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Abstract. A signer in a Nominative Signature (NS) scheme can arbitrarily choose a nom-
inee, then jointly generate a signature in such a way that the signature can only be verified
with the nominee’s consent. NS is particularly useful in user certification systems. Cur-
rently, the only secure NS scheme available requires multi-round communications between
the nominator and the nominee during signature generation. This implies that an NS-
based user certification system requires a certification issuer to interact with a user using
a complicated multi-round protocol for certificate issuance. It remains an open problem to
construct an efficient and non-interactive NS scheme. In this paper, we solve this problem
by proposing the first efficient one-move (i.e. non-interactive) NS scheme. In addition, we
propose an enhanced security requirement called Strong Invisibility, and prove that our
scheme satisfies this strong security requirement.

1 Introduction

A nominative signature (NS) scheme [11, 9, 16, 8, 13] allows a signer A called nominator
to work jointly with a nominee B to generate a signature σ on a message m such that the
validity of σ can only be verified by B. In addition, only B can convince a (third-party)
verifier C the validity of σ.

Although the notion of NS has been introduced for over a decade [11], it was not until
recently that the notion has finally been formalized [13]. In the past, besides lacking a
formal definition, the application of NS has also been questioned. [13] gave the first
convincing application for NS schemes — user certification systems. A user certification
system has conventionally believed to be best built using a Universal Designated Verifier
Signature (UDVS), which was introduced by [15]. [13] showed that an NS-based user
certification system has several important advantages over a system built using a UDVS
scheme.

A user certification system [15] concerns about letting a user B convince a (third-
party) verifier C the validity of B’s birth certificate, driving licence, academic transcripts
or other documents, that are issued by an authority A, but not allowing C to further
disseminate the validity information of any of B’s certificates without B’s consent.

In a UDVS-based user certification system, A is the signer of the UDVS scheme and a
certificate s is a standard publicly verifiable signature. However, A has to be fully trusted
by B (the signature holder in UDVS). If A is malicious, there are two attacks which will
conflict with B’s interest. First, A may maliciously reveal s to the public, and since s
is publicly verifiable, once s becomes public, everyone can verify its validity. B cannot
show whether s is released by A because B himself can also make s public. Second, A can
generate a UDVS signature all by himself because the UDVS signature can readily be
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generated from s and the public keys of A and C. Hence, A can impersonate B arbitrarily.
In contrast, NS does not have these weaknesses.

For NS, A cannot confirm or disavow a nominative signature σ (which is a certificate
in the application of user certification systems). Also, σ is not publicly verifiable. Note
that A can still issue standard signatures on m or nominative signatures on m jointly
with other nominees. But these events will just show that A is dishonest. To illustrate
more clearly, let us consider the following a practical scenario.

Suppose in a hospital, a patient’s medical records have to be certified and signed by a
hospital authority. Due to the privacy of the patient, the patient does not want anybody
to disseminate his/her medical records. That means, the patient wants to have full control
on who can verify the validity of his/her medical records. NS plays an important role
here. The hospital authority is acting as the nominator and the patient is acting as the
nominee. The hospital authority and the nominee jointly create a nominative signature
on some medical record. Some may notice that the hospital authority can simply release
the medical records without participating in the nominative signature generation, but
the patient can accuse the hospital of forging such a medical record. The role of NS in
this scenario is to produce a mutual agreement on the validity of the medical records -
without the hospital’s authority, the professional validity of the medical records cannot
be ensured, while without the patient’s agreement, the hospital cannot forge any medical
record of the patient.

Our Contributions. The only secure NS scheme available is due to [13]. Their construc-
tion is essentially built on Chaum-van Antwerpen’s undeniable signature (US) [5, 6]. It
requires at least four rounds of communications between the nominator and the nominee
for signature generation. This implies that an NS-based user certification system requires
a certification issuer to interact with a user using a complicated multi-round protocol for
certificate issuance. It remains an open problem to construct an efficient non-interactive
NS scheme.

In this paper, we solve this problem by proposing the first efficient non-interactive NS
scheme. During the signature generation, the nominator only needs to send one message
to the nominee. No interaction between the nominator and the nominee is required and
the signature generation incurs simply a one-move message transfer from the nominator
to the nominee. We show that our construction has much better performance than that
of [13] in both network efficiency and computational complexity.

We further enhance the security model proposed in [13] and define a stronger, more
realistic security requirement called Strong Invisibility. Strong Invisibility requires that
a nominator cannot tell whether a nominative signature is valid, even by recalling the
entire signature generation transcript and all the intermediate values and states of the
signature generation operations that the nominator has carried out previously.

Paper Organization. In Sec. 2, related work of NS is reviewed. This is followed by the
definition of NS in Sec. 3. Number-theoretic assumptions which are to be used in the
security analysis of our proposed NS scheme are given in Sec. 4. Our NS scheme is then
described in Sec. 5 and its security is analyzed in Sec. 6. Finally, the paper is concluded
in Sec. 7.
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2 Related Work

Since the introduction of NS [11], it has been considered as a dual scheme of undeniable
signature (US) [5, 6]. Both NS and US are non-self-authenticating, namely, the public is
not able to determine if a signature-message pair is valid or not merely from the signature
itself. For US, it can only be verified with the aid of the signer, while for NS, it can only
be verified with the aid of the nominee, rather than the nominator.

