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Abstract

In this paper, we show that RC4 keystream leaks secret key information in the
first 32 bytes and also in the 256-th and 257-th bytes. For the first time a complete
framework is presented to show that many keystream output bytes are found to
be significantly biased towards several linear combinations of the secret key bytes,
without assuming any condition on the secret key.
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1 Introduction

RC4 is one of the most well known stream ciphers. It has very simple implementation and
it is being used in a number of commercial products till date. Being one of the popular
stream ciphers, it has also been subjected to many cryptanalytic attempts for more than
a decade. Though lots of weaknesses have already been explored in RC4 [1, 2, 3, 4, 5, 6, 7,
8,9, 10, 11, 12, 13, 14, 15, 16, 17, 18], it could not be thoroughly cracked yet and proper
use of this stream cipher is still believed to be quite secure.

The Key Scheduling Algorithm (KSA) and the Pseudo Random Generation Algorithm
(PRGA) of RC4 are presented below. The data structure contains an array S of size N
(typically, 256), which contains a permutation of the integers {0,..., N — 1}, two indices
i,7 and the secret key array K. Given a secret key k of [ bytes (typically 5 to 16), the
array K of size N is such that K[y| = k[y mod ] for any y, 0 <y < N — 1.
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Algorithm KSA Algorithm PRGA
Initialization: Initialization:
Fori=0,...,N -1 1 =7 =0;
Sli] = i Output Keystream Generation Loop:
7 =0; 1 =1+ 1;
Scrambling: Jj=J+S[;
Fori=0,...,N—1 Swap(S[i], S[j]);
J =+ S[i] + KTi]); t = Sl + S[jl;
Swap(S|i], S[4]); Output z = S[t};

Apart from some minor details, the KSA and the PRGA are almost same. In KSA, the
updation of the index j depends on the secret key, whereas the key is not used in PRGA.
One may consider the PRGA as the KSA with all zero key. All additions in both the KSA
and the PRGA are additions modulo N.

There are two broad approaches in the study of cryptanalysis of RC4: attacks based on
the weaknesses of the KSA and those based on the weaknesses of the PRGA. Distinguishing
attacks are the main motivation for PRGA-based approach [2, 4, 7, 8, 9, 13, 14]. Important
results in this approach include bias in the keystream output bytes. Initial works on
distinguishing the RC4 keystream from random stream has been done in [4, 2]. A bias in
the second output byte being zero has been proved in [7] and a bias in the equality of the
first two output bytes has been shown in [14]. In [9], it has been shown that getting strings
of pattern ABGAB (A, B are bytes and G is a string of bytes of small length, say < 16) are
more probable in RC4 keystream than in random stream. In [10], RC4 has been analyzed
using the theory of random shuffies and it has been recommended that initial 512 bytes of
the keystream output should be discarded in order to be safe. Recently, differential attacks
on RC4 have been discussed in [1, Section 5.

Initial empirical works based on the weaknesses of the RC4 KSA were done in [15,
18] and several classes of weak keys had been identified. In [15], experimental evidences
have been reported that the first keystream output byte of RC4 leaks information about
secret key when the first two secret key bytes add to 0 mod 256. Recently, a more general
theoretical study has been performed in [11] which includes the observations of [15]. The
work [11] shows how the bias of the “third permutation byte” (after the KSA) towards
the “first three secret key bytes” propagates to the first keystream output byte (in the
PRGA). This is proved for any secret key, i.e., there is no condition on the secret key
bytes. The exact result depicts that the first keystream output byte is three more than
the sum of first three secret key bytes with a probability (1 + 0.37)%. In [6], the biases
in the initial bytes have been noted which we present in a concrete theoretical framework
here. Very recently [12], it has been identified that if the permutation after the KSA, or
the permutation at any stage of the PRGA with relevant information about the indices i, j
are known, then the secret key bytes can be recovered efficiently.

The works [3, 8] also explain how secret key information is leaked in the keystream
output bytes. In [3], it is considered that the first few bytes of the secret key is known (this
is practical as in one mode of WEP the IV bytes and the secret key bytes are concatenated



to get the effective key of RC4) and based on that the next byte of the secret key is
predicted. The attack is based on how secret key information is leaked in the first keystream
output byte of PRGA. In [8], the same idea of [3] has been exploited with the Glimpse
theorem [5] to find the information leakage about the secret key at the 257-th byte of the
PRGA. Later, the works [6, 16, 17] improve [3].

