
An Efficient Implementation of NTRUSVES

Johannes Buchmann, Martin Döring?, and Richard Lindner

Technische Universität Darmstadt
Department of Computer Science

Hochschulstraße 10, 64289 Darmstadt, Germany
{buchmann,doering,rlindner}@cdc.informatik.tu-darmstadt.de

Abstract. The NTRUSVES encryption scheme is an interesting alter-
native to well-established encryption schemes such as RSA, ElGamal,
and ECIES. The security of NTRUSVES relies on the hardness of com-
puting short lattice vectors and thus is a promising candidate for be-
ing quantum computer resistant. In this paper, we present a highly ef-
ficient implementation of NTRUSVES within the Java Cryptography
Architecture. We present comprehensive experimental results that show
that NTRUSVES is superior in practice to well-established encryption
schemes.

Keywords: NTRU, SVES, post-quantum cryptography, efficient imple-
mentation.

1 Introduction

Encryption schemes commonly used today are RSA [14], ElGamal [3], and ECIES
[10]. The security of those schemes relies on the difficulty of factoring large com-
posite integers or computing discrete logarithms. However, it is unclear whether
these computational problems remain intractable in the future. For example,
Shor [18] showed that quantum computers can be used to factor integers and to
compute discrete logarithms in the relevant groups in polynomial time. Also, in
the past thirty years there has been significant progress in solving the integer fac-
torization and discrete logarithm problem using classical computers [15,16,2,1].
It is therefore necessary to come up with alternative encryption schemes which
do not rely on the difficulty of factoring and computing discrete logarithms and
which are considered secure even against quantum computer attacks. Such en-
cryption schemes are called post-quantum encryption schemes.

A promising candidate for such a post-quantum encryption scheme is the
lattice-based public-key cryptosystem NTRUEncrypt [6] in its NAEP/SVES-
3 variant [8,9]. The cryptosystem is patented by NTRU Cryptosystems, Inc.,
a company founded in 1996 by J. Hoffstein, J. Pipher, and J. H. Silverman.
SVES-3 is currently undergoing a standardization process and will presumably
be included in the upcoming IEEE standard 1363.1 [5]. We refer to the SVES-3
variant proposed in the draft standard as NTRUSVES.
? Author supported by SicAri, a project funded by the German Ministry for Education

and Research (BMBF). See http://www.sicari.de.

We provide a highly efficient Java implementation of NTRUSVES according
to draft version 8 of IEEE P1363.1. The implementation is provided within the
Java Cryptography Architecture (JCA, [19,20]) and will be part of the Java
Cryptographic Service Provider FlexiProvider [4].

We give comprehensive measurement results that show that NTRUSVES
provides superior time complexity and competitive key sizes compared to well-
established and widely used encryption schemes such as RSA.

The paper specifies NTRUSVES keys using Abstract Syntax Notation One
(ASN.1) [11] which guarantees interoperability and permits efficient generation
of X.509 certificates [7] and PKCS #12 personal information exchange files [13].

Organization. The rest of the paper is organized as follows: In section 2, we
give a brief mathematical description of NTRUEncrypt, NAEP, and SVES-3.
Section 3 provides details of our NTRUSVES implementation and specifies the
ASN.1 structures of NTRUSVES keys. In section 4, we present the experimental
results of our measurements of NTRUSVES and RSA and compare the results.
Section 5 concludes the paper.

2 Mathematical background

In this section we give a brief mathematical description of NTRUEncrypt in the
binary and the product form variant. We also illustrate the NTRU Asymmet-
ric Encryption Padding (NAEP) scheme in its most common instantiation: the
Shortest Vector Encryption Scheme, third revision (SVES-3) [8,9].

2.1 NTRUEncrