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Abstract. In this paper, we present an efficient signature scheme without random or-
acles using Waters private key construction. Our scheme has shorter public parameter
size when compared to Kenny and Schuldt signature, the signature space of our basic
scheme consists of three group elements, we further show that the signature space can
be reduced to two group elements. In addition, we define a strong-signature version of
our basic scheme. The security of our signature scheme is proved in the standard model
under adaptive identity security notion.
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1 Introduction

The concept of identity (ID) based cryptography (IDC) dates back to 1984 with
the work of Shamir [1]. The field of IDC gained focus since 2000 when Sakai,
Ohgishi and Kasahara [2, 3], and Boneh-Franklin [4] independently presented
concrete ID-based encryption schemes using bilinear pairing. Following the re-
sults in 2001, many cryptographic primitives using bilinear maps were proposed
[5–16]. These schemes were provably secure using the most common, and well
known standard namely, the random oracle model [17]. A scheme which is prov-
ably secure in random oracle model rely on the existence of random functions
(or in other words hash functions which are perceived to be random oracles).
Security in the random oracle model is sufficient in practice. However, there are
examples of schemes [18, 19] which are secure in the random oracle model but are
prone to cryptographic attacks, when the random oracles are replaced by collision
resistant functions.

Since 2004, the standard model proving technique in cryptography has found
interest. The standard model technique of proving security of a cryptographic
scheme uses no random functions. Here, a proof is desired such that, an adver-
sarial algorithm succeeding in breaking the scheme under an attack, necessarily
leads to a reduction in solving the underlying hard mathematical problem. Having
such a proof without the assumption of random functions is always a challenging



task. In the standard model, the adversary performs most of the computations
without relying on any other entity unlike in the random oracle model.

The first fully secure encryption scheme proved in the standard model was con-
structed by Boneh-Boyen in 2004 [20], however this was not computationally
efficient. Earlier in the same year, Boneh-Boyen presented an efficient encryp-
tion scheme proved in slightly weaker notion of security namely selective identity
model [21]. In this model, the adversary has to commit to an identity before start-
ing the attack game. Later in 2005, Waters presented the first encryption scheme
secure under adaptive identity model which was computationally efficient. The
only drawback of this scheme is its long public parameter size. The key construc-
tion given by both, Boneh-Boyen and Waters was of interest because, it could be
thought of as a signature. Following Waters result, Kenny and Schuldt in 2006
presented the first signature [22] in the standard model provably secure in adap-
tive identity notion of security. Their scheme based on Waters key construction
was computationally efficient, but the main drawback was the public parameter
size which is almost doubled compared to that of Waters scheme.

1.1 Motivation and Contribution

The evolving internet and its applications requires secure and authentic data
transmission over insecure channels. This can be achieved using cryptographic
primitives like encryption and signature, which have to be provably secure in the
best known adversarial model. With the increase in computational power of the
adversaries, there is a necessity to define a security model in which an adversary
is independent, like in a real attack. Though random oracle methodology is prac-
tical, it is evident that the adversarial power is limited (relies on an entity namely,
“challenger” for random oracle queries) unlike the standard model. Since 2004,
many encryption schemes [21, 20, 23, 24] have been defined in the standard model
which are provably secure in either selective ID or adaptive ID notion. Among
those defined till date, the scheme presented by Gentry [24] is the most efficient in
terms of computation and tightness of security reduction. Authentication schemes
in the standard model have been proposed by Boneh-Boyen [25], Ateniese et al.
[26] and M.H. Au et al. [27, 28]. The construction of ID-based signature using
generic signature (uses certificates) has been addressed in [29–31]. Although this
results in ID-based signature, the scheme is highly inefficient. The first ID-based
signature in the standard model was presented by Kenny and Schuldt [22] based
on the hardness of computational Diffie-Hellman problem. This scheme suffers
from large public paramter size due to the way the messages are represented.
One of our main contribution is reduction in the public parameter size, in addi-
tion we present a strong signature version of our basic scheme. To improvize the
scheme efficiency, we present how to reduce the signature space of the signature.
Lastly, our construction provides a better security reduction when compared to



[22]. A scheme is said to have tight reduction if the probability ε of breaking
the scheme in time t is equivalent to the probability ε′ of solving the underlying
mathematical assumption in time t′ such that t ' t′.