1.1 Owur Contribution

Let S, be the permutation after » many rounds of the RC4 KSA, » > 1. Hence Sy is
the permutation after the complete key scheduling. By Sy, we denote the initial identity
permutation. During the round r of the KSA, r» > 1, the value of index i is r — 1 and hence
after the round r the permutation S, can also be denoted by ;..

Let S¢ be the permutation, i, and j, be the values of the indices i and j, and z, be the
keystream output byte after » many rounds of the PRGA, » > 1. Clearly, ¢, = r mod N.
We also denote Sy by S§ as this is the permutation before the PRGA starts.

Further, let

f, = y+1 ZK

for y > 0. Note that all the additions and subtractlons related to the key bytes are modulo
N.

Our contribution can be summarized as follows.

e In Theorem 1 (Section 2.1), we theoretically prove that
(1) Pl = 1= fi) = %+ (14 (%2 + ), and
( Yfor2<r<N—-1,P(z,=7r—f) =
fe (1 [0 - (T2 4] [ = 4] + )
The bias is significant from r = 1 through r = 32, i.e., for the first 32 keystream
output bytes of RC4.
These biases have been identified in [6], but we present these results with detailed
theoretical analysis.
e Using similar arguments, in Theorem 2 (Section 2.2), we show that P(zy = N—fy) =
% <1 + (2N (BN - L4 %) This indicates bias at 2956

e Using the assumption P(Sy[Sn[1]] = fl) = (2=1)2"=D in Theorem 3 (Section 3),

we prove P(zyip = N+ 1— fi) = (1 + (B3 L (AN %)
This indicates bias at zos7. Further, we provide experimental justification towards
P(Sy[Sn[1]] = f1) = (B2)*®=1 and related non-random associations between the

permutation bytes and secret key bytes.

e In Section 4, we observe additional experimental biases in the initial keystream bytes
showing P(zr fro1) = 555 - (1+0.05), for r =1 to 21, except r = 2.
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e Finally, we accumulate these results in Section 5 to present how one can guess the
secret key from the keystream output bytes with non-negligible biases than random
guess.

The works presented in [15, 3, 8, 6, 16, 17] assume certain conditions on the secret key
bytes of RC4 in order to mount their attacks. We do not consider any such requirements
here. Further, our work is much more general than [6, 11], as we show that there exist
significant biases in many of the keystream output bytes (bytes 1 to 32 and also 256, 257)
towards different linear combinations of secret key bytes.

2 New Biases in RC4 Keystream: Theoretical Results
We start with some existing related results.

Proposition 1 [12] Consider that the index j takes its values uniformly at random during
y(y

the KSA rounds. Then, P(Syly] = f,) = (%) . (%)[TH)JFN] ++,0<y<N-1

As explained in [12], the above result indicates significant biases for small values of y (more
precisely, for 0 <y < 47), as is supported by the experimental result presented in [15].

The Glimpse Main Theorem [5, 8] states that after the r-th round of the PRGA, r > 1,
P(S%0j.] = r—2z) = P(S¢[i,] = j, — z) = %. We rewrite the first relation between S¢[j,]
and r — z, as the following proposition.

Proposition 2 P(z, =r — S% ,[i,]) = % forr>1.

Proof: SY[j,] is assigned the value of S¢,[i,]. As the Glimpse Main Theorem gives
P(z, =r—SC[j,]) = £ for r > 1, we get P(z, =r — S [i,]) = % for r > 1. n
The idea of writing the Glimpse Main Theorem in the form of Proposition 2 is due to
the fact that relating “z, to S¢ ,[i,]” will ultimately relate “z, with secret key bytes” as
“initial values of the permutations in initial rounds of PRGA” are related to “secret key”.
Now we start with our results. The following lemma shows how the permutation bytes
at rounds ¢t and r — 1 of the PRGA, for t + 2 < r, are related.

Lemma 1 Let P(SP[i,] = X) = g, for any value X. Then, for t +2 < r < t+ N,
P(SrG—l[ir] =X)= qir - [(%)T_t_l - %] + %

Proof: We consider two separate cases.

