
Certificateless Public Key Encryption Secure against Malicious

KGC Attacks in the Standard Model

Yong Ho Hwang∗ Joseph K. Liu†

Abstract

We introduce the first secure Certificateless Public Key Encryption (CL-PKE) scheme against
a malicious Key Generation Center (KGC) in the standard model. Recently, Au et al. [3] pointed
out that the previous security models for CL-PKE schemes cannot guarantee the security against a
malicious KGC. They also showed that although some schemes are secure against malicious KGC, they
require the random oracle model to prove the security. In this paper, we first show that previous CL-
PKE schemes in the standard model are not secure against malicious KGC. And then, we construct
a new CL-PKE scheme with rigorous security proof against the attacks of a malicious KGC in the
standard model, which is the first in the literature.

1 Introduction

In traditional Public Key Cryptosystem (PKC), to gurantee the authenticity of a public key, a trusted
party called the Certification Authority (CA) issues a digitially signed certificate binding a user and his
public key. However, the need for public key infrasructure (PKI) supporting certificates is considered the
main difficulty on the deployment and management of a traditional PKC. Identity Based Cryptography
(IBC), invented by Shamir [20], solved this problem by using any string (such as email address, user name
or phone number) as public keys, where a trusted third party called the Private Key Generator (PKG)
manages the generation and distribution of all system parameters including the user’s private key. While
it is no longer necessary to explicitly authenticate public keys, it has the key escrow problem since the
PKG generates the private key of every user.

Certificateless Public Key Cryptography (CL-PKC), which is intermediate between IBC and PKC,
was first introduced by Al-Riyami and Paterson in 2003 [1]. The main purpose of the CL-PKC is to solve
the key escrow problem inherited from IBC [20, 7] without the use of certificates as in the traditional PKC,
which is generally considered to be costly to use and manage. In a CL-PKC, a Key Generation Center
(KGC) is involved in issuing user partial private key computed from the user’s identity which is assumed
to be unique in the system. The user also independently generates an additional user public/private key
pair. Then the user combines the partial private key with his private key to generate the decryption key or
signing key. Cryptographic operations such as decryption and signature generation can then be performed
successfully only when both the user partial private key and the user private key are known. Knowing
only one of them should not be able to impersonate the user, that is, carrying out any cryptographic
operations as the user. In this way, even if the KGC knows the user partial private key, it is not able to
impersonate the user, since it does not know the corresponding user private key.

There are two different types of adversaries that are generally considered in CL-PKC:
∗Department of Computer Science; The Johns Hopkins University; 3400 N. Charles Street; Baltimore, MD 21218, USA.

Email: yhhwang@cs.jhu.edu.
†Department of Computer Science; University of Bristol, UK. Email: liu@cs.bris.ac.uk.

1

Type I The adversary acts as a third party who tries to impersonate a user after compromising the user
private key and/or replacing the user public key with some value chosen by the adversary. However,
it does not know the user partial private key.

Type II The adversary acts as the KGC who knows the partial private key of a user. That is, the KGC
is not considered as honest and thus tries to impersonate the user. However, the KGC does not
know the user private key or being able to replace the user public key.

Type II security is for solving the key escrow problem inherited in IBC. That is, even if the KGC
is malicious, the KGC should not be able to perform any cryptographic operation as the user, provided
that the KGC cannot replace the user public key or find out the user private key, but the KGC knows
the user partial private key. Nevertheless, when we take a look at most of the previously certificateless
encryption/signature schemes and adversarial models [1, 22, 23, 24, 2, 6, 4, 9, 17, 25, 14, 18, 12], we
can notice that all of them have an implicit assumption that the KGC always generates its master
public/secret key pair honestly according to scheme specification. The model only allows the Type II
adversary to know the master secret key of the KGC. This is definitely not strong enough and cannot
practically reflect the situation in the real world. In the reality, the malicious KGC will try every effort to
break the system. Obviously it is not reasonable to assume that it will generate the master public/secret
key pair honestly according to the scheme specification. It may generate the key pair in any way it
favours. We should not make any assumption on the key generation process. Otherwise it will be against
the original spirit of the CL-PKC.

Unfortunately, most of the schemes in the literature only focus on the discussion or improvement
on Type I security, while omit the importance of the malicious KGC matter (Type II security). Until
recently, Au et al. [3] pointed out the weakness of previous security model and analyzed some previous
schemes under the enhanced malicious KGC model. They re-proved the encryption scheme by Libert and
Quisquater [18] and showed that they are secure against malicious KGC attacks. However, it requires
the random oracle in the security proof.

Independently of [1], Gentry [15] introduced a different but related concept, called Certificate Based
Encryption (CBE). This approach is closer to the context of a traditional PKC model as it also involves
a CA providing an efficient implicit certification service for users’ public keys. However, in this model
certificate is a part of secret key, so that certification is implicit. Furthermore, there is no key escrow since
certificate itself is only a part of the secret key while the other part is only known to the user himself.
Many subsequent works have investigated the relations between IBC, CL-PKC, and CBE schemes and
established the results of essential equivalences among them [22, 23, 24, 2, 18]. In addition, Dodis
and Katz described generic methods to construct CCA-secure multiple-encryption schemes from CCA-
secure public key encryption schemes [13]. They showed that their methods apply to the design of the
CBE scheme and yield CBE schemes without random oracle. However, the previous techniques cannot
be directly applied to construct a CL-PKE scheme secure against malicious KGC attacks, since their
security models did not consider the malicious environments by the KGC at all. In [3], Au et al. showed
that only one generic construction is secure against malicious KGC attackes in the random oracle model.
However, constructing CL-PKE secure against malicious KGC attacks in the standard model remains as
open problem.

Contribution. In this paper, we emphasis our focus on Type II security. First, we refine the adversarial
model for a Type II adversary (malicious KGC) of CL-PKE. Then, we analyze some CL-PKE schemes
whose security is proven in the standard model. We show that they are not secure under the malicious
KGC attacks. We further propose a new CL-PKE scheme which is secure against malicious KGC attacks.
Its security is also proven in the standard model. It is the first in the literature to achieve the strongest
Type II security level without random oracles.

Organization. In the rest of the paper, it is organized as follow. In Section 2 the security model and

2

some preliminaries are reviewed. In Section 3 we analyze the security of some previous CL-PKE schemes.
Our new scheme is given in Section 4 and the paper is concluded in Section 5.