In this paper, we present an efficient signature scheme with compact public pa-
rameter size. The signature we present is highly efficient and secure against the
known existential unforgeability attack in adaptive identity notion of security in
the standard model. The scheme is based on the intractability of computational
Diffie-Hellman problem. We achieve almost fifty percent reduction in the pub-
lic parameter size when compared to Kenny and Schuldt scheme [22] and also
better security reduction. Further space reduction can be achieved by applying
Chatterjee-Sarkar [32] approach.

1.2 Paper Outline

In Section 2, we present the necessary mathematical preliminaries and the related
complexity assumptions. The security model for our signature scheme is detailed
in Section 3, followed by our signature construction and a note on its efficiency
in Section 4. Section 5 presents a detailed proof of our signature scheme. Finally,
Section 6 presents our conclusion.

2 Background

Before we decribe the construction of our scheme, we present a brief overview of
the notations and other basic mathematical assumptions followed in this paper.

2.1 Bilinear Maps

Let G and G1 be multiplicative groups of prime order q. Let Z∗
q denote the set of

all non-zero integers modulo prime q. A bilinear map is a map ê : G×G → G1,
satisfying the following properties.

1. Bilinear: For all g, g1 ∈ G and a, b ∈ Z∗
q , we have ê(ga, gb

1) = ê(g, g1)
ab.

2. Non-degenerate: ê(g, g) 6= 1.
3. Efficiently Computable: We say that the bilinear map ê is efficiently com-

putable if there exists algorithm to perform the group action in G and there
exists a group G1 such that the map structure holds good.

2.2 Admissible Collision-Resistant Functions

In the signature construction, we assume the existence of collision resistant func-
tions. In our scheme, we use injective mapping of the nature {0, 1}∗ −→ G which
can constructed as given in [23] and {0, 1}n −→ Z∗

q which can be constructed
using general hash functions like SHA, MD-5, etc. While proving the security of
the signature scheme, we assume the existence of such injective mapping so that
one can use any cryptographic hash if needed.



2.3 Complexity Assumptions

Computational Diffie-Hellman Assumption (CDH) Given (g, ga, gb) ∈ G,
where a, b ∈ Zq, the computational Diffie-Hellman assumption states that there
exists no (t, qr, ε) adversary A which can solve the computational Diffie-Hellman
problem of computing gab in time t and qr queries, with a probability of at least
ε.

We say that an adversary A has an advantage ε if,

Pr[A(g, ga, gb) = gab] ≥ ε,

where the probability (Pr) is over randomly chosen a, b.

3 Security Notions

This section briefly describes the security attack game for signature.

3.1 Security Notion of Signature - Existential Unforgeability

Definition 3.11 We say that an ID-based signature scheme (IDS) has existen-
tial unforgeability property against adaptive identity chosen-message attack or
(EUF-IDS-CMA), if no polynomially bounded adversary A has a non-negligible
advantage in the following attack game.

Setup: The challenger runs the Setup algorithm of the scheme and sends the
global system parameter to the adversary A.

Phase 1: A performs polynomially bounded number of queries as follows:

Extract: The adversary submits an identity to the challenger. The challenger
responds with the secret key for that identity.

Sign: The adversary submits a sender identity and a message to the chal-
lenger. The challenger responds with the signature of the message pro-
cessed with private key of the sender.

Forge: The adversary chooses a challenge identity ID∗ and returns a signature
forgery Z on a message M .

Response: The adversary wins if IDi 6= ID∗ and Verify(Z, M, ID∗) = >. The
adversary should not have made extract query on ID∗ and the forgery did
not result from a sign query made to Sign algorithm using (M, ID∗).

The adversary’s advantage is defined to be Adv(A) = Pr[Awins]1.

1 Pr[] denotes probability of an event occurring.



4 Our Signature Scheme

In this section, we present our signature construction which has reduced public
parameter size when compared to [22].

Setup:

1. Let g ∈ G denote a generator of order q and g2, u
′ ∈R G

2. Assign g1 = gs,where s ∈R Z∗
q is kept private.

3. Let
→
U= (ui) be a vector of length nu whose entries are random elements

from G.
4. Hu : {0, 1}nu −→ G which can be computed as follows:

gID = u′
∏

i∈V ui,
V ⊆ {1, .....n} for a given identity v denotes the set of all i’s such that
vi = 1.