1. S¢i,] = X and during the next (r —t — 1) rounds of the PRGA, the index 4, is not
touched by any of the r — ¢ — 1 many j values (since t +2 < r <t + N, the index i,
is not touched by any of the » —t — 1 many 7 values anyway). The first event occurs
with probability ¢, and the second event occurs with probability (%)““1. Thus

the contribution of this case is g, - (%) 71



2. SEi,] # X and still S¢,[i,] equals X by random association. The contribution of
this case is (1 — qr) - %

Thus, adding the above two contributions, we get P(S&,[i,] = X) = ¢, - (B52)""1 +
(1 =qir) % = oo ()7 = %] + & u
Note that the above result holds for t +2 < r < ¢+ N, and not for r = ¢t + 1. If we take
r=t+1, then S¢ | = SY which is our starting point, i.e., P(S¢ [i,] = X) = P(SE[i,] =
X) - qt,r‘
Next, we present the bias of each keystream output byte to a combination of the secret
key bytes in the following lemma.

Lemma 2 Let P(S¢,[i,] = f;,) = w,, forr >1. Then P(z, =r — f;,) = & - (1 +w,).
Proof: We consider two separate cases in which the event (z, = r — f; ) can occur.

1. S¢ li,] = f;, and 2, = r — S% |[i,]. The contribution of this case is P(S¢,[i,] =

fi.) - P(z =7 —S%[i;]) = w, - & (by Proposition 2).

2. 8¢ \liy] # fi,, and still 2z, = r — f;, due to random association. So the contribution
of this case is P(SZ [i,] # fi,) % = (1 —w,) - %

Adding the above two contributions, we get the total probability as w, - % +(1—w,)- %
=+ (1+w,). |

2.1 Biases in the initial keystream output bytes

The results in this section for biases in initial keystream bytes has earlier been pointed out
in [6]. However, the exact theoretical formulae for the biases of the different keystream
output bytes has not been attempted in [6].

Theorem 1
(1) P(r=1—fi) =+~ <1 +(MolyN2 ] )
(2) For2<r <N -1,

Pl =r=f) =& (14 [(OF) - RV 4 3] [OR = 4]+ 4).

Proof: First, we prove part (1). In the first round, i.e., when r = 1,4, = 1 and f; = fi,

and so wy = P(SF[1] = f1) = P(Sn[1] = i) = (%) - (B V 4 L = (Achyvie L
(by Proposition 1). Now, using Lemma 2, we get P(z; = 1 — f1) = & - (1 + wy) =

(L
Next, we prove part (2). For 2 < r < N — 1, we have i, = r and f;. = f.. Taking
| =

X = fand ¢ = 0 in Lemma 1, we have g, = P(SSr) = f,) = P(Sy[r] = f) =
(Nory. (Njgl)[w-i-]v} + (by Proposition 1), and hence w, = P(S%,[r] = f,) = [(2~) -
(%)[W+ N + ] [( NT 1 — %]+ & Now, using Lemma 2, we get P(z, =7 — f,) =
%.(14_“)7“): < +[( ry. (%)[T(?l)"‘m-i—%] . [(%)r—l_%]_‘_%). -



Note that Lemma 1 is not used in proving part (1) of the above theorem. It is proved
directly from Proposition 1. In fact, Lemma 1 can not be used in part (1), as here we have
r=1t+1 with ¢t =0.

To have a clear understanding of the quantity of the biases, Table 1 lists the numerical
values of the probabilities according to the formula given in Theorem 1. Note that the
random association is +, which is 0.0039 for N = 256.

Close to the round 48 the biases tend to disappear. This is indicated by the convergence
of the values to the probability 2—é6 = 0.0039.

r| Pz, =7r—f)
1-8 | 0.0053 0.0053 0.0053 0.0053 0.0052 0.0052 0.0052 0.0051
9-16 | 0.0051 0.0050 0.0050 0.0049 0.0048 0.0048 0.0047 0.0047
17-24 | 0.0046 0.0046 0.0045 0.0045 0.0044 0.0044 0.0043 0.0043
25-32 | 0.0043 0.0042 0.0042 0.0042 0.0041 0.0041 0.0041 0.0041
33-40 | 0.0041 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040
41-48 | 0.0040 0.0040 0.0040 0.0040 0.0040 0.0039 0.0039 0.0039

Table 1: The probabilities computed following Theorem 1.