2 Preliminaries

2.1 Notation

We use the standard notation to describe probabilistic algorithms and experiments as follow. If k ∈ N,
then 1k denotes the string of k ones. Let an algorithm A be a probabilistic polynomial-time (PPT) Turing
machine. If A is an efficient algorithm and x, y, . . . are inputs for A, then s ← A(x, y, . . .) denotes the
probability space that assigns to a string s the probability that A, on input x, y, . . . , outputs s. We
write AO1,O2,...(x, y, . . .) to indicate that A is an algorithm with inputs x, y, . . . and access to oracles
O1,O2, . . . and denote by z ← AO1,O2,...(x, y, . . .) the operation of running A with inputs x, y, . . . and
access to oracles O1,O2, . . . and letting z be the output.

For a finite set X, x← X denotes the algorithm that samples an element uniformly at random from
X. If w is neither an algorithm nor a set then x ← w is a simple assignment statement. A function
ε : N → R is negligible if for every constant c > 0 there exists an integer nc such that ε(n) < n−c for
all n ≥ nc. For a probability space P , x ← P denotes the algorithm that samples a random element
according to P . If p(·, ·, · · ·) is a boolean function, then Pr[p(x1, x2, . . .)|x1 ← P1, x2 ← P2, . . .] denotes
the probability that p(x1, x2, . . .) is true after executing the algorithms x1 ← P1, x2 ← P2,

2.2 Certificateless Public Key Encryption

We review the definition and security notions of CL-PKE. We define the simplified model as used in
[16, 19, 3] which is slightly different from the original one by Al-Riyami and Paterson [1]. The discussion
of the main difference can be referred to [16].

Definition 1 A certificateless public key encryption is specified by 5 algorithms as follows:

• Setup is a setup algorithm run by a key generation center (KGC). It takes a security parameter 1k

as input and returns the system parameters mpk and the master key msk. Intuitively, the system
parameters will be publicly known, while the master secret key will be known only to the KGC.

• PSK is a partial private key extraction algorithm run by the KGC. It takes as inputs mpk, msk,
and an identity ID of a user. It returns a partial private key pskID to a user with an identity ID.

• UKeyGen is a user key generation algorithm that takes as inputs mpk and pskID, and outputs the
public/private key pair (pkID, skID).

• Enc is an encryption algorithm that takes as inputs mpk, ID, pkID, and a message m ∈ M where
M is a message space. It returns a ciphertext C.

• Dec is a decryption algorithm that takes as inputs mpk, skID, and a ciphertext C. It returns a
message m ∈M if the ciphertext is valid and ⊥ otherwise.

Correctness property requires that Dec(mpk, skID,Enc(mpk, ID, pkID,m)) = m.

Security Model. The IND-CCA security of CL-PKE distinguishes two types of adversaries. A Type
I adversary AI does not have the access to the master key of the KGC, but it can replace public keys of
arbitrary users. In addition, it can obtain partial private key and (full) private key of arbitrary identities.

3

On the other hand, a Type II adversary AII can access to the master key of the KGC, but is not
allowed to replace public keys. This adversary is to model the security against an eavesdropping KGC. In
this paper, we re-define the security model for the Type II adversary to prevent a malicious KGC from
obtaining the information from the ciphertext in a real environment. In this model, the KGC is not just
an eavesdropper, but an active adversary. To simulate two types of adversaries, A is allowed to access to
the following oracles.

• PSK-Oracle. A partial private key extraction oracle takes as input an identity ID and returns pskID.

• PK-Oracle. A public key broadcast oracle takes as input an identity ID and returns pkID.

• RPK-Oracle. A public key replace oracle takes as input an identity ID and a valid public key pkID.
It replaces the associated user’s public key with the new one pk′ID.

• SK-Oracle. A private key extraction oracle takes as input an identity ID and returns skID if the
associated public key with ID was not replaced.

• Dec-Oracle. A decryption oracle takes as inputs an identity ID and a ciphertext C, and returns the
decrypted ciphertext with skID. If the user’s public key has been replaced, it requires an additional
input of the corresponding private key for the decryption. If it is not given this private key, it
outputs ⊥.

First we consider the most common security goal and attack model: Indistinguishability against
adaptive chosen ciphertext attacks, denoted by IND-CCA. For an efficient algorithm A, which runs in
two stages (A1,A2), we define the adversary’s advantage as

AdvIND-CL-CCAAI(orII)
(k) =

∣∣∣Pr
[
b = b′

∣∣∣ (mpk, msk)← Setup(1k), (m0,m1, ID
∗, s)← AOType I (or II)

1 (mpk, a),
b← {0, 1}, C∗ ← Enc(mb, pkID∗ , ID∗,mpk), b′ ← AOType I (or II)

2 (C∗, s)

]
−1

2

∣∣∣
where OType I = {PSK-Oracle,PK-Oracle,RPK-Oracle,SK-Oracle,Dec-Oracle}, OType II = {PK-Oracle,
SK-Oracle,Dec-Oracle}, and s is some internal state information. If A is a Type I adversary, a = ∅.
Otherwise, a = msk. Actually, AII does not need to issue partial private key queries, since it can
compute them from the master key by itself. There are some restrictions as follows.

• AI ,AII cannot extract the private key for ID∗.

• AI ,AII cannot make a decryption query on C∗.

• AI cannot request the private key for any identity whose public key has already been replaced.

• AI cannot extract the partial private key for ID∗ if it has replaced the public key for ID∗ before the
challenge phase.

In the Type I security model, we do not allow the Type I adversary to issue decryption queries made
on identities for which it has replaced the public keys. However, the strongest security model of [1] does
expect that the decryption oracle should be able to output consistent answers even for identities whose
public keys have been replaced and for which they do not know the corresponding private keys. This is a
very strong notion of security. Several schemes [6, 9, 10] have weaken this definition that the adversary
does not make the decryption queries for which the public key has been replaced. We adopt this model
for the Type I security. 1

1It is also referred as Type I− security in [6]. In the rest of the paper, we omit the − sign for this security model.

4

In previous works, to simulate the actions of an honest-but-curious KGC, AII is given msk. In the
above model, we assume that the KGC honestly generates all the public parameters. However, we need
a stronger security model to capture the actions of a malicious KGC, since it can maliciously compute
the public parameters. In a real environment, the KGC generates the public parameters and the master
secret key by itself, while in a security game the simulation algorithm B generates the public parameters
and the master secret key which are then given to an adversary. From it, there is the gap between the
real environment and the simulation environment. Therefore, to simulate a malicious KGC, we adopt
the modification from [3] to allow AII to generate all the public parameters and the master secret key.
In our model, an adversarial algorithm AII runs in three stages (A0,A1,A2). We define the Type II
adversary’s advantage as

AdvIND-CL-CCAAII
(k) =

∣∣∣Pr
[
b = b′

∣∣∣ (mpk, msk)← A0(1k), (m0,m1, ID
∗, s)← AOType II

1 (mpk, msk),
b← {0, 1}, C∗ ← Enc(mb, pkID∗ , ID∗,mpk), b′ ← AOType II

2 (C∗, s)

]
− 1

2

∣∣∣
The original model believes that the KGC honestly generates the public parameters. However, the

KGC can maliciously generate them. For example, we assume that the KGC should pick three random
elements (g, g1, g2) in a multiplicative group G of order p as the public parameters. The KGC maliciously
generates random elements such as g1 = gα, g2 = gβ from elements α, β of Z∗p and it can try to break the
system from α, β. Actually, we can show that there exists a CCA-secure CL-PKE scheme against Type
II adversaries in previous model, but not secure against the modified Type II adversarial model [11, 19].
Some previous works are broken by this attack. Therefore, we allow the type II adversary to generate all
public parameters.

2.3 Complexity Assumptions

We briefly review bilinear maps and describe complexity assumptions related to our construction. Let
G and GT be the two multiplicative cyclic groups of order p for some large prime p. The bilinear map
should be satisfied the following properties:

1. Bilinear: We say that a map e: G×G → GT is bilinear if e(ga, hb) = e(g, h)ab for all g, h ∈ G and
a, b ∈ Z∗p.

2. Non-degenerate: The map does not send all pairs in G × G to the identity in GT . Observe that
since G, G are groups of prime order this implies that if g is a generator of G then e(g, g) is a
generator of GT .

3. Computable: There is an efficient algorithm to compute e(g, h) for any g, h ∈ G.

A bilinear map satisfying the three properties above is said to be an admissible bilinear map.
The security of our construction is based on a complexity assumption called the Decisional Bilinear

Diffie-Hellman (DBDH) assumption. In addition, our construction uses a collision resistant hash function
to check the validity of a ciphertext.

Definition 2 (Decisional Bilinear DH (DBDH) Assumption) Given a group G of prime order p
with generator g, a bilinear pairing e : G × G → GT and elements ga, gb, gc ∈ G, e(g, g)z ∈ GT where
a, b, c, z are selected uniformly at random from Z∗p. A fair binary coin b ∈ {0, 1} is flipped. If b = 1,
it outputs the tuple (g,A = ga, B = gb, C = gc, Z = e(g, g)abc). If b = 0, it outputs the tuple (g,A =
ga, B = gb, C = gc, Z = e(g, g)z). The problem is to guess the value of b.

5

We define the advantage of a probabilistic polynomial time (PPT) algorithm A as

AdvDBDHA (k) =
∣∣∣∣ Pr[1← A(g, ga, gb, gc, e(g, g)abc)]− Pr[1← A(g, ga, gb, gc, e(g, g)z)]

∣∣∣∣
where the probability is oven the randomly chosen a, b, c, z and the random bits consumed by A. We
assume that AdvDBDH

A (k) is a negligible function for all PPT algorithms A.

Definition 3 (Collision Resistant (CR) Assumption) A hash function H ← H(k) is collision re-
sistant if for all PPT algorithms A the advantage

AdvCRA (k) = Pr[H(x) = H(y) ∧ x 6= y | (x, y)← A(1k,H) ∧H ← H(k)]

is negligible as a function of the security parameter.

3 Analysis of Liu-Au-Susilo CL-PKE scheme

Recently Liu et al [19] proposed a secure CL-PKE scheme (called LAS scheme) in the standard model.
We show that the scheme is not secure against malicious KGC attacks.2

3.1 LAS Scheme review

We first review the LAS scheme which is constructed from Waters’ ID-based encryption (IBE) scheme
[21] by using a message authentication code and an encapsulation scheme as building blocks.

A message authentication code is a pair of PPT algorithms (Mac, Vrfy) such that Mac takes as
input a key sk and a message m to produce a tag tag. The algorithm Vrfy takes as input a key sk,
a message m and tag and outputs either accept or reject. It is required that for all sk and m,
Vrfy(sk,m, Mac(sk,m)) = accept. In addition, an encapsulation scheme is a weak variant of commitment
and is defined by a triple of PPT algorithms (Init,S,R) as follow. On input security parameter k′, Init
outputs some public parameters pub. On input k′ and pub, S outputs com, dec on some appropriate
range and a string r ∈ {0, 1}k′ . On input pub, com and dec, R outputs r.

The LAS scheme is as follows.

• Setup(1k′). The KGC selects groups G and GT of prime order p such that an admissible pairing
e : G×G→ GT can be constructed. Let g be a generator of G. Randomly pick α← Zp, g2 ← G1,
and compute g1 = gα and pub = Init(k′). Also randomly select u′, g′1, h1 ← G and ui ← G for
i = 1, . . . , n. Let U = {ui}. The public parameters mpk are (e, G, GT , g, g1, g2, u

′, g′1, h1, U, pub)
and the master secret key msk is gα

2 .

• PSK(mpk, msk, ID). Let ID be a bit string of length n and ID[i] be the i-th bit. Define U ⊂ {1, . . . , n}
to be the set of indices i such that ID[i] = 1. The KGC picks a random value r ∈ Z∗p and computes;

(psk1, psk2) = (gα
2 · Fu(ID)r, gr) where Fu(ID) = u′

∏
i∈U

ui.

A user with an identity ID is given pskID = (psk1, psk2) as a partial private key.

2We should mention that the authors in [19] did not claim that the LAS scheme is secure against malicious KGC attacks.
They just proved the security of the LAS scheme in the security models which do not consider the malicious KGC. Our aim
is to show that our proposed scheme is the first construction secure against malicious KGC attacks in the standard.

