 1. B builds the following oracles.

• Opk: B first selects a random coin ∈ {0, 1} so that Pr[coin = 0] = δ for some δ. And then,
B picks a random xi ∈ Zq. If coin = 0, B computes pki = gxi ; otherwise, B computes
pki = (ga)xi . At last, B records the tuple (pki, xi, coini) in TK , and responds A with pki.

• Osk: On input pki, B checks whether pki exists in TK , if not, B aborts. Otherwise, if coini = 1,
B reports failure and aborts. If coini = 0, B responds A with xi, and records pki in table Tsk.

• OReKeyGen: On input (pki, pkj), B checks whether pki and pkj both exist in TK , if not, B
aborts. Otherwise, B does the following performances.

– If coini = coinj , B responds A with gxj/xi , and records (pki, pkj) in table Trk.
– If coini = 0 and coinj = 1, B responds A with (pkj)1/xi , and records (pki, pkj) in table

Trk.
– If coini = 1 and coinj = 0, B reports failure and aborts.

• OReEnc: On input (pki, pkj ,K), B checks whether pki and pkj both exist in table TK , if not,
B aborts. Otherwise, if Check(K, pki) = 0, then the ciphertext is not well-formed, B outputs
“Reject” and aborts; otherwise, B parses K = (A,B, C, D, E, S), and does the following
performances.

– If coini = 1 and coinj = 0, B computes:

t =
D

Bα2/xi
, λ =

1
α1(A−A∗)

.

Then B gets B′ = e((tλ)xj , g), and responds A with (A,B′, C, D, E, S).
Note that when A 6= A∗, then B can solve for tλ = gr since:

t =
H2(A)r

(pkr
i)α2/xi

=
grA
2 gr

3

pk
rα2/xi

i

=
(gα1)rA(gaα2−α1A∗

)r

(gaxi)rα2/xi
=

grα1(A−A∗)+raα2

graα2
= grα1(A−A∗).

– Otherwise, B calls OReKeyGen on input (pki, pkj) to get the re-encryption key rki→j ,
executes ReEnc(rki→j ,K), and responds A with the result.

• ODec: On input (pki,K), B checks whether pki exists in table TK , if not, B aborts. Otherwise,
B does the following performances.

– If coini = 0, then ski = xi, B responds A with Dec(ski,K).
– If coini = 1, B parses K,

Case K = (A,B, C, D, E, S) & B ∈ G: If Check(K, pki) = 0, B outputs “Reject” and
aborts; otherwise, B solves for gr as it does in OReEnc, and computes σ = C/e(gr, g),
m = E ⊕ H3(σ). If B = e(pk, g)H1(σ||m) and D = H2(A)H1(σ||m), B outputs m;
otherwise, B outputs “Reject” and aborts.

Case K = (A,B, C, D, E, S) & B ∈ GT : Run V(A, (C,D,E), S) to verify signature S on
message (C,D,E) with respect to key A. If not, B outputs “Reject” and aborts;
otherwise, B computes:

t =
e(D, g)
Bα2/xi

, λ =
1

α1(A−A∗)
.

Note that when A 6= A∗, then B can solve for tλ = e(g, g)r since:

12

t = e(H2(A)r,g)

(e(g,g)axir)α2/xi

= e(grA
2 gr

3 ,g)
e(g,g)raα2

= e((gα1)rA(gaα2−α1A∗
)r,g)

e(g,g)raα2

= e(grα1(A−A∗)+raα2 ,g)
e(g,g)raα2

= e(g, g)rα1(A−A∗).

B computes σ = C/e(g, g)r, m = E ⊕ H3(σ). If B = e(pk, g)H1(σ||m) and D =
H2(A)H1(σ||m), B outputs m; otherwise, B outputs “Reject” and aborts.

Challenge: At some point, A outputs a challenge tuple (pk∗,m0,m1). If pk∗ is not in table TK , or pk∗

is table Tsk, or (pk∗, pki) is in table Trk, and pki is in table Tsk, then B aborts. If the value of coin∗,
corresponding to pk∗, is 0, B reports failure and aborts. Otherwise, B responds choosing a random
d ∈ {0, 1} and setting:

A∗ = svk∗, B∗ = (gab)x∗ = (pk∗)b, C∗ = Q · σ,

D∗ = (gab)α2 = ((gα1)A∗ · gaα2−α1A∗
)b = (gA∗

2 · g3)b = H2(A∗)b,

E∗ = H3(σ)⊕md, S∗ = S(ssk∗, (C∗, D∗, E∗)),

where x∗ is in the same item with pk∗ in table TK . B returns K∗ = (A∗, B∗, C∗, D∗, E∗, S∗) to A,
and records (pk∗,K∗) in table Tre.

Phase 2: B builds the following oracles.

• Opk: B responds as in Phase 1.

• Osk: On input pki, if pki = pk∗, or (pk∗, pki) is in table Trk, then B aborts. Otherwise, B
responds as in Phase 1.

• OReKeyGen: On input (pki, pkj), if pki = pk∗, and pkj is in table Tsk, B aborts. Otherwise, B
responds as in Phase 1.

• OReEnc: On input (pki, pkj ,K), if (pki,K) = (pk∗,K∗) and pkj is in table Tsk, B aborts.
Otherwise, B responds as in Phase 1.

• ODec: On input (pki,K), if (pki,K) = (pk∗,K∗), or K = OReEnc(pk∗, pki,K
∗), then B aborts.

Otherwise, B responds as in Phase 1.

Guess: Finally, the adversary A outputs a guess d′ ∈ {0, 1}. If d = d′, then B outputs 1 (i.e., DBIDH
instance), otherwise B outputs 0 (i.e., not a DBIDH instance).