One may check that P(z; = 1 — fi1) = ~(1 + 0.36) and that decreases to P(z3 =
32 — f32) = (1 +0.05), but still then it is 5% more than the random association. These
associations have also been pointed out in [6] in relation to WEP attacks. Our results are
based on more rigorous theoretical analysis than [6].

2.2 Bias in the 256-th keystream output byte

Interestingly, the bias again reappears after round 256 and round 257. First we present a
bias for the 256-th keystream byte.

Theorem 2 P(zy = N~ fo) = &+ (14 ()21 4 (N1 - g 1),

Proof: During the N-th round of the PRGA, iy = N mod N = 0. Taking X = fo, =0
and 7 = N in Lemma 1, we have qony = P(S§[0] = fo) = P(Sn[0] = fo) = ()Y + &
(by Proposition 1), and hence wy = P(Sﬁ_l[ | = fo) = [(53)Y + +] - [(NNl)N 1 —

+]+ 5 =ED)N T+ 5 ()Y — o5 + & Thus, by Lemma 2, the bias is given by

P(ZN—N—fo) —N'(l—FIUN):%'<1+(%)2N_1+%'(%)N_l—%—i-%). n
For N = 256, wy = wass = 0.1392 and the bias turns out to be 0.0045 (i.e., 5:(1+
0.1392)). Experimental results confirm all the theoretical values presented in this section.

3 Bias in the 257-th keystream output byte

For the bias on the 257-th output byte, we depend on the experimental observation that
P(Sx[Sv[1]] = f1) = (B2)* ™Y, We could not theoretically prove this observation so
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far. Before going for more discussion on this observation, let us first assume this result
and prove how one can get a bias in the 257-th keystream output byte.

P(S 418,11

o
o
R

300

Figure 1: P(S;41[Si41[1]] = f1) versus ¢ (r =i+ 1) during RC4 KSA.

N Y

Pznyi=N+1—-f1) = % (1 + (T)?’(N—l) — % . (N_)Q(N DI ]{[)

N
+1) mod N = 1. Taking X = fi,

Theorem 3 Given P(Sy[Sx[l]] = f1) = (¥2)2V-1
1

Proof: During the (N +1)-th round, we have, iy = (N

t=1and r = N+1in Lemma 1, we have ¢; .1 = P(SP[1] = f1) = (SN[SN[ ]] fl)

R e R A
N v (7% , g Lemma 2, we get P(zyy1 = N+1—f)) =

& (b wng) = F- (T4 (BP0 - L (R0 4 ), .

For N = 256, WN4+1 = Wos7 = 0.0535 and P<2257 = 257 — f1> = % : (]. +00535) = 0.0041
which also conforms to experimental observation.

At this point we like to point out how P(S,[S,[1]] = fi) varies with the rounds r,1 <
r < N, of the KSA of RC4. Once again, note that f; = (K[0] + K[1] + 1) mod N.
We experimented on 10 million randomly chosen secret keys. Figure 1 demonstrates the
experimental results that P(S,[S,[1]] = f1) increases till around r = § where it gets the
maximum value around 0.185 and then it decreases to 0.136 at » = N. On the other hand,
the value of the expression (£=1)2™=1 is also 0.136 for N = 256 and that is why, based on
experimental observation, we have used the assumption P(Sy[Sy[1]] = f1) = (52)2(V-1
in Theorem 3.

Though we could not prove the result P(Sy[Sn[1] = f1) = (52)* ™Y theoretically,
we could prove this for the case r = 2, i.e., after the round 2 of RC4 KSA.
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Proposition 3 P(S5[5:[1]] = K[0] + K[1]+1) = 3 — 5 + & = &

Proof: The proof is based on three cases.

1. Let K[0] # 0,K[1] = N — 1. The probability of this event is &5t Now S[1] =
S1K[0] + K[1] + 1] = S1[K[0]] = So[0] = 0. So, S3[S2[1]] = S2[0] = 51[0] = K[0] =
K[0] + K[1] + 1. Note that S5[0] = S1[0], as K[0] + K[1] + 1 # 0.

2. Let K[0] + K[ ] =0, K[O] # 1, ie. K[ ] # N — 1. The probability of this event is
as K[0] # 1. SO7 52[52[ ] =5[] = 1 = K[O] + K[1] + 1.