Nominative signature is also related to designated verifier signature (DVS) [10] and
designated confirmer signature (DCS) [4]. But also, it has some significant distinctions
from DVS and DCS. For DVS and DCS, a signature is always self-verifiable, namely, the
signer can always determine if a signature is valid or not. For NS, however, the signer (i.e.
the nominator) is not able to determine the validity of a nominative signature. DVS does
not have the notion of proof delegation. The signer of a DVS specifies a designated verifier
who can determine the validity of a signature. However, the verifier is not able to convince
other parties on the validity of the signature. For NS, the signer nominates a party who
can later convince other parties on the validity of a signature. When comparing between
DCS and NS, we can see that for DCS, the signer can also play the role of prover for
convincing other parties on the validity of a signature. For NS, however, it is mandatory
that the signer is not able to perform the role of a prover. In other words, DCS allows
a signer to request for a helper so that both of them can be the provers. NS requires a
signer to nominate a prover so that the power of proving the validity of a signature is
transferred from the signer to the nominee.

The notion and construction of nominative signature were first proposed by [11].
However, their construction was later found flawed by [9]. In the construction of [11],
the nominator can always determine the validity of a nominative signature. [9] proposed
the notion of convertible nominative signature, aiming at allowing only the nominee to
convert a signature to a publicly-verifiable one. They also proposed a new scheme. [16]
described an attack against this new scheme. However [8] showed that the attack of [16]
was incomplete and inaccurate. Nevertheless, [8] described a new attack, which allows
the nominator of Huang and Wang’s scheme to generate valid signatures on his own and
show the validity of the signature to anyone without the consent of the nominee.

In [9], a definition and some requirements for nominative signature were also proposed.
However, their definition of nominative signature does not match with the scheme they
proposed and the set of security requirements specified are incomplete and informal.
[13] proposed the first set of formal definitions and security models for NS was proposed.
However, the Invisibility requirement does not capture the stronger notion, namely Strong
Invisibility (defined in Sec. 3 of this paper). The NS construction of [13] requires multi-
round communications between the nominator and the nominee for signature generation.
It is currently unknown if a one-move, non-interactive NS scheme can be built. In this
paper, we answer this question positively by proposing the first efficient NS scheme which
requires only one-move communication. In addition, our scheme is also proven secure
under the enhanced set of security requirements.
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3 Definitions and Adversarial Models

A Nominative Signature (NS) consists of three probabilistic polynomial-time (PPT) al-
gorithms and three protocols. Algorithms are SystemSetup, KeyGen and Vernominee); pro-
tocols are (SigGen, Confirmation and Disavowal).

1. SystemSetup: On input 1k where k ∈ N is a security parameter, it generates a list of
system parameters denoted by param.

2. KeyGen: On input param, it generates a public/private key pair (pk, sk).
3. Vernominee: On input a message m ∈ {0, 1}∗, a nominative signature σ, a public key
pkA and a private key skB, it returns valid or invalid.

An NS scheme proceeds as follows. SystemSetup is first invoked for generating param.
KeyGen is then executed to initialize each entity that is to be involved in the subsequent
part of the scheme. One entity is called nominator. We denote it by A. Let (pkA, skA)
be the public/private key pair of A. Let B be the nominee that A nominates. Let B’s
public/private key pair be (pkB, skB).

To generate a nominative signature σ, A chooses a message m, and carries out SigGen
protocol below with B. Formally, the SigGen protocol is carried out between two interac-
tive PPT algorithms in k: nominator A (who is holding (pkA, skA)) and nominee B (who
is holding (pkB, skB)).

SigGen Protocol: The common inputs of A and B are param and m. A has an
additional input: pkB, indicating that A nominates B as the nominee; and B has
an additional input: pkA indicating that A is the nominator. At the end of the
protocol, B either outputs a nominative signature σ or ⊥ indicating the failure of
the protocol run.

If the protocol consists of only one move of message transfer, then it is non-interactive.

Signature Space: This is determined by pkA and pkB. We emphasize that the signature
space has to be specified explicitly in each actual NS scheme.

For a nominative signature σ in the signature space, the validity of σ can be deter-
mined by B using Vernominee. To convince a third party C on the validity or invalidity of
σ, B as a prover and C as a verifier carries out the following Confirmation or Disavowal
protocol.

Confirmation/Disavowal Protocol: On input (m,σ, pkA, pkB), B sets a bit µ to 1
if valid ← Vernominee(m,σ, pkA, skB); otherwise, µ is set to 0. B first sends µ to
C. If µ = 1, Confirmation protocol is carried out; otherwise, Disavowal protocol is
carried out. At the end of the protocol, C outputs either accept or reject while B
has no output.

Correctness: Suppose all the algorithms and protocols are carried out according to
the scheme specification, the scheme is said to satisfy the correctness requirement if (1)
valid← Vernominee(m,σ, pkA, skB); and (2) C outputs accept at the end of the Confirmation
protocol.

We now formalize the security games for NS. We begin with the oracles.
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– CreateUser: On input an identity, say C, it generates a key pair (pkC , skC) using
KeyGen and returns pkC .

– Corrupt: On input a public key pk, if pk is generated by CreateUser or in {pkA, pkB},
the corresponding private key is returned; otherwise, ⊥ is returned. pk is said to be
corrupted.