6

• UKeyGen(mpk, pskID). User selects a secret value x ∈ Zp, sets his private key skID = (sk1, sk2, sk3) =
(psk1, psk2, x) and computes his public key pkID as (gx, gx

1) = (pk1, pk2)

• Enc(mpk, ID, pkID,m). To encrypt a message m ∈ {0, 1}κ′ , where κ′ = bκ−1
2 c and κ is the number

of bit representing GT , for an identity ID and public key pkID = (pk1, pk2), first check whether
pk1, pk2 ∈ G and e(pk1, g1) = e(pk2, g). If not, output reject and abort encryption. Otherwise,
run S(pub) to obtain (r ∈ {0, 1}k′ , com ∈ Zp, dec ∈ {0, 1}κ′) and set M = m||dec. Randomly select
s ∈R Zp, and compute

C1 = e(pk2, g2)s ·M C2 = gs C3 = Fu(ID)s C4 = (g′1
com

h1)s.

Let Ĉ = (C1, C2, C3, C4). Compute tag = Mac(r, Ĉ). The ciphertext is C = (Ĉ, com, tag).

• Dec(mpk, skID, C). On receiving C, compute M = C1

(
e(psk2,C3)e(g,C4)

e(psk1·g′1
comh1,C2)

)x

and obtain m and dec.

Compute r = R(pub, com, dec). If Vrfy(r, Ĉ, tag) = accept, then the plaintext is m, else output
invalid ciphertext.

3.2 Analysis

In this section, we show that the LAS scheme is vulnerable to malicious KGC attacks. Liu et al. proved
the security of the LAS scheme in the most common security models with the assumption that the KGC
starts launching Type II attacks only after it has honestly generated a master public/secret key pair.
However, the KGC can maliciously generate the public parameters in a real environment as follows and
then it can decrypt every ciphertext.

• Setup. When generating the public parameters, the malicious KGC computes u′ and ui as follows:

1. Select random values β and µi in Zp for i = 1, . . . , n.

2. Compute u′ = gβ
2 and ui = gµi

2 for i = 1, . . . , n.

It then publishes mpk = (e, G, GT , g, g1, g2, u
′, g′1, h1, U, pub) and securely keeps (β, µ1, . . . , µn) with

msk.

• Dec. Eavesdropping a ciphertext C = (Ĉ, com, tag) where Ĉ = (C1, C2, C3, C4), the KGC can
obtain the encoded message M by computing:

1. gs
2 ← (C3)1/(β+

∑
i∈U µi) (C3 = Fu(ID)s = (u′

∏
i∈U ui)s = (g

β+
∑

i∈U µi

2)s = (gs
2)

β+
∑

i∈U µi .)

2. M ← C1/e(pk2, g
s
2)

The scheme in [11] is of similar structure as the one in [19]. The same analysis technique can be
applied.

4 New Construction

We construct a CCA-secure CL-PKE scheme against Type I and Type II adversaries in our modified
model. Our scheme is constructed by a similar way to [11]. We apply the techniques of [8] to the 2-level
hierarchical extension of Waters’ IBE [21] to achieve the CCA-security as in [11].

However, there are important differences between both of constructions. While in [11] the KGC
generates all the parameters for 2-level extension of Waters’ IBE, in our scheme the KGC generates

7

parameters for the first level as the public parameters and a user generates parameters for the second
level as his public key, and then the first level parameters are used to generate a partial private key for an
identity of a user by KGC and the second level parameters are used to check the validity of a ciphertext
by a user. The main difficulty to prove the security against the malicious KGC attacks is to simulate the
ciphertexts for a target identity in the Type II security game, because the adversary (malicious KGC)
can handle every parameter except for the public key of the target identity. We use the second level
parameters generated by a user to handle the decryption queries for the target identity.

In addition, our analysis technique in Section 3.2 can be directly applied to [11], since the user
key generation algorithm of [11] has the same as that of the LAS scheme and the KGC generates the
parameters for an identity vector. To prevent this attack, our scheme uses a different public key generation
algorithm. Our construction follows.

• Setup(1k). The KGC chooses groups G and GT of prime order p such that an admissible paring
e : G × G → GT can be constructed and selects a generator g of G. Then it picks random values
α, β, µ′, µ1, . . . , µn in Z∗p and computes g1 = gα, h = e(gα, gβ), u′ = gµ′ , u1 = gµ1 , . . . , un = gµn ,
where n is the length of an identity in binary string representation. Let H : {0, 1}∗ → {0, 1}n be a
collision-resistant hash function. The public parameters mpk and the mater secret key msk are set
as

mpk ← (e, G, GT , g, g1, h, u′, u1, . . . , un,H), msk ← (α, β, µ′, µ1, . . . , µn).

• PSK(mpk, msk, ID). Let ID be a bit string of length n and ID[i] be the i-th bit. Define U ⊂ {1, . . . , n}
to be the set of indices i such that ID[i] = 1. The KGC picks a random value r ∈ Z∗p and computes;

(psk1, psk2) = (gβ
1 · Fu(ID)r, gr) where Fu(ID) = u′

∏
i∈U

ui.

A user with an identity ID is given pskID = (psk1, psk2) as a partial private key.

• UKeyGen(mpk, pskID). Pick a secret value xID ∈ Z∗p and a random vector VID = (v′, v1, . . . , vn) ∈
Gn+1. The public key pkID is generated as;

pkID = (XID, VID) = (pk1, pk2) where XID = hxID

Then it selects a random value r′ in Z∗p and computes the private key skID = (sk1, sk2) as;

(sk1, sk2) = (pskxID
1 · Fu(ID)r′ , pskxID

2 · gr′) = (gβxID

1 · Fu(ID)t, gt)

where t = rxID + r′.

• Enc(mpk, ID, pkID,m). To encrypt m ∈ GT , first check whether the public key pkID is correct by
Xp

ID = 1GT
. If not, output reject and abort the algorithm. Otherwise, select a random value

s ∈ Z∗p and compute: (Let w be a n-bit string and wi the i-th bit of w.)

C = (C0, C1, C2, C3) = (m · (XID)s, gs, Fu(ID)s, FVID
(w)s)

where w = H(C0, C1, C2, ID, pkID) ∈ {0, 1}n and FVID
(w) = v′

∏n
j=1 v

wj

j .