3. S3[92[1]] could be K[0] + K[1] + 1 by random association except the two previous
cases.

Thus P(S5[So[1]] = K[0] + K[1] +1) = 280 ¢ (q - 20y 1L 3 4 4 2 n
The theoretical value of the expression % — % + % for N = 256 is 0.011658 and it
matches with experimental observation.
Proposition 3 shows that after the second round (i = 1,7 = 2), the event (S3[S2[1]] =
K[0] + K[1] + 1) is not a random association.

Probability ————>

0 50 100 150 200 250 300

Figure 2: A: P(Sn[y] = f,), B: P(Sx[Snly]l = f), C: P(Sn[Sn[SnIy]]] = f,) versus y for
0<y< 255

Now we like to present a more detailed observation. In [15, 12], the association between
Snly] and f, is shown. As we have observed the non-random association between Sy[Sn[1]]
and fy, it is important to study what is the association between Sxy[Sy[y]] and f,, and



moving further, the association between Sy[Sy[Sn[y]]] and f,, for 0 <y < N —1. Our
experimental observations show that all these associations are not random (i.e., much more
than %) for initial values of y. The experimental observations (over 10 million runs of
randomly chosen keys) are presented in Figure 2 and also in the Table 3 in Appendix A. It
will be of great interest to theoretically study the association between Sy[Sy ... [Sn[y]] -]
and f, in general.

4 Further Biases in RC4 Keystream: Experimental
Observation

We also experimentally observe some other significant biases that we could not prove
theoretically so far. One may easily simulate the experiments to check our claims.

r P(Zr - fr—l)

1-8 | 0.0043 0.0039 0.0044 0.0044 0.0044 0.0044 0.0043 0.0043
9-16 | 0.0043 0.0043 0.0043 0.0042 0.0042 0.0042 0.0042 0.0042
17-24 | 0.0041 0.0041 0.0041 0.0041 0.0041 0.0040 0.0040 0.0040
25-32 | 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040
33-40 | 0.0039 0.0039 0.0039 0.0039 0.0039 0.0039 0.0039 0.0039
41-48 | 0.0039 0.0039 0.0039 0.0039 0.0039 0.0039 0.0039 0.0039

Table 2: Additional bias of the keystream bytes towards the secret key.

The results are presented in Table 2 which is experimented over hundred million (108)
randomly chosen keys of 16 bytes. For proper random association, P(z, = f,_1) should
have been ﬁ, i.e., 0.0039. However, this is not true for RC4 keystream generation and
experimental results show that P(z, = f,_1) > 52¢(1 4 0.05) for 1 < r < 21 except r = 2.

5 Cryptanalytic Applications

Here we accumulate the theoretical and experimental results of the previous two sections.
Consider the first keystream output byte z; of PRGA. We find the theoretical result that
P(z; = 1— f1) = 0.0053 (see Theorem 1 and Table 1) and the experimental observation
that P(z; = fo) = 0.0043 (see Table 2). Further, from [11], we have the result that
P(z; = f3) = 0.0053. Taking them together, one can check that the P(zy = foV 21 =
1—fiVz = fo) =1—(1-0.0043) - (1 —0.0053) - (1 —0.0053) = 0.0148. Our result indicates
that out of randomly chosen 10000 secret keys, in 148 cases on an average, z; reveals fy or
1—fior fy,ie, K[0] or 1 — (K[0]+ K[1]4 1) or (K[0] + K[1] + K[2] + 3). If, however, one
tries a random association, considering that z; will be among three randomly chosen values

aq, g, ag from [0,...,255], then P(zy = oy Vzi =aaVz =a3)=1—(1— 2—})6)3 = 0.0117.



Thus one can guess z; with an additional advantage of 2280011 . 100% = 27% over the
random guess.

Now consider the keystream output byte zo. We have P(zp = 2 — f5) = 0.0053 (see
Theorem 1 and Table 1), which provides an advantage of %2953-000%9 . 100% = 36%.

Similarly, referring to Table 1 and Table 2, significant biases can be observed in P(z, =
fro1V 2z =r — f,.) for r = 3 to 32 over random association.