– SignTranscript: On input a message m, two distinct public keys, pk1 (the nomina-
tor) and pk2 (the nominee) such that at least one of them is uncorrupted, and one
parameter called role ∈ {nil, nominator, nominee},
• if role = nil, S simulates a run of SigGen and returns (σ, transσ) where σ is

a valid nominative signature and transσ is the transcript of the execution of
SigGen. σ is said to be valid on m with respect to pk1 and pk2 if valid ←
Vernominee(m,σ, pk1, sk2) where sk2 is the corresponding private key of pk2.
• if role = nominator, S (as nominee with public key pk2) simulates a run of SigGen

with F (as nominator with pk1);
• if role = nominee, S (as nominator with pk1) simulates a run of SigGen with F

(as nominee with public key pk2).
– Confirmation/disavowal: On input a message m, a nominative signature σ and two

public keys pk1 (nominator), pk2 (nominee), let sk2 be the corresponding private key
of pk2, the oracle responds based on whether a passive attack or an active/concurrent
attack is mounted.
• In a passive attack, the oracle runs Vernominee(m,σ, pk1, sk2). If the output is

valid, the oracle returns a bit µ = 1 and a transcript of the Confirmation protocol.
Otherwise, µ = 0 and a transcript of the Disavowal protocol are returned.
• In an active/concurrent attack, the oracle checks if m is valid as in the passive

attack. If so, the oracle returns µ = 1 and executes the Confirmation protocol with
F (acting as a verifier). Otherwise, the oracle returns µ = 0 and executes the
Disavowal protocol with F . The difference between active and concurrent attack
is that F interacts serially with the oracle in the active attack while F interacts
with different instances of the oracle concurrently in the concurrent attack.

A secure NS scheme should satisfy the following security requirements: Unforgeabil-
ity, Strong Invisibility and Impersonation. The first and the last requirements are
from [13]. The second one is new, and is a stronger notion when comparing with the
Invisibility requirement of [13].

3.1 Unforgeability

Game Unforgeability: Let S be the simulator and F be a forger.

1. (Initialization) Let k ∈ N be a security parameter. First, param← SystemSetup(1k)
is executed and key pairs (pkA, skA) and (pkB, skB) for nominator A and nominee B,
respectively, are generated using KeyGen. F is invoked with inputs 1k, pkA and pkB.

2. (Attacking Phase) F can make queries to the oracles mentioned above.
3. (Output Phase) F outputs a pair (m∗, σ∗).
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F wins the game if valid ← Vernominee(m∗, σ∗, pkA, skB) and (1) F has never corrupted
both skA and skB; (2) (m∗, pkA, pkB, role) has never been queried to SignTranscript for any
valid value of role; (3) (m∗, σ, pkA, pkB) has never been queried to Confirmation/disavowal
for any nominative signature σ with respect to pkA and pkB (check Signature Space on
page 4). F ’s advantage in this game is defined to be the probability that F wins.

Definition 1. An NS is unforgeable if no PPT forger F has a non-negligible advantage
in Game Unforgeability.

3.2 Strong Invisibility

In [13], the notion Invisibility was defined. It essentially requires that given a nominative
signature, except the nominee, no one, including the nominator, is able to determine the
validity of the signature.

This requirement is not realistic enough. Note that for the nominator A, it has some
additional information which may help itself to determine the signature’s validity. For
example, A may keep all the intermediate values, internal states and transcripts of the
signature generation operations, for the purpose of determining the validity of a nomi-
native signature in which A is the claimed nominator. In the Invisibility model of [13],
the adversary is not able to access these information. Consider the adversary to be the
nominator, the original Invisibility model becomes unrealistic.

We propose a stronger notion that prevents A from determining the validity of a
nominative signature by “memorizing” all the transcripts that A has involved in previous
runs of the SigGen protocol.

Game Strong Invisibility: The initialization phase is the same as that of Game Unforge-
ability. In the game, the adversary is a distinguisher D who can access all the oracles
described above.
1. (Challenge Signature Generation Phase) At some point in the game, D sends

a message m∗ to the simulator while acting as a nominator for carrying out a
protocol run of SignGen with the simulator which acts as the nominee. Let σvalid

be the nominative signature generated by the simulator at the end of the protocol
run. Note that valid← Vernominee(m∗, σvalid, pkA, skB).
The challenge signature σ∗ is then generated by the simulator based on the out-
come of a random coin toss b. If b = 1, then set σ∗ = σvalid. If b = 0, then σ∗ is
chosen uniformly at random from the signature space of the nominative signature
scheme with respect to pkA and pkB.

2. (Guess Phase) D continues querying the oracles, until it outputs a guess b′.
D wins the game if b′ = b and it does not violate any of the following restrictions:
1. D has never corrupted skB using oracle Corrupt (but D may have corrupted skA);
2. (m∗, pkA, pkB, role) has never been queried to SignTranscript, for any value of role;
3. (m∗, σ, pkA, pkB) has never been queried to Confirmation/disavowal for any nomi-

native signature σ with respect to pkA and pkB.
D’s advantage in this game is defined as Pr[b′ = b]− 1

2 .

Definition 2. An NS has the property of strong invisibility if no PPT distinguisher D
has a non-negligible advantage in Game Strong Invisibility.
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Remark: In the attacking phase of Game Invisibility defined in [13], D outputs a message
m∗ and requests for a challenge nominative signature σ∗ on m∗. D is not allowed to
interact with the nominee when generating σ∗. In Game Strong Invisibility, D as the
nominator can actually interacts with the nominee when generating σ∗. This additional
information makes Game Strong Invisibility stronger than Game Invisibility.