• Dec(mpk, skID, C). On receiving a ciphertext C = (C0, C1, C2, C3), check that

e(C1, Fu(ID) · FVID
(w)) = e(g, C2C3)

where w = H(C0, C1, C2, ID, pkID) ∈ {0, 1}n. If not, output reject. Otherwise, compute

m = C0 · e(C2, sk2)/e(C1, sk1).

8

Remark: The master keys except for α, β do not need to be generated in practical systems. Actually,
(u′, u1, . . . , un) can be randomly selected from G. However, (µ′, µ1, . . . , µn) are required to simulate
the security game. In addition, to guarantee the security against the malicious KGC, a user in our
construction should generate the public key VID by itself as mentioned above, while the KGC generates
V as the public parameters in the Waters’ 2-level IBE.

Security Proof. Here, we show that our construction above is secure against a malicious KGC under
the Decisional Bilinear Diffie-Hellman (DBDH) assumption in the standard model.

Theorem 1 Let AII be a Type II adversary that makes at most qd decryption queries, qpk public key
queries, then we have

AdvIND-CL-CCAAII
≤ 8qpkqd(n + 1) ·AdvDBDHA′ (k) + 2qpk ·AdvCRA′′(k)

where A′ and A′′ are algorithms that run in approximately the same time as AII .

Proof. Our proof uses the game hopping proof technique [5]. We define a sequence of modified attack
games. Each of the games operates on the same underlying probability space. The attacker attempts to
distinguish a hidden bit b and eventually outputs a guess b′, where the hidden bit b takes on identical
values across all games, while some of the rules that define how the environment responds to oracle queries
may differ from game to game.

We let Si be the event that b = b′ in the Game i and Advi denote the adversary’s advantage in
the Game i. Then, Advi = |Pr[Si] − 1/2|. We start from the Game 1 and show from the definition
of Game i for i > 1 that |Pr[Si] − 1/2| is negligible if and only if |Pr[Si−1] − 1/2| is negligible. Let
E be an event that can occur during the execution of the adversary and it is independent of Si (i.e
Pr[Si|E] = Pr[Si]). Let Game i + 1 be the attack environment which is identical to Game i until the
moment that E occurs. If E does not occur, the adversary will choose the same bit that it did in Game
i (i.e. Pr[Si+1|¬E] = Pr[Si|¬E] = Pr[Si].) Otherwise, it outputs a random bit b′ (i.e. Pr[Si+1|E]− 1/2).
Then we have ∣∣Pr[Si+1]− 1/2

∣∣ =
∣∣Pr[Si+1|E]Pr[E] + Pr[Si+1|¬E]Pr[¬E]− 1/2

∣∣
=

∣∣Pr[E]/2 + Pr[Si|¬E]Pr[¬E]− 1/2
∣∣

=
∣∣(1− Pr[¬E])/2 + Pr[Si]Pr[¬E]− 1/2

∣∣
= Pr[¬E]|

∣∣Pr[Si]− 1/2
∣∣.

Therefore, Advi+1 = Pr[¬E] ·Advi.

Game 1. This game is identical to the original attack environment. A Type II adversary AII first
outputs (mpk, msk) to the attack environment B and interacts with B. It issues up to qpk, qsk, and qd

queries to PK-Oracle,SK-Oracle, and Dec-Oracle respectively. We define the following sets.

• pkL = {ID1, . . . , IDqpk
}: the set of identities queried for public key oracle.

• skL = {ID′
1, . . . , ID

′
qsk
}: the set of identities queried for private key extract oracle.

• Dw = {w1, . . . , wqd
}: the set of string wj = H(C0, C1, C2, IDj , pkj) involved in decryption queries.

AII selects a target identity/public key pair (ID∗, pkID∗) with two equal length messages m0,m1, where
ID∗ /∈ skL, and sends them to B. It is given C∗ = (C∗

0 , C∗
1 , C∗

2 , C∗
3) as the challenge ciphertext. At this

time, we denote w∗ = H(C∗
0 , C∗

1 , C∗
2 , ID∗, pkID∗).

9

Game 2. In this game, B first selects an identity IDi in pkL at random. Let ga, gb be random elements
such that a, b are unknown to B. Then, it sets XIDi

by e(ga, gb)αβ . At this time, xIDi
is regarded as ab

because h = e(gα, gβ). It also picks κ ∈ {0, . . . , n} and let τ be an integers such that τ(n + 1) < p. In
addition, it randomly selects vectors (x′, x1, . . . , xn) in Zτ and (y′, y1, . . . , yn) in Zp. Then VIDi

is set as:

v′ = (ga)x′−κτgy′ , vj = (ga)xj gyj for 1 ≤ j ≤ n.

If A does not select IDi as a target identity (namely, IDi 6= ID∗), then B aborts. Therefore, Adv2 =
1

qpk
Adv1.

Game 3. This game is identical to Game 2 except that the environment halts if the attacker submits a
decryption query (C, ID, pkID) for a well-formed ciphertext C = (C0, C1, C2, C3) where w is either equal
to the same value as a previously submitted ciphertext or w is equal to w∗ in the post challenge phase.
For such a legal decryption query, we have C 6= C∗ or (ID, pkID) 6= (ID∗, pkID∗). In either case, this implies
a collision for H. Hence, we can construct an algorithm A′′ such | Pr[S2]− Pr[S3] |≤ AdvCRA′′(k).

Game 4. We define the following functions from the values of Game 2 as

J(w) = x′ + Σn
j=1wjxj − κτ, K(w) = y′ + Σn

j=1wjyj

taking as input n-bit string w = w1 . . . wn. Then FVID∗ (w) = v′
∏n

j=1 v
wj

j = (ga)J(w) · gK(w).
Game 4 is the same as Game 3 except that, after A outputs her guess b′ for b, B checks whether

J(w∗) = 0 mod p. If J(w∗) 6= 0 mod p, then B aborts and outputs a random bit b′. The event that
J(w∗) = 0 mod p happens by chance becauseAII does not know information on all values (x′, x1, . . . , xn, κ, τ)
to compute J(w) at all. Actually, Pr[J(w∗) = 0 mod p] = Pr[κτ = (x′ + Σn

j=1wjxj)] since (x′ +
Σn

j=1wjxj) < τ(n + 1), κτ < τ(n + 1) and τ(n + 1) < p. Therefore,

Pr[J(w∗) = 0 mod p] =
1

τ(n + 1)

and Adv4 = 1
τ(n+1)Adv3.