Now consider the following scenario with the events Eji,..., F3s, where E; : (2 =
foVzai=1—fivzi=1fo), By : (2 =2—f3),and E, : (2, = fr.1V 2. =1 — f) for
3 < r < 32. Observing the first 32 keystream output bytes z1, ..., 232, one may try to guess
the secret key assuming that 3 or more of the events E, ..., E3y occur. We experimented
with 10 million randomly chosen secret keys of length 16 bytes. We found that 3 or more of
the events occur in 0.0028 proportion of cases, which is true for 0.0020 proportion of cases
for random association. This demonstrates a substantial advantage (40%) over random

guess.

6 Conclusion

In this paper we present several new observations on weakness of RC4. We present theoret-
ical as well as experimental biases of the keystream output bytes towards the linear com-
binations of secret key bytes. Theoretical results are proved to show that RC4 keystream
output bytes, at the indices 1 to 32 and then at 256, leak significant information about
secret key bytes. Experimental observations and theoretical results are combined to iden-
tify that the 257-th keystream output byte is biased too towards secret key bytes. Further
biases (apart from our theoretical results) of the initial keystream bytes have also been
observed experimentally. This is the first time, many biases of the keystream output bytes
of RC4 are discovered without any assumption on secret keys.
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Appendix A

Table 3 starts here.
S% [y] denotes Sn[Sn[y]] and S3[y| denotes Sx[Sn[Sn[y]]]-

Yy P(Snlyl = fy) | P(Sx [yl = fy) | P(SX vl = fu) y P(Snlyl = fy) [ P(S} [yl = fy) | P(SX vl = fu)
0 0.368798 0.136546 0.077260 64 0.003519 0.003736 0.003789
1 0.365703 0.135954 0.076768 65 0.003578 0.003798 0.003807
2 0.361241 0.134267 0.075963 66 0.003683 0.003792 0.003826
3 0.355746 0.132284 0.074879 67 0.003753 0.003833 0.003866
4 0.348770 0.129842 0.073393 68 0.003785 0.003852 0.003848
5 0.340758 0.126786 0.071970 69 0.003900 0.003841 0.003867
6 0.331630 0.123272 0.070008 70 0.003928 0.003900 0.003906
7 0.321588 0.119712 0.067876 71 0.003970 0.003917 0.003896
8 0.309867 0.115536 0.065870 72 0.004039 0.003933 0.003958
9 0.298392 0.111257 0.063389 73 0.004061 0.003946 0.003936
10 0.285270 0.106890 0.060884 74 0.004065 0.003983 0.003929
11 0.272321 0.102029 0.058212 75 0.004050 0.003963 0.003951
12 0.258478 0.096909 0.055537 76 0.004045 0.003975 0.003953
13 0.244201 0.091964 0.052644 7 0.004005 0.003959 0.003940
14 0.230242 0.086878 0.049807 78 0.004019 0.003971 0.003921
15 0.216420 0.081617 0.046952 79 0.004005 0.003925 0.003959
16 0.201842 0.076551 0.044245 80 0.003976 0.003920 0.003920
17 0.188238 0.071439 0.041333 81 0.003939 0.003921 0.003920
18 0.174166 0.066379 0.038645 82 0.003913 0.003910 0.003891