3.3 Impersonation

The validity of a nominative signature can only be determined with the aid of the nomi-
nee. Even the nominator should not be able to show the validity of a nominative signature.
We consider the following game against an impersonator I. It is similar to that in [13].

Game Impersonation: The initialization phase is the same as that of Game Unforgeability.
The game has two phases as follows.

– (Preparation Phase) Impersonator I is invoked on input 1k, pkA, pkB. I is permitted
to issue queries to all the oracles described above. I prepares a triple (m∗, σ∗, µ) where
m∗ is some message, σ∗ is a nominative signature (i.e. σ∗ is in the signature space of
the underlying signature scheme with respect to pkA and pkB) and µ is a bit.

– (Impersonation Phase) If µ = 1, I (as nominee) executes Confirmation protocol with
the simulator (as a verifier) on common inputs (m∗, σ∗, pkA, pkB). If µ = 0, I executes
Disavowal protocol with the same set of inputs.

The impersonator I wins the game if the simulator acting as the verifier outputs accept
while I has never corrupted skB (but I may have corrupted skA using Corrupt). I’s
advantage is defined to be the probability that I wins.

Definition 3. An NS is said to be secure against impersonation if there is no PPT
impersonator I who has a non-negligible advantage in Game Impersonation.

4 Preliminaries and Number-theoretic Assumptions

Let G, G1 be cyclic groups of prime order p. Let g be the generator of G. Let e :
G × G → G1 be an efficiently computable map with the following properties. Bilinear:
for all a, b ∈ Z, e(ga, gb) = e(g, g)ab; and Non-degenerate: e(g, g) 6= 1. We refer readers to
[3] for more information on bilinear pairings.

The security of our NS construction, proposed in the next section, relies on several new
number-theoretic assumptions. In this section, we show that all the computational as-
sumptions that our scheme relies on are reducible to the l-BDHE assumption [2]. We also
justify a new decisional assumption under the generic group model [14].

Bilinear Diffie-Hellman Exponent (BDHE) Problem. First proposed by Boneh,
Boyen and Goh in [2], the computational l-BDHE problem is defined as follows. Given
g, h and yi = gα

i
in G for i = 1, 2, · · · , l − 1, l + 1, · · · , 2l, compute e(g, h)(α

l) ∈ G1. An
algorithm A1 has advantage ε in solving computational l-BDHE problem if

Pr[A1(g, h, y1, · · · , yl−1, yl+1, · · · , y2l) = e(g, h)(α
l)] ≥ ε
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where the probability is over the random choices of g, h ∈ G, α ∈ Zp, and the random
bits consumed by A1.

Weak Computational Diffie-Hellman I (WCDH-I) Problem. Given g, ga, ga
2
, gb ∈

G, compute gab. An algorithm A3 has advantage ε in solving WCDH-I in G if

Pr[A3(g, ga, ga
2
, gb) = gab] ≥ ε

where the probability is over the random choices of g ∈ G, a, b ∈ Zp, and the random
bits used by A3. The following theorem shows that computational l-BDHE assumption
implies WCDH-I assumption.

Theorem 1. If there exists a t-time algorithm A3 that has advantage ε in solving WCDH-
I, then there exists a poly(t)-time algorithm A1 that has advantage ε in solving compu-
tational l-BDHE problem for any l > 2, where poly(t) is some polynomial in t.

Proof. Let (g, h, gα, gα
2
, · · · , gαl−1

, gα
l+1
, · · · , gα2l

) be a given computational l-BDHE prob-
lem instance. A1 runs A3 with input (g, gα, gα

2
, gα

l−1ω) where ω ∈R Zp. If A3 succeeds
in solving WCDH-I, its output will be gα

lω. Hence A1 can obtain gα
l

= (gα
lω)1/ω and

output e(g(αl), h) = e(g, h)(α
l), which is the solution to the l-BDHE problem instance.

Weak Computational Diffie-Hellman II (WCDH-II) Problem. Given g, ga, ga
2
, gb ∈

G, compute ga
2b. An algorithm A4 has advantage ε in solving WCDH-II in G if

Pr[A4(g, ga, ga
2
, gb) = ga

2b] ≥ ε

where the probability is over the random choices of g ∈ G, a, b ∈ Zp and the random bits
consumed by A4.

Theorem 2. If there exists a t-time algorithm A4 that has advantage ε in solving WCDH-
II, then there exists a poly(t)-time algorithm A1 that has advantage ε in solving compu-
tational l-BDHE problem for any l > 2, where poly(t) is some polynomial in t.

Proof. Let (g, h, gα, gα
2
, · · · , gαl−1

, gα
l+1
, · · · , gα2l

) be a given computational l-BDHE prob-
lem instance. A1 runs A4 with input (g, gα, gα

2
, gα

l−2ω) where ω ∈R Zp. If A4 succeeds
in solving WCDH-II, its output will be gα

lω. Hence A1 can obtain gα
l

= (gα
lω)1/ω, and

output e(g(αl), h) = e(g, h)(α
l), which is the solution to the l-BDHE problem instance.

Weak Discrete Logarithm (WDLOG) Problem. Given g, ga, ga
2 ∈ G, compute a.

An algorithm S has advantage ε in solving WDLOG in G if

Pr[S(g, ga, ga
2
) = a] ≥ ε

where the probability is over the random choices of g ∈ G, a ∈ Zp and the random bits
consumed by S.