Game 5. We modify the way the challenge ciphertext is constructed. The environment B introduces a
new variable c← Z∗p and C∗

1 = gc. It flips a coin b and computes

C∗
0 = mb ·Xc

ID∗ C∗
2 = C∗UID∗

1 = (gc)UID∗ C∗
3 = C

∗K(w∗)
1 = (gc)K(w∗)

where w∗ = H(C∗
0 , C∗

1 , C∗
2 , ID∗, pkID∗) and UID∗ =

∑
i∈U µj . We clearly have Adv5 = Adv4.

Game 6. We change Game 5 so that, after A outputs her guess b′, the environment B aborts and
replaces A’s output by a random bit b′ if J(w`) = 0 mod τ for some w` ∈ Dw where ` ∈ {1, . . . , qd}. Since
Pr[J(w) = 0 mod τ] = 1/τ , Adv6 = (1− 1

τ)qd · Adv5 ≥ (1− qd

τ) · Adv5 as Pr[J(w) = 0 mod τ] = 1/τ . If
we set τ = 2qd, then Adv6 ≥ 1

2Adv5.

Game 7. We effectively change the treatment of A’s queries. For all public key queries, private key
queries and decryption key queries not involving ID∗, B can respond to queries by running the algo-
rithms PSK(mpk, msk, ID), UKeyGen(mpk, pskID) and Dec(mpk, skID, C). In addition, it responds to all
decryption queries involving ID∗ as follows. When it receives decryption queries for a valid ciphertext
(C0, C1, C2, C3) for ID∗, B aborts and outputs a random bit b′ as in Game 6 if J(w) = 0 mod τ , Otherwise,

10

B can extract m by computing

w ← H(C0, C1, C2, ID
∗, pkID∗)

(ga)s ← (C3/C
K(w)
1)1/J(w)

m← C0/e(gas, gb)αβ = C0/e(gα, gβ)abs = C0/Xs
ID∗ .

Note that we can compute (C3/C
K(w)
1)1/J(w), since J(w) 6= 0 mod p if J(w) 6= 0 mod τ . We observe

that B correctly answers A’s queries as in Game 6. This implies Adv7 = Adv6.

Game 8. We again alter the generation of the challenge ciphertext. For a variable c introduced in Game
5, let C∗

1 = gc and Z = e(ga, gb)c. B retrieves values α, β, flips a coin b, and computes

C∗
0 = mb · Zαβ , C∗

2 = (gc)UID∗ , C∗
3 = (gc)K(w∗)

where w∗ = H(C∗
0 , C∗

1 , C∗
2 , ID∗, pkID∗). We have Adv8 = Adv7.

Game 9. We again alter the challenge phase. This time, the environment “forgets” the value c and
simply retains C∗

1 . The challenge ciphertext is constructed as in Game 8 but using a randomly chosen
Z ∈ GT this time. The whole simulation only depends on the values ga, gb, gc and the simulator does not
use a, b, c at all. Therefore, | Pr[S8]− Pr[S9] |≤ AdvDBDHA′ (k) and Pr[S9] = 1/2.

Adv6 = Adv7 = Adv8 ≤ AdvDBDHA′ (k)
Adv4 = Adv5 ≤ 2 ·Adv6

Since Adv4 = Adv3/(τ(n + 1)) and τ = 2qd, we get

Adv3 ≤ 4qd(n + 1) ·AdvDBDHA′ (k)

Adv2 ≤ AdvCRA′′(k) + Adv3 ≤ 4qd(n + 1) ·AdvDBDHA′ (k) + AdvCR
A′′ (k)

In consequence, since Adv2 = qpk ·Adv1, we obtain

Adv1 ≤ 8qpkqd(n + 1) ·AdvDBDHA′ (k) + 2qpk ·AdvCRA′′(k).

We complete the proof of the theorem. �

We can also provide the security proof of our scheme against Type I adversaries by a similar way to
that of Theorem 2.

Theorem 2 Let AI be a Type I adversary that makes at most qd decryption queries, qpk public key
queries, then we have

AdvIND-CL-CCAAI
≤ 8qpkqd(n + 1) ·AdvDBDHA′ (k) + 2qpk ·AdvCRA′′(k)

where A′ and A′′ are algorithms that run in approximately the same time as AI .

Proof. Game 1. This game is identical to the original attack environment. The environment B runs
Setup(1k) and outputs (mpk, msk). A Type I adversary AI is given mpk. Then it issues up to qpsk,
qpk, qsk, and qd queries to PSK-Oracle,PK-Oracle,SK-Oracle, and Dec-Oracle respectively. We define the
following sets.

• pkL = {ID1, . . . , IDqpk
}: the set of identities queried for public key oracle.

11

• skL = {ID′
1, . . . , ID

′
qsk
}: the set of identities queried for private key extract oracle.

• Dw = {w1, . . . , wqd
}: the set of string wj = H(C0, C1, C2, IDj , pkj) involved in decryption queries.

AI selects a target identity/public key pair (ID∗, pkID∗) with two equal length messages m0,m1, where
ID∗ /∈ skL, and sends them to B. It is given C∗ = (C∗

0 , C∗
1 , C∗

2 , C∗
3) as the challenge ciphertext. At this

time, we denote w∗ = H(C∗
0 , C∗

1 , C∗
2 , ID∗, pkID∗).

Game 2. This game is identical to Game 1, except that g1 and h in the system parameters are replaced
with following. Let ga be a random element in G such that a is unknown to B. It randomly selects
β ∈ Z∗p, and sets g1 = ga, h = (ga, gβ). The replaced public key has the same distribution as the public
key generated in the previous game. Hence, Pr[S1] = Pr[S2] and it implies Adv2 = Adv1. Note that
one value α of msk is regarded as a and B does not know it. However, it securely keeps other values
(β, µ′, µ1, . . . , µn) of msk.

Game 3. In this game, B first selects an identity IDi in pkL at random. Let gb be a random element
in G such that b is unknown to B. Then it sets XIDi by e(ga, gbβ). At this time, xIDi is regarded as b
because h = e(ga, gβ). It also picks κv ∈ {0, . . . , n} and let τv be an integers such that τv(n + 1) < p. In
addition, it randomly selects vectors (x′v, xv,1, . . . , xv,n) in Zτv

and (y′v, yv,1, . . . , yv,n) in Zp. Then VIDi

is set as:
v′ = (ga)x′v−κvτvgy′v , vj = (ga)xv,j gyv,j for 1 ≤ j ≤ n.