19 0.161092 0.061533 0.035903 83 0.003938 0.003902 0.003940
20 0.147733 0.056873 0.033326 84 0.003873 0.003869 0.003893
21 0.135591 0.052242 0.030786 85 0.003890 0.003895 0.003892
22 0.123264 0.048053 0.028409 86 0.003879 0.003877 0.003864
23 0.112470 0.043901 0.026082 87 0.003895 0.003886 0.003897
24 0.101382 0.039950 0.024028 88 0.003877 0.003892 0.003897
25 0.091580 0.036257 0.021883 89 0.003883 0.003879 0.003883
26 0.081977 0.032895 0.020063 90 0.003893 0.003851 0.003879
27 0.073780 0.029647 0.018269 91 0.003890 0.003904 0.003917
28 0.065305 0.026827 0.016668 92 0.003883 0.003880 0.003918
29 0.058091 0.024006 0.015181 93 0.003904 0.003892 0.003907
30 0.051582 0.021659 0.013812 94 0.003907 0.003894 0.003904
31 0.045121 0.019018 0.012293 95 0.003889 0.003877 0.003897
32 0.039750 0.017318 0.011413 96 0.003889 0.003920 0.003908
33 0.034991 0.015610 0.010443 97 0.003909 0.003895 0.003904
34 0.030508 0.013937 0.009541 98 0.003866 0.003919 0.003915
35 0.026730 0.012559 0.008747 99 0.003910 0.003929 0.003892
36 0.023253 0.011194 0.008047 100 0.003913 0.003895 0.003878
37 0.020120 0.010041 0.007394 101 0.003879 0.003912 0.003877
38 0.017657 0.009123 0.006823 102 0.003925 0.003889 0.003855
39 0.015299 0.008254 0.006420 103 0.003912 0.003899 0.003894
40 0.013253 0.007514 0.005926 104 0.003901 0.003911 0.003904
41 0.011550 0.006865 0.005596 105 0.003911 0.003900 0.003884
42 0.010014 0.006319 0.005344 106 0.003900 0.003901 0.003935
43 0.008733 0.005795 0.005007 107 0.003891 0.003899 0.003929
44 0.007619 0.005442 0.004764 108 0.003887 0.003887 0.003893
45 0.006732 0.005061 0.004550 109 0.003918 0.003879 0.003908
46 0.006035 0.004771 0.004428 110 0.003881 0.003881 0.003900
47 0.005358 0.004524 0.004263 111 0.003897 0.003876 0.003873
48 0.004958 0.004357 0.004169 112 0.003894 0.003920 0.003864
49 0.004467 0.004169 0.004065 113 0.003933 0.003895 0.003889
50 0.004121 0.004007 0.003992 114 0.003919 0.003951 0.003864
51 0.003860 0.003945 0.003924 115 0.003901 0.003903 0.003907
52 0.003629 0.003848 0.003885 116 0.003904 0.003921 0.003950
53 0.003483 0.003753 0.003865 117 0.003915 0.003937 0.003931
54 0.003367 0.003721 0.003819 118 0.003884 0.003900 0.003877
55 0.003277 0.003679 0.003785 119 0.003882 0.003907 0.003910
56 0.003164 0.003656 0.003741 120 0.003921 0.003929 0.003924
57 0.003196 0.003631 0.003738 121 0.003894 0.003886 0.003895
58 0.003169 0.003662 0.003730 122 0.003911 0.003867 0.003927
59 0.003198 0.003621 0.003733 123 0.003906 0.003907 0.003914
60 0.003252 0.003626 0.003776 124 0.003908 0.003885 0.003933
61 0.003301 0.003630 0.003755 125 0.003879 0.003894 0.003934
62 0.003361 0.003695 0.003766 126 0.003898 0.003902 0.003889
63 0.003487 0.003735 0.003739 127 0.003934 0.003867 0.003915