5. Hm : {0, 1}nm −→ Z∗
q where nm is the length of the message string.

The public parameter for the system is params =
(
g, g1 = gs, g2, u

′,
→
U,Hu, Hm

)
.

Extract:
1. Let r ∈ Z∗

q .
2. K = gs

2 (gID)r, where gID = Hu(“Identity”).
3. dID = (K, gr).

Sign:
1. t ∈ Z∗

q .
2. m′ = Hm(M).
3. Z = gtm′

A dA[1] = gtm′
A KA.

4. Send (Z,U = gt, V = grA).
Verify:

1. m′ = Hm(M).
2. Accept M if,

ê(g, Z) = ê(g1, g2) ê(V, gA) ê(U, gm′
A ).

4.1 Efficiency of Our Scheme

The security of our scheme relies on the intractability of computational Diffie-
Hellman problem. In regards to the time complexity of our scheme compared to
Kenny and Schuldt [32], our scheme uses O(n) multiplications in both extract
and sign queries, and O(1) exponentiations.in both extract and sign queries.
If t is the time taken by adversary A, then the time taken by B is given by,
t+O((Qe.n+Qs.n)ρ+(Qe +Qs)τ). Our signature proves to be efficient in terms
of public parameter size (G4×Gnu) and also saves one group exponentiation over
G when compared to [22].
In order to reduce the public parameter size without any loss of security, we can
apply the idea suggested by Chatterjee-Sarkar for Waters Scheme. This is done
by increasing the size of G which in turn increases the security level provided



by G to compensate the loss of security. But by using this approach we would
increase the computational cost of the scheme. A detailed approach in achieving
reduced public parameter size with a trade off in computational cost can be found
in [32].

Reducing Signature Space The signature scheme presented above can be
further improvised in terms of signature space with an additional cost of expo-
nentiation over G. We outline the short signature version of our scheme below:

Sign:

1. t ∈ Z∗
q .

2. m′ = Hm(M).

3. Z = gtm′
A dA[1] = gtm′

A KA.

4. Send
(
Z, U = gt+(m′)−1rA

)
.

Verify:

1. m′ = Hm(M).

2. Accept M if,

ê(g, Z) = ê(g1, g2).ê(U, gm′
A ).

The above transformation results in short signature pair which of size 160− 512
bits depending on the class of elliptic curve used. It reduces one pairing operation,
at a cost of one exponentiation over G.

4.2 Strong Signature Version of Our Scheme

As pointed out by Boneh-Boyen in [25], for some applications the signature might
have to exhibit the property of strongness. This means, an adversary should not
be able to create another signature for a message given its signature. We show
how we can achieve this property for the basic version of our scheme given above.

Sign:

1. t ∈ Z∗
q .

2. m′ = Hm(M).

3. Z = g
1

t+m′
A dA[1] = g

1
t+m′
A KA.

4. Send
(
Z, U = g

1
t+m′+rA

)
.

Verify:

1. m′ = Hm(M).

2. Accept M if,

ê(g, Z) = ê(g1, g2) ê(U, gA).



5 Security Proof - Existential Unforgeability

Theorem 5.01 If there is an adversary A that succeeds against the EUF-IDS-
CMA security of our scheme with probability ε and making Q queries. Then there
is a challenger (ε′, Q′)-B running in polynomial time that solves the CDH problem
with a probability at least ε

4(n+1)(Qe+Qs)
.

Proof 5.01 Let A be an adversary having an advantage (ε,Q) in breaking the
scheme under chosen message attack. We show how to construct an algorithm B
which learns from the adversary and solves the CDH assumption with an advan-
tage (ε′, Q′). We present the proof along the lines of [23, 22].

The challenger will be given a generator g of group G and the elements ga and
gb. In order to learn from the adversary A on how to solve the CDH problem, the
challenger must simulate an environment as in a real attack and should be able to
answer A’s queries effectively without aborting the simulation. Such a simulation
can be created in the following way:

Setup:

The challenger sets m = 2(Qe+Qs), where Qe is the number of queries made to
the extract oracle and Qs is the number of queries made to the signature oracle.
Let n denote the length of an identity, the challenger then chooses k ∈R Zn.
We will assume that m(n + 1) < q, for a given Qe, Qs and n. The challenger

then chooses x′ ∈R Zm and a random n-length vector,
−→
X = (xi), where the

elements of
−→
x are chosen uniformly random from the integers between 0 and

m− 1. Additionally, the challenger chooses a random y′ ∈ Zq and an n-length

vector
−→
y = (yi), where the elements of

−→
Y are chosen at random in Zq. These

values are kept internal and is not a part of public parameter.