If A does not select IDi as a target identity (namely, IDi 6= ID∗), then B aborts. Therefore, Adv3 =
1

qpk
Adv2.

Game 4. This game is identical to Game 3 except that the environment halts if the attacker submits a
decryption query (C, ID, pkID) for a well-formed ciphertext C = (C0, C1, C2, C3) where w is either equal
to the same value as a previously submitted ciphertext or w is equal to w∗ in the post challenge phase.
For such a legal decryption query, we have C 6= C∗ or (ID, pkID) 6= (ID∗, pkID∗). In either case, this implies
a collision for H. Hence, we can construct an algorithm A′′ such | Pr[S3]− Pr[S4] |≤ AdvCRA′′(k).

Game 5. We define the following functions from the values of Game 3 as

J(w) = x′ + Σn
j=1wjxj − κτ, K(w) = y′ + Σn

j=1wjyj

taking as input n-bit string w = w1 . . . wn. Then FVID∗ (w) = v′
∏n

j=1 v
wj

j = (ga)J(w) · gK(w).
Game 5 is the same as Game 4 except that, after A outputs her guess b′ for b, B checks whether

J(w∗) = 0 mod p. If J(w∗) 6= 0 mod p, then B aborts and outputs a random bit b′. The event that
J(w∗) = 0 mod p happens by chance becauseAII does not know information on all values (x′, x1, . . . , xn, κ, τ)
to compute J(w) at all. Actually, Pr[J(w∗) = 0 mod p] = Pr[κτ = (x′ + Σn

j=1wjxj)] since (x′ +
Σn

j=1wjxj) < τ(n + 1), κτ < τ(n + 1) and τ(n + 1) < p. Therefore,

Pr[J(w∗) = 0 mod p] =
1

τ(n + 1)

and Adv5 = 1
τ(n+1)Adv4.

Game 6. We modify the way the challenge ciphertext is constructed. The environment B introduces a
new variable c← Z∗p and C∗

1 = gc. It flips a coin b and computes

C∗
0 = mb ·Xc

ID∗ C∗
2 = C∗UID∗

1 = (gc)UID∗ C∗
3 = C

∗K(w∗)
1 = (gc)K(w∗)

12

where w∗ = H(C∗
0 , C∗

1 , C∗
2 , ID∗, pkID∗) and UID∗ =

∑
i∈U µj . We clearly have Adv6 = Adv5.

Game 7. We change Game 6 so that, after A outputs her guess b′, the environment B aborts and
replaces A’s output by a random bit b′ if J(w`) = 0 mod τ for some w` ∈ Dw where ` ∈ {1, . . . , qd}. Since
Pr[J(w) = 0 mod τ] = 1/τ , Adv6 = (1− 1

τ)qd · Adv5 ≥ (1− qd

τ) · Adv5 as Pr[J(w) = 0 mod τ] = 1/τ . If
we set τ = 2qd, then Adv7 ≥ 1

2Adv6.

Game 8. We effectively change the treatment of A’s queries. For all public key queries, private key
queries and decryption key queries not involving ID∗, B can respond to queries by running the algorithms
PSK(mpk, msk, ID) 3, UKeyGen(mpk, pskID) and Dec(mpk, skID, C). When it receives a public key replace
query, it replaces a previously generated public key pkID for ID with a new one pk′ID. In addition, it
responds to all decryption queries involving ID∗ as follows. When it receives decryption queries for a valid
ciphertext (C0, C1, C2, C3) for ID∗, B aborts and outputs a random bit b′ as in Game 6 if J(w) = 0 mod τ ,
Otherwise, B can extract m by computing

w ← H(C0, C1, C2, ID
∗, pkID∗)

(ga)s ← (C3/C
K(w)
1)1/J(w)

m← C0/e(gas, gb)β = C0/e(ga, gbβ)s = C0/Xs
ID∗ .

Note that we can compute (C3/C
K(w)
1)1/J(w), since J(w) 6= 0 mod p if J(w) 6= 0 mod τ . We observe

that B correctly answers A’s queries as in Game 6. This implies Adv8 = Adv7.

Game 9. We again alter the generation of the challenge ciphertext. For a variable c introduced in Game
5, let C∗

1 = gc and Z = e(ga, gb)c. B retrieves values α, β, flips a coin b, and computes

C∗
0 = mb · Zβ , C∗

2 = (gc)UID∗ , C∗
3 = (gc)K(w∗)

where w∗ = H(C∗
0 , C∗

1 , C∗
2 , ID∗, pkID∗). We have Adv9 = Adv8.

Game 10. We again alter the challenge phase. This time, the environment “forgets” the value c and
simply retains C∗

1 . The challenge ciphertext is constructed as in Game 9 but using a randomly chosen
Z ∈ GT this time. The whole simulation only depends on the values ga, gb, gc and the simulator does not
use a, b, c at all. Therefore, | Pr[S9]− Pr[S10] |≤ AdvDBDH

A′ (k) and Pr[S10] = 1/2.

Adv7 = Adv8 = Adv9 ≤ AdvDBDHA′ (k)
Adv5 = Adv6 ≤ 2 ·Adv7

Since Adv5 = Adv4/(τ(n + 1)) and τ = 2qd, we get

Adv4 ≤ 4qd(n + 1) ·AdvDBDHA′ (k)

Adv3 ≤ AdvCRA′′(k) + Adv4 ≤ 4qd(n + 1) ·AdvDBDHA′ (k) + AdvCRA′′(k)

In consequence, since Adv3 = qpk ·Adv2 and Adv1 = Adv2, we obtain

Adv1 ≤ 8qpkqd(n + 1) ·AdvDBDHA′ (k) + 2qpk ·AdvCRA′′(k).