Theorem 3. If there exists a t-time algorithm S that has advantage ε in solving WD-
LOG, then there exists a poly(t)-time algorithm A1 that has advantage ε in solving com-
putational l-BDHE problem for any l > 2, where poly(t) is some polynomial in t.
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Proof. Let (g, h, gα, gα
2
, · · · , gαl−1

, gα
l+1
, · · · , gα2l

) be a given computational l-BDHE prob-
lem instance. A1 runs S on (g, gα, gα

2
). If S succeeds in solving WDLOG, it outputs α.

Hence A1 can compute e(g, h)(α
l), which is the solution to the l-BDHE problem instance.

Weak Decisional Diffie-Hellman (WDDH) Problem. Given g, ga, ga
2
, gb, gc, gac, gd ∈

G, decide if d ≡ a2bc (mod p). An algorithm D for the WDDH problem should output 1
if d ≡ a2bc (mod p); otherwise, output 0. D has advantage ε in solving WDDH in G1 if

|Pr[B(g, ga, ga
2
, gb, gc, gac, ga

2bc) = 0]

− Pr[B(g, ga, ga
2
, gb, gc, gac, R) = 0]| ≥ ε

where R ∈R G. The probability is over the random choices of g,R ∈ G, a, b, c ∈ Zp
and the random bits used by D.

Theorem 4. Let D be an algorithm that solves the WDDH problem in the generic
group model [14], making at most q queries to the oracles computing the group actions in
G,G1. Let ξ : Zp → {0, 1}∗ be an injective function which maps all x ∈ Zp to the string
representation ξ(gx) of gx ∈ G. Suppose a, b, c, r ∈R Zp, ξ are chosen at random and d

is a random bit. Set ω0 = a2bc and ω1 = r. Let T0 = ga
2bc and T1 = gr. The probability

ε that D(ξ; 1, a, b, c, ωd, ω1−d) = d is bounded by 1
2 + O(q2/p).

Proof. A simulator S plays the following game with D. S maintains two lists L1 =
{(F1,i, ξ1,i) : i = 0, · · · , k1 − 1} and L2 = {(F2,i, ξ2,i) : i = 0, · · · , k2 − 1}, where F∗.∗ ∈
Zp[A,B,C, T0, T1] are polynomials in the indeterminates A,B,C, T0, T1 with coefficients
in Zp. Set F1,0 = 1, F1,1 = A, F1,2 = B, F1,3 = C, F1,4 = T0, F1,5 = T1. The corresponding
strings are set to arbitrary distinct strings in {0, 1}∗ and given to D. S responds to D’s
queries as follows:

Group Action. Given a multiply/divide selection bit and two indexes i and j with
0 ≤ i, j < k1, compute F1,k1 ← F1,i ± F1,j depending on whether a multiplication or
a division is requested. If F1,k1 = F1,l for some l with 0 ≤ l < k1, S sets ξ1,k1 = ξ1,l;
otherwise, S sets ξ1,k1 to a string in {0, 1}∗ distinct from ξ1,0, · · · , ξ1,k1−1. S appends
new values F1,k1 , ξ1,k1 to L1 and gives ξ1,k1 to D. k1 is incremented by 1. Group action
queries in G1 are treated similarly.

Pairing. Given two indexes i and j with 0 ≤ i, j < k2, compute the product F2,k2 ←
F1,iF1,j . If F2,k2 = F2,l for some l with 0 ≤ l < k2, S sets ξ2,k2 = ξ2,l; otherwise, S
sets ξ2,k2 to a string in {0, 1}∗ distinct from ξ2,0, · · · , ξ2,k2−1. S appends new values
F2,k2 , ξ2,k2 to L2 and gives ξ2,k2 to D. k2 is incremented by 1.

When D terminates, S chooses a, b, c, r ∈ Zp randomly. D wins the game if

1. for some i, j where i 6= j, we have F1,i(a, b, c, a2bc, r) = F1,j(a, b, c, a2bc, r), or
F1,i(a, b, c, r, a2bc) = F1,j(a, b, c, r, a2bc); and

2. for some i, j where i 6= j, we have F2,i(a, b, c, a2bc, r) = F2,j(a, b, c, a2bc, r), or
F2,i(a, b, c, r, a2bc) = F2,j(a, b, c, r, a2bc).
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Since deg(F1,i) ≤ 1 and deg(F2,i) ≤ 2, according to Lemma 1 in [Shoup97], for fixed
i, j, let Fα = Fα,i − Fα,j where α ∈ {1, 2}, the probabilities that the above two cases
holds are 1/p and 2/p respectively. Total number of pairs of possible i, j is

(
k1
2

)
+

(
k2
2

)
=

k1
2−k1
2 + k2

2−k2
2 . Since q+ 6 ≥ k1 + k2, it follows that the success probability that D wins

the above game is bounded by 1
2 + O(q2/p).

5 Our Construction

We now propose a bilinear-pairing-based NS construction. The construction requires only
one-move communication from the nominator A to the nominee B in the SigGen protocol.

SystemSetup: Let k ∈ N be a system parameter. The algorithm generates two cyclic
groups G, G1 of prime order p ≥ 2k, a generator g of G and a bilinear map e :
G × G → G1 with properties described in Sec. 4. It also specifies a hash function
H : {0, 1}∗ → G. Let param = (p,G,G1, g,H).