For an identity u, we define the following functions,

F (u) = x′ +
∑
i∈U

xi −mk, (1)

J(u) = y′ +
∑
i∈U

yi, (2)

where U ⊆ {1, .....n} , given an identity denotes the set of all i such that
ui = 1.

Now, B constructs a set of public parameter which is given to the adversary
as follows.

g1 = ga, g2 = gb

u′ = g−mk+x′
2 gy′

ui = gxi
2 gyi



The above given public parameters will have the uniform random distribution
in the game is played between A and B. The master secret for the scheme will
be ga

2 = gab. The public key generation would be as given below:

gu = u′
∏

i∈U ui = g−mk+x′
2 gy′ ∏

i∈U gxi
2 gyi

gu = g
x′−mk+

P
i∈U xi

2 gy′+
P

i∈U yi

gu = g
F (u)
2 gJ(u)

Phase 1:
In Phase 1, the adversary is allowed to ask extraction and signature queries.
B answers the queries of A as follows.
Extract Queries: Consider a private key for identity u. B is not privy to

the master secret in the game. However, assuming F (u) 6= 0 (mod q), the
private key can be constructed by choosing ru ∈R Zq as given below:

du = (d0, d1) =
(
g
−J(u)/F (u)
1 gru

u , g
−1/F (u)
1 gru

)
.

Let r̄u = ru − a
F (u)

, we can show that how the above key results in a valid
private key of identity u as in a real construction.

d0 = g
−J(u)/F (u)
1 gru

u

d0 = ga
2 .(g

F (u)
2 gJ(u))−a/F (u) gru

u

d0 = ga
2 (gu)

−a/F (u) gru
u

d0 = ga
2 gr̄u

u ,
and

d1 = g
−1/F (u)
1 gru

d1 = g−a/F (u) gru = gr̄u.
Thus, the key du = (d0, d1) is a valid private key construction for an iden-
tity u.
B can construct the private keys for all identities apart from those for which
F (u) = 0 (mod q). The simulation will abort for such cases. For the sake of
our analysis we assume that the simulation would abort if F (u) = 0 (mod
m). Given the assumption that m(n + 1) < q, which implies 0 ≤ mk < q
and 0 ≤ x′ +

∑
i∈U xi < q, it is evident that F (u) = 0 (mod q) implies

F (u) = 0 (mod m).
Sign Queries:

Consider a signature query on a given message M for u, assuming that A
has not made an extraction query on the identity u. If F (u) 6= 0(mod m),
B can construct a private key for the identity u and then uses the signature
algorithm to present a signature of u given an message M as given below.
1. t ∈ Z∗

q .
2. M ′ = Hm(M).
3. Z = gtM ′

u du[1] = gtM ′
u ga

2 gru
u .

For F (u) = 0 (mod m), B can construct a signature given an message M
as given below.
1. Select a random ui such that F (ui) 6= 0 (mod m).



2. t ∈ Z∗
q .

3. M ′ = Hm(M).
4. Z = gM ′t dui

[1] = gtM ′
ga
2 g

rui
ui .

5. For F (u) = 0 (mod m), gu = gJ(u), let u′′ = J(u).
6. Send (Z, U = gu′′−1t, V = gruiu

′′−1
).