We complete the proof of the theorem. �

3To run the algorithm PSK, the environment B needs msk as input and is not given a part α (or a) of msk during the
simulation. However, B can generate pskID for a queried ID, since only β of msk is actually required to run PSK as input.
Hence, we can replace PSK(mpk, msk, ID) with PSK(mpk, β, ID)

13

5 Concluding Remarks

In this paper, we have showed that some previous CL-PKE scheme in the standard model are not secure
against the malicious KGC attacks. In addition, we proposed a new CL-PKE scheme which is provably
secure against the malicious KGC attacks in the standard model. It is believed to be the first in the
literature to achieve the strongest Type II security without random oracles.

We remark that one may also construct a certificateless signature scheme secure against malicious
KGC in the standard model using a similar technique presented in this paper, which will be our future
work.

References

[1] S. S. Al-Riyami and K. Paterson. Certificateless public key cryptography. In ASIACRYPT 2003,
volume 2894 of Lecture Notes in Computer Science, pages 452–473. Springer-Verlag, 2003.

[2] S. S. Al-Riyami and K. G. Paterson. CBE from CL-PKE: A generic construction and efficient
schemes. In PKC 2005, volume 3386 of Lecture Notes in Computer Science, pages 398–415. Springer,
2005.

[3] M. Au, J. Chen, J. Liu, Y. Mu, D. Wong, and G. Yang. Malicious KGC attacks in certificateless
cryptography. In ASIACCS 2007, pages 302–311. ACM Press, 2007. This paper can be found on
eprint http://eprint.iacr.org/2006/255/.

[4] J. Baek, R. Safavi-Naini, and W. Susilo. Certificateless public key encryption without pairing. In
ISC 2005, volume 3650 of Lecture Notes in Computer Science, pages 134–148. Springer-Verlag, 2005.

[5] M. Bellare and P. Rogaway. The security of triple encryption and a framework for code-based game-
playing proofs. In EUROCRYPT 2004, volume 4004 of Lecture Notes in Computer Science, pages
409–426. Springer-Verlag, 2006.

[6] K. Bentahar, P. Farshim, J. Malone-Lee, and N. P. Smart. Generic construction of identity-
based and certificateless KEMs. To Appear, Journal of Cryptology, 2007. Also appear in eprint:
http://eprint.iacr.org/2005/058.

[7] D. Boneh and M. Franklin. Identity-based encryption from the Weil pairing. In CRYPTO 2001,
volume 2139 of Lecture Notes in Computer Science, pages 213–229. Springer-Verlag, 2001.

[8] X. Boyen, Q. Mei, and B. Waters. Direct chosen ciphertext security from identity-based techniques.
In the 12th ACM Conference on Computer and Communications Security, pages 320–329. ACM
Press, 2005.

[9] Z. Cheng and R. Comley. Efficient certificateless public key encryption. Cryptology ePrint Archive,
Report 2005/012, 2005. http://eprint.iacr.org/2005/012/.

[10] S. Chow, C. Boyd, and J. Gonzalez. Security-mediated certificateless cryptography. In PKC 2006,
volume 3958 of Lecture Notes in Computer Science, pages 508–524. Springer-Verlag, 2006.

[11] A. Dent, B. Libert, and K. Paterson. Certificateless encryption schemes strongly secure in the
standard model. Cryptology ePrint Archive, Report 2007/121, 2007. http://eprint.iacr.org/
2007/121/.

[12] A. W. Dent. A survey of certificateless encryption schemes and security models. Cryptology ePrint
Archive, Report 2006/211, 2006. http://eprint.iacr.org/2006/211.

14

[13] Y. Dodis and J. Katz. Chosen-ciphertext security of multiple encryption. In TCC 2005, volume
3378 of Lecture Notes in Computer Science, pages 188–209. Springer-Verlag, 2005.

[14] D. Galindo, P. Morillo, and C. Ràfols. Breaking Yum and Lee generic constructions of certificate-
less and certificate-based encryption schemes. In EuroPKI 2006, volume 4043 of Lecture Notes in
Computer Science, pages 81–91. Springer, 2006.

[15] C. Gentry. Certificate-based encryption and the certificate revocation problem. In EUROCRYPT
2003, volume 3958 of Lecture Notes in Computer Science, pages 272–293. Springer-Verlag, 2003.

[16] B. Hu, D. Wong, Z. Zhang, and X. Deng. Key replacement attack against a generic construction of
certificateless signature. In ACISP 2006, volume 4058 of Lecture Notes in Computer Science, pages
235–246. Springer-Verlag, 2006.

[17] X. Huang, W. Susilo, Y. Mu, and F. Zhang. On the security of certificateless signature schemes from
Asiacrypt 2003. In CANS 2005, volume 3810 of Lecture Notes in Computer Science, pages 13–25.
Springer-Verlag, 2005.

[18] B. Libert and J. Quisquater. On constructing certificateless cryptosystems from identity based
encryption. In PKC 2006, volume 3958 of Lecture Notes in Computer Science, pages 474–490.
Springer-Verlag, 2006.

[19] J. Liu, M. Au, and W. Susilo. Self-generated-certificate public key cryptography and certificateless
signature/encryption scheme in the standard model. In ASIACCS 2007, pages 273–283. ACM Press,
2007. Full Version of this paper can be found on eprint http://eprint.iacr.org/2006/373/.

[20] A. Shamir. Identity-based cryptosystems and signature schemes. In CRYPTO 84, volume 196 of
Lecture Notes in Computer Science, pages 47–53. Springer-Verlag, 1984.

[21] B. Waters. Efficient identity-based encryption without random oracles. In EUROCRYPT 2005,
volume 3494 of Lecture Notes in Computer Science, pages 114–127. Springer-Verlag, 2005.

[22] D. H. Yum and P. J. Lee. Generic construction of certificateless encryption. In ICCSA 2004, volume
3040 of Lecture Notes in Computer Science, pages 802–811. Springer-Verlag, 2004.

[23] D. H. Yum and P. J. Lee. Generic construction of certificateless signature. In ACISP 2004, volume
3108 of Lecture Notes in Computer Science, pages 200–211. Springer-Verlag, 2004. LNCS No. 3108.

[24] D. H. Yum and P. J. Lee. Identity-based cryptography in public key management. In EuroPKI 2004,
volume 3093 of Lecture Notes in Computer Science, pages 71–84. Springer, 2004.

[25] Z. Zhang, D. Wong, J. Xu, and D. Feng. Certificateless public-key signature: Security model and
efficient construction. In ACNS 2006, volume 3989 of Lecture Notes in Computer Science, pages
293–308. Springer, 2006.

15