KeyGen: On input param, it generates (y, x) where x ∈R Zp and y = gx. We use yA
to denote nominator A’s public key and xA to denote A’s private key. Similarly, let
(yB, xB) be the public/private key pair of nominee B.

SigGen Protocol: Let m ∈ {0, 1}∗ be a message. A and B carry out the following.
1. A computes s = H(m‖yA‖yB)xA and sends (m, s) to B.

2. B checks if e(yA, H(m‖yA‖yB)) ?= e(s, g). If not, B outputs ⊥ for failure; other-
wise, B chooses r ∈R Zp and computes a nominative signature σ as (σ1, σ2, σ3, σ4)
where σ1 = sx

2
Br, σ2 = yrA, σ3 = yrB and σ4 = gr.

Signature Space (page 4): We say that σ = (σ1, σ2, σ3, σ4) is a nominative signature
if (1) σ1, σ2, σ3, σ4 ∈ G, (2) e(σ2, g) = e(σ4, yA), and (3) e(σ3, g) = e(σ4, yB). In order
to check the validity of a nominative signature, the following algorithm is executed by
nominee B.

Vernominee: On input (m,σ, yA, xB) where σ = (σ1, σ2, σ3, σ4) is a nominative signa-
ture (i.e. in the signature space defined above), the algorithm checks if e(σ1, g) ?=
e(H(m‖yA‖yB), σ2)x

2
B . If so, output valid; otherwise, output invalid.

Confirmation/Disavowal Protocol: If σ = (σ1, σ2, σ3, σ4) is a nominative signature, B
first runs Vernominee(m,σ, yA, xB). If the output is valid, B sends µ = 1 to a verifier
C. Otherwise, B sends µ = 0 to C.

(e(σ4, g), e(H(m‖yA‖yB), σ2), e(σ3, yB), e(σ1, g))

For the tuple above, if µ = 1, B proves to C that it is a DH-tuple; if µ = 0, B proves
to C that it is a non-DH-tuple.
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We say that (g, ga, gb, gc) ∈ G4
1 is a DH-tuple if c ≡ ab (mod p), where g = e(g, g);

otherwise, it is a non-DH-tuple. According to [12], Witness Indistinguishable (WI) [7]
protocols can be used to prove/disprove a DH-tuple, that is, it is sufficient for the prover
to execute the protocols successfully using its knowledge of either one of the witnesses, i.e.
a or b. In the Confirmation/Disavowal protocol above, B’s knowledge is x2

B. For concrete
implementation, we use the protocols due to [12].

Remark: Our technique for achieving Strong Invisibility stems from raising the signature
of A, namely s, by the double square of B’s private key xB. The purpose is to thwart A
from telling whether a given σ is a valid nominative signature using bilinear map.

Performance . When compared with the only secure NS scheme currently available
[13], we can see that in the SigGen protocol, their scheme requires the nominator and
the nominee to carry out at least four message flows (assuming that piggybacking is em-
ployed). The large number of message flows is mainly due to the requirement of proving a
DH-tuple. In our construction, we eliminate the DH-tuple proof from the SigGen protocol
altogether. In addition, their scheme has the nominee B as the protocol initiator, and
thus requires one more message flow for A to send the final nominative signature to B.
While in our scheme, the nominator A is the initiator. Hence, A can send its contribution
to the final nominative signature in one single transmission.

The most time-consuming part of our scheme is the Confirmation/Disavowal Protocol.
Fortunately, real-time performance can be improved by pre-computation as most of the
bilinear pairing operations can be pre-computed before the protocol is carried out.

On the security of our NS scheme, it is easy to see that the construction above
satisfies the correctness requirement. In the next section, we show that the construction
also satisfy all the security requirements defined in Sec. 3.

6 Security Analysis

To show that our construction described above is unforgeable with respect to Def. 3.1,
in the following, we claim that

1. a malicious nominee alone cannot forge a valid nominative signature (Lemma 1); and
2. a malicious nominator alone cannot forge a valid nominative signature (Lemma 2).

A nominative signature is said to be valid if Vernominee returns valid on the corresponding
inputs. By combining these two claims, we can see that the proposed nominative signature
scheme is unforgeable. The following analyzes are carried out under the random oracle
model [1].

Lemma 1 (Cheating Nominee). Let k ∈ N be a security parameter. For the NS
proposed above, if a (t, ε,Q)-nominee can forge a valid nominative signature in Game
Unforgeability with probability at least ε after running at most time t and making at most Q
queries, there exists a (t′, ε′)-adversary which can solve a WCDH-I (Weak Computational
Diffie-Hellman I) problem instance (Sec. 4) with probability at least ε′ = (1 − 2−k)Q−1ε
after running at most time t′ = t+Qtq + c where tq is the maximum time for simulating
one oracle query and c denotes some constant time for system setup and key generation.
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Proof. Let F be a (t, ε,Q)-forger which has nominee B’s private key xB (obtained by
querying Corrupt). We show that in the random oracle model [1], F can be turned into
a (t′, ε′)-algorithm S which can solve the WCDH-I problem. Let (g, U, V,W ) ∈ G4 be a
random WCDH-I problem instance where U = gu, V = gu

2
and W = gv. S has to output

Z = guv.

Game Simulation: S first generates param according to SystemSetup and sets nominator
A’s public key yA = U . B’s public/private key pair (yB, xB) is generated using KeyGen
accordingly. For a SignTranscript query on input (m, y1, y2), there are three cases to
handle.