Forgery:
If B does not abort, the adversary will return (u∗,M∗, C∗) with a probability
ε, where C∗ = (Z,A = gt, B = gru∗ ) a valid signature forgery of (u∗,M∗). If
F (u∗) 6= 0(mod q) then B will abort. If on the other hand F (u∗) = 0(mod q),
B solves the CDH problem as given below:

Z
AJ(u∗) bJ(u∗) =

ga
2 g

ru∗
u∗ gM′ t

u∗
gt M′

u∗ g
ru∗
u∗

= gab

This completes the description of the simulation. In order to assess the probability
of success of B we have to analyse the probability of B not aborting. For the
simulation to be complete without aborting, it is necessary that identities on which
the extraction query was made should satisfy the condition F (u) 6= 0(mod m), the
signature queries made on all (u,M) pair should have F (u) 6= 0(mod m). Thus,
we present a lower bound on the probability that B aborts.
Let us look at the probability of B not aborting such that u 6= u∗ and all identities
have F (u) 6= 0(mod m). Consider u1, .....uQI

as the identities appearing in either
extract queries or in signature queries not involving the challenged identity. Then
we have, QI ≤ Qe + Qs a. Let E1, E2 be two events such that,

E1: F (ui) 6= 0 (mod m)
E2: F (u∗) = 0 (mod q).

The probability of B not aborting is,

Pr[¬abort] ≥ Pr[

QI∧
I=1

E1 ∧ E2].

Since m(n + 1) < q, F (u) = 0(mod q) =⇒ F (u) = 0(mod m)is true for certain
u, there exists an unique k in the range [0, n] such that F (u) = 0(mod q). Since

k, x′ and
−→
X are chosen at random, we have

Pr[E2] = Pr[F (u∗) = 0(mod q) ∧ F (u∗) = 0(mod m)]
Pr[E2] = Pr[F (u∗) = 0(mod m)]Pr[F (u∗) = 0(mod q)|F (u∗) = 0(mod m)]

Pr[E2] = 1
m

1
n+1

Thus, the success of B can be calculated as follows.

Pr[

QI∧
I=1

E1 ∧ E2] = Pr[E2]Pr[

QI∧
I=1

E1|E2].



We know that,

Pr[

QI∧
I=1

E1|E2] = 1− Pr[

QI∨
I=1

¬E1|E2] = 1−
QI∑
I=1

Pr[¬E1|E2].

If F () is evaluated for two identities u1 and u2, the sum would differ in atleast one
randomly chosen value and the events F (u1) = 0(mod m) and F (u2) = 0(mod
m) will be independent. Thus the events E1 and E2 are independent for any i,
and Pr[¬E1|E2]=

1
m

. Therefore we have,

Pr[

QI∧
I=1

E1 ∧ E2] =
1

m(n + 1)
(1− Qe + Qs

m
).

Let m = 2(Qe + Qs), thus we get,

Pr[

QI∧
I=1

E1 ∧ E2] ≥ 1

4(n + 1)(Qe + Qs)
.

Thus, the probability of simulation not aborting is equivalent to A creating a valid
forgery with a probability atleast ε. This provides us the success probability of B
in solving CDH problem which is atleast,

ε

4(n + 1)(Qe + Qs)
.

5.1 Security Reduction and Improving Efficiency

The reduction achieved by our construction is comparitively better than [22].
This is because in [22], the signature construction by the challenger is based on
F (u) 6= 0 and (F (u) = 0, K(m) 6= 0), where m ∈ G is the message. Thus, in the
simulation the challenger will need to assume K(m) 6= 0 when F (u) = 0. Whereas
in our scheme, since the message is over Z∗

q the simulator need not check that
condition and hence can answer all signature queries issued by the adversary.
Since the identities are of length nu, the public parameter consists of a vector of
length nu and the size of each element in the vector being |G|. Due to this, the
public parameter size is G4 × Gnu , which is not efficient in practice. One of the
approach to improve the public parameter size is to fix the length of the identity
to l, thereby reducing the vector length to l, where 1 < l ≤ n (when l = nu, this
is equivalent to our actual public parameter size). In this case, an identity u is
represented as (u1, .....ul which is of length l and each element ui is an nu/l bit
string. This idea was proposed by Chatterjee and Sarkar in [32]. We would like to
highlight the fact that, this approach of reducing the public parameter size is at
a cost of security tightness or at a cost of group size G (increase in computational
cost).



6 Conclusion

In this paper, we presented an efficient signature construction with reduced public
size parameter. The security of the scheme is based on intractability of computa-
tional Diffie-Hellman in adaptive identity model. Further, we showed how a strong
signature can be defined using the basic version of our scheme. In addition, we
show how to reduce the signature size by one group element. We provide a com-
parison of the complexity of our scheme with respect to the ID-based signature
presented by Kenny and Schuldt.
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