Table 3 continues in the next page.
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y P(Snwl=fy) | PSR [yl=fy) | P(STlw]l=fy) y P(Sn[yl=fy) | P(STwl=fy) | PSXlul = fy)
128 0.003881 0.003906 0.003913 192 0.003910 0.003862 0.003922
129 0.003851 0.003897 0.003887 193 0.003930 0.003895 0.003924
130 0.003863 0.003858 0.003905 194 0.003852 0.003905 0.003911
131 0.003862 0.003873 0.003901 195 0.003906 0.003873 0.003909
132 0.003879 0.003906 0.003927 196 0.003914 0.003878 0.003893
133 0.003875 0.003864 0.003897 197 0.003947 0.003932 0.003909
134 0.003895 0.003891 0.003905 198 0.003955 0.003908 0.003889
135 0.003876 0.003849 0.003893 199 0.003919 0.003925 0.003912
136 0.003904 0.003888 0.003883 200 0.003897 0.003908 0.003897
137 0.003869 0.003861 0.003891 201 0.003908 0.003918 0.003928
138 0.003845 0.003918 0.003843 202 0.003935 0.003918 0.003904
139 0.003857 0.003897 0.003932 203 0.003919 0.003916 0.003891
140 0.003890 0.003896 0.003897 204 0.003951 0.003881 0.003944
141 0.003884 0.003857 0.003938 205 0.003882 0.003916 0.003915
142 0.003892 0.003887 0.003870 206 0.003887 0.003849 0.003969
143 0.003909 0.003918 0.003895 207 0.003904 0.003919 0.003881
144 0.003927 0.003885 0.003901 208 0.003899 0.003885 0.003910
145 0.003885 0.003848 0.003921 209 0.003896 0.003885 0.003867
146 0.003893 0.003874 0.003928 210 0.003914 0.003888 0.003915
147 0.003858 0.003887 0.003923 211 0.003911 0.003916 0.003931
148 0.003900 0.003886 0.003917 212 0.003907 0.003907 0.003899
149 0.003861 0.003892 0.003877 213 0.003884 0.003895 0.003898
150 0.003901 0.003927 0.003903 214 0.003884 0.003897 0.003898
151 0.003906 0.003895 0.003884 215 0.003896 0.003896 0.003941
152 0.003894 0.003862 0.003895 216 0.003918 0.003916 0.003910
153 0.003887 0.003937 0.003897 217 0.003931 0.003876 0.003926
154 0.003907 0.003895 0.003902 218 0.003908 0.003880 0.003927
155 0.003894 0.003898 0.003888 219 0.003906 0.003901 0.003894
156 0.003908 0.003901 0.003928 220 0.003937 0.003947 0.003923
157 0.003903 0.003863 0.003895 221 0.003904 0.003915 0.003922
158 0.003931 0.003912 0.003910 222 0.003886 0.003926 0.003906
159 0.003925 0.003890 0.003883 223 0.003893 0.003890 0.003884
160 0.003938 0.003898 0.003894 224 0.003928 0.003881 0.003939
161 0.003892 0.003901 0.003922 225 0.003931 0.003929 0.003892
162 0.003911 0.003899 0.003910 226 0.003882 0.003876 0.003913
163 0.003893 0.003913 0.003933 227 0.003902 0.003910 0.003875
164 0.003873 0.003901 0.003883 228 0.003922 0.003932 0.003883
165 0.003892 0.003900 0.003889 229 0.003933 0.003920 0.003881
166 0.003904 0.003895 0.003883 230 0.003884 0.003933 0.003936
167 0.003906 0.003875 0.003893 231 0.003932 0.003910 0.003894
168 0.003886 0.003909 0.003884 232 0.003897 0.003858 0.003897
169 0.003904 0.003903 0.003915 233 0.003911 0.003871 0.003898
170 0.003903 0.003901 0.003890 234 0.003936 0.003921 0.003877
171 0.003888 0.003927 0.003880 235 0.003930 0.003908 0.003919
172 0.003930 0.003899 0.003906 236 0.003914 0.003924 0.003902
173 0.003919 0.003955 0.003906 237 0.003891 0.003891 0.003897
174 0.003898 0.003930 0.003919 238 0.003908 0.003868 0.003891
175 0.003927 0.003919 0.003941 239 0.003930 0.003911 0.003915
176 0.003899 0.003889 0.003906 240 0.003953 0.003914 0.003863
177 0.003912 0.003906 0.003899 241 0.003901 0.003926 0.003918
178 0.003893 0.003917 0.003902 242 0.003875 0.003926 0.003880
179 0.003903 0.003891 0.003915 243 0.003934 0.003910 0.003898
180 0.003920 0.003908 0.003888 244 0.003888 0.003927 0.003937
181 0.003914 0.003899 0.003934 245 0.003914 0.003887 0.003895
182 0.003918 0.003875 0.003938 246 0.003896 0.003892 0.003902
183 0.003902 0.003932 0.003872 247 0.003913 0.003886 0.003915
184 0.003916 0.003902 0.003913 248 0.003878 0.003937 0.003907
185 0.003901 0.003914 0.003933 249 0.003867 0.003911 0.003901
186 0.003887 0.003926 0.003905 250 0.003904 0.003888 0.003904
187 0.003911 0.003895 0.003904 251 0.003885 0.003921 0.003919
188 0.003925 0.003881 0.003878 252 0.003932 0.003882 0.003884
189 0.003903 0.003888 0.003880 253 0.003901 0.003886 0.003923
190 0.003914 0.003923 0.003898 254 0.003913 0.003907 0.003917
191 0.003916 0.003897 0.003876 255 0.003903 0.003885 0.003929

Table 3: Experimental Results: P(Sy[y] = f,), P(Sn[Sn[yl] = fy) and P(Sx[Sn[Sn[y]]] =
fy) versus y for 0 <y < 255.
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