– Case (1): If role = nil, the simulation is carried out exactly according to the SigGen
protocol except in the following two sub-cases:
• If A is indicated as the nominator (i.e. y1 = yA), S sets s to U r

′
where r′ ∈R Zp

and sets the return value of the random oracle query H(m‖yA‖y2) to gr
′
.

• If A is indicated as the nominee (i.e. y2 = yA), since S knows x1, S sets σ1 to
V r′x1r, σ2 to yr1, σ3 to U r, and σ4 to gr, where r, r′ ∈R Zp and sets the return
value of the random oracle query H(m‖y1‖yA) to gr

′
. Note that V r′x1r = su

2r,
where s = H(m‖y1‖yA)x1 .

– Case (2): If role = nominator, S simulates the behavior of a nominee and interacts with
F according to the SigGen protocol, except the following sub-case: if A is indicated as
the nominee (i.e. y2 = yA), similar to the second sub-case above, S sets σ1 to V r′x1r

where r′ ∈R Zp and gr
′

is the return value of random oracle query H(m‖y1‖yA).
– Case (3): If role = nominee, S simulates the behavior of a nominator according to

the SigGen protocol, except the following sub-case: if A is indicated as the nominator
(i.e. y1 = yA), similar to the first sub-case in Case (1) above, S computes s as U r

′

where r′ ∈R Zp and H(m‖yA‖y2) is set to gr
′
.

For a Confirmation/disavowal query on (m,σ, y1, y2), S simulates the Confirmation/disavowal
protocol accordingly except the following case: if A is indicated as the nominee (i.e.
y2 = yA in the query), S does not know A’s private key component, i.e. u, to prove a
DH-tuple/non-DH-tuple (e(σ4, g), e(H(m‖y1‖yA), σ2), e(σ3, yA), e(σ1, g)). In this case, S
uses its knowledge of (r′, x1) to execute the WI protocol, where r′ ∈R Zp and gr

′
is the

answer of query H(m‖y1‖yA).

Reduction: Without querying H(m∗‖yA‖yB), due to the random oracle assumption of H,
F has at most 2−k chance to guess the value right. If F has queriedH on (m∗‖yA‖yB), and
if S has guessed correctly on the forging message m∗, S could have set H(m∗‖yA‖yB) to
W . Note that when H(m∗‖yA‖yB) is set to W , S cannot simulate Confirmation/disavowal
for queries on (m∗, σ, yA, yB) for any nominative signature σ. This case is not going to
happen due to the restriction of Game Unforgeability that the tuple (m∗, σ, yA, yB) cannot
be queried to Confirmation/disavowal.

If S randomly picks a query of H as the guess of H(m∗‖yA‖yB), the probability
of guessing correctly is at least 1/Q. S can solve the WCDH-I problem instance with
probability at least ε′ = (1 − 2−k)Q−1ε, since H(m∗‖yA‖yB)xAx

2
Br = gvux

2
Br and thus Z

can be computed from the forged nominative signature. The running time of S is at most
t′ = t+Qtq + c.
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Lemma 2 (Cheating Nominator). Let k ∈ N be a security parameter. For the NS
proposed above, if a (t, ε,Q)-nominator can forge a valid nominative signature in Game
Unforgeability with probability at least ε after running at most time t and making at
most Q queries, there exists a (t′, ε′)-adversary which can solve a WCDH-II problem
instance (Sec. 4) with probability at least ε′ = (1− 2−k)Q−1ε after running at most time
t′ = t + Qtq + c where tq is the maximum time for simulating one oracle query and c
denotes some constant time for system setup and key generation.

Proof. We show how to construct a (t′, ε′)-algorithm S to solve the WCDH-II problem
from a (t, ε,Q)-forger F who has nominator A’s private key xA (obtained by querying
Corrupt) in Game Unforgeability. Suppose (g, U, V,W ) is the given random WCDH-II
problem instance, where U = gu, V = gu

2
and W = gv. A WCDH-II solver has to output

Z = gu
2v.

During the simulation, S follows the specification of the scheme accordingly but sets
the public key yB of nominee B to U . The rest of the simulation is similar to that in the
proof of Lemma 1 with some exceptions detailed as follows. For a SignTranscript query,
there are three cases.

– Case (1): If role = nil, SigGen is simulated accordingly except in the following two
sub-cases:
• If B is the nominator (i.e. y1 = yB), S sets s to U r

′
where r′ ∈R Zp and

H(m‖yB‖y2) = gr
′
.

• If B is the nominee (i.e. y2 = yB), S sets σ1 to V r′x1r, σ2 to yr1, and σ3 to U r, where
r, r′ ∈R Zp, and sets the return value of the random oracle query H(m‖y1‖yB) to
gr
′
.

– Case (2): If role = nominee, there is one special case needs to be handled. If B is the
nominator, S sets s to U r

′
as in the first sub-case in Case (1) above.

– Case (3): If role = nominator, the special case needs to be handled is when B is
indicated as the nominee. In this case, S sets σ1 to V r′x1r as in the second sub-case
in Case (1) above.

For a Confirmation/disavowal query on (m,σ, y1, y2), S simulates the oracle as in the proof
of Lemma 1. In particular, if B is the nominee, S does not know B’s private key (i.e. u)
for proving a DH-tuple/non-DH-tuple (e(σ4, g), e(H(m‖y1‖yB), σ2), e(σ3, yB), e(σ1, g)) as
described in the protocol. In this case, S will use its knowledge of (r′, x1) to execute the
WI protocol where H(m‖y1‖yB) = gr

′
and x1 = logg y1.