The analysis follows the previous proof. �

Theorem 5 If the EDL assumption holds in (G, GT), then scheme
∏′

Uni has Uni-PRE-MK security.

The proof is the same as Theorem 2.

Combining above two theorems, we have,

Theorem 6 Under DBIDH assumption EDL assumption,
∏′

Uni has Uni-PRE-Full security in the stan-
dard model.

13

5 Conclusions

In this paper, we proposed two new unidirectional proxy re-encryption schemes, which are efficient enough
to be used in practice. Furthermore, they have other nice properties, including master key security
(collusion-resistance), CCA-secure in the standard model, no additional secret the delegatee needs to
store to decrypt the re-encrypted ciphertexts, non-interactive re-encryption key generation.

Note that for scheme
∏

Uni, the Fujisaki-Okamoto technique can be replaced by any CCA-2 secure
one-time symmetric encryption, and H(e(g, g)r) is the key.

Obviously, this work is the answer to the first open problem proposed by Canetti and Hohenberger
in [CH07], and we are working on solving other open problems.

References

[AFGH05] G. Ateniese, K. Fu, M. Green, and S. Hohenberger. Improved proxy re-encryption schemes
with applications to secure distributed storage. In Internet Society (ISOC): NDSS 2005, pages
29–43, 2005. 1, 2, 5, 3.2, 3.2, 13

[AFGH06] G. Ateniese, K. Fu, M. Green, and S. Hohenberger. Improved proxy re-encryption schemes
with applications to secure distributed storage. ACM Transactions on Information and System
Security (TISSEC), 9(1):1–30, 2006. 1, 2, 5, 3.2, 3.2, 13

[BB04] D. Boneh and X. Boyen. Efficient selective-id secure identity-based encryption without random
oracles. In EUROCRYPT 2004, volume 3027 of LNCS, pages 223–238, 2004. 1, 3.2

[BBS98] M. Blaze, G. Bleumer, and M. Strauss. Divertible protocols and atomic proxy cryptography.
In EUROCRYPT 1998, volume 1403 of LNCS, pages 127–144, 1998. 1

[BF01] D. Boneh and M. Franklin. Identity-based encryption from the weil pairing. In CRYPTO
2001, volume 2139 of LNCS, pages 231–229, 2001. 3.1, 11, 4.2

[BF03] D. Boneh and M. Franklin. Identity-based encryption from the weil pairing. SIAM Journal
of Computing, 32(3):586–615, 2003. 3.1, 11, 4.2

[CH07] R. Canetti and S. Hohenberger. Chosen-ciphertext secure proxy re-encryption. 2007. Cryp-
tology ePrint Archieve: Report 2007/171. 1, 1.1, 1, 2, 2, 4, 4, 4.2, 10, 4.2.1, 5

[CHK03] R. Canetti, S. Halevi, and J. Katz. A forward-secure public-key encryption scheme. In
EUROCRYPT 2003, volume 2656 of LNCS, pages 255–271, 2003. 1

[CHK04] R. Canetti, S. Halevi, and J. Katz. Chosen-ciphertext security from identity-based encryption.
In EUROCRYPT 2004, volume 3027 of LNCS, pages 207–222, 2004. 1

[DY05] Y. Dodis and A. Yampolskiy. A verifiable random function with short proofs and keys. In
PKC 2005, volume 3386 of LNCS, pages 416–431, 2005. 3.2

[ElG85] T. ElGamal. A public key cryptosystem and a signature scheme based on discrete logarithms.
IEEE Transactions on Information Theory, 31(4):469–472, 1985. 1

[FO99] E. Fujisaki and T. Okamoto. Secure integration of asymmetric and symmetric encryption
schemes. In CRYPTO 1999, volume 1666 of LNCS, pages 537–554, 1999. 1.1

14

[GA06] M. Green and G. Ateniese. Identity-based proxy re-encryption. 2006. Cryptology ePrint
Archieve: Report 2006/473. 1, 1.1, 2, 2

[GS02] C. Gentry and A. Silverberg. Hierarchical id-based cryptography. In ASIACRYPT 2002,
volume 2501 of LNCS, pages 548–566, 2002. 11

[ID03] A. Ivan and Y. Dodis. Proxy cryptography revisited. In Internet Society (ISOC): NDSS 2003,
2003. 1

[Jak99] M. Jakobsson. On quorum controlled asymmetric proxy re-encryption. In PKC 1999, volume
1560 of LNCS, pages 112–121, 1999. 1

[Smi05] T. Smith. Dvd jon: buy drm-less tracks from apple itunes, march 18, 2005. 2005. Available
at http://www.theregister.co.uk/2005/03/18/itunes pymusique/. 1

[TCG06] G. Taban, A.A. Cárdenas, and V.D. Gligor. owards a secure and interoperable drm architec-
ture. In ACM DRM 2006, pages 69–78, 2006. 1

[ZMSR05] L. Zhou, M.A. Marsh, F.B. Schneider, and A. Redz. Distributed blinding for distributed elga-
mal re-encryption. In Proceedings of the 25th IEEE International Conference on Distributed
Computing Systems (ICDCS’05)-Volume 00, pages 824–834, 2005. 1

15

	Introduction
	Our Contribution
	Paper Organization

	Definitions
	Preliminaries
	Bilinear Groups
	Complexity Assumptions

	Fully Secure Unidirectional Proxy Re-Encryption Constructions
	Unidirectional PRE Construction, Uni-RO, in the Random Oracle Model
	Unidirectional PRE Construction, Uni, without Random Oracles
	Discussion of scheme Uni

	A Variation 'Uni

	Conclusions