Without querying H(m∗‖yA‖yB), F has at most 2−k chance to guess the value right.
If F has queried H on (m∗‖yA‖yB), and if S has guessed correctly the message m∗, S
could set H(m∗‖yA‖yB) to W . As explained in the proof of Lemma 1, F cannot query
Confirmation/disavowal with (m∗, σ, yA, yB) for any nominative signature σ with respect
to yA and yB. S can simulate the game without early abortion.

If S randomly picks a query ofH as the guess ofH(m∗‖yA‖yB), the success probability
of S is at least 1/Q. Hence, S can solve the WCDH-II problem instance with probability
at least ε′ = (1 − 2−k)Q−1ε, since the first component of the nominative signature is
H(m∗‖yA‖yB)xAx

2
Br = gvxAu

2r and thus Z can be computed from it. The running time
of S is at most t′ = t+Qtq + c.
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Theorem 5. The NS proposed above is unforgeable (Def. 1) if both WCDH-I and WCDH-
II problems are hard.

This theorem follows directly from Lemma 1 and 2.

Theorem 6 (Strong Invisibility). The NS proposed above has the property of strong
invisibility (Def. 2) under WDDH assumption (Sec. 4).

Proof. We show that if there exists a distinguisher D with advantage ε in Game Strong
Invisibility, we can construct a WDDH distinguisher DWDDH with advantage ε/2. Given
a random WDDH problem instance g, T, U, V,W,X,Z ∈ G where T = gu, U = gu

2
,

V = gv, W = gw, X = guw, Z = gz, a WDDH solver is to determine if z ≡ u2vw
(mod p).

The simulation carried out by DWDDH is similar to that in the proof of Lemma 2,
that is, DWDDH sets nominee B’s public key yB to T . There are two special cases in the
simulation:

1. If H(m‖y1‖yB) is queried or SignTranscript is queried on (m, y1, yB), DWDDH will set
H(m‖y1‖yB) to gr

′
where r′ ∈R Zp and set σ1 to U r

′x1r, σ2 to yr1, σ3 to T r and σ4 to
gr, where x1 is the private key corresponding to y1 and r ∈R Zp.

2. Let Q be the maximum number of queries made. This also includes the hash query
for the challenge message (m∗‖yA‖yB). Suppose DWDDH guesses correctly on the
challenge message. DWDDH sets the return value of H(m∗‖yA‖yB) to V and chal-
lenge nominative signature σ∗ = (σ∗1, σ

∗
2, σ
∗
3, σ
∗
4) to (ZxA ,W xA , X,W ). Note that in

this case, the signature is a valid nominative signature if z ≡ u2vw (mod p). Al-
though DWDDH is unable to prove or disprove a DH-tuple or a non-DH-tuple in the
form of (e(σ∗4, g), e(H(m∗‖yA‖yB), σ∗2), e(σ∗3, yB), e(σ∗1, g)) as DWDDH does not know
v or u2, as explained in the proof of Lemma 1, D is not allowed to query Confirma-
tion/disavowal with (m∗, σ, yA, yB) for any nominative signature σ with respect to yA
and yB. Therefore, DWDDH would not abort.

At the end of the game, DWDDH outputs whatever D outputs. For event that DWDDH

guesses correctly on the challenge message, if D distinguishes the validity of σ∗ suc-
cessfully, so does DWDDH on solving the WDDH problem instance. Hence DWDDH has
success probability of at least ε′ = Q−1ε. Similar to the evaluation of Lemma 1, the
running time of DWDDH is at most t′ = t+Qtq + c.

Theorem 7 (Security Against Impersonation). The nominative signature scheme
proposed in Sec. 5 is secure against impersonation with respect to Def. 3 under the Weak
Discrete Logarithm (WDLOG) Assumption (Sec. 4) in the random oracle model.

Both confirmation and disavowal protocols in the scheme proposed in Sec. 5 apply directly
the techniques due to Kurosawa and Heng [12]. The security of our protocols is built upon
that of theirs. The security model of theirs is similar to the security against impersonation
in Game Impersonation. The difference is that our game has an extended set of oracles for
the adversary to access due to the setting of NS.
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Proof. Suppose there exists a (t, ε,Q)-impersonator I that wins in Game Impersonation,
we construct a (t′, ε′)-algorithm M that solves a WDLOG problem instance. Suppose
the input of M is (g, gu, gu

2
). In the simulation, M performs similarly to that of the

simulator in the proof of Lemma 2, but sets pkB = gu. Based on the proof techniques in
[12], the advantage that M can extract the discrete logarithm of e(yrB, yB) to the base
e(gr, g) is ε′ = (ε − 1/p)2/2Q. Note that the value of the discrete logarithm is x2

B = u2.
Thus, M can find the value of u by computing the square root of x2

B. The running time
of S is at most t′ = t+Qtq + c.

7 Conclusion

We proposed the first efficient non-interactive NS scheme which requires only one-move
message transfer from the nominator to the nominee for signature generation. For making
the security requirement of Invisibility realistic, we introduced a stronger requirement
called Strong Invisibility, which captures the requirement that even the signer or the
nominator is unable to determine the validity of a nominative signature even by recalling
the entire signature generation transcripts. The technique we used in our NS construction
is novel and may be useful for constructing some related schemes. We leave this as our
further investigation.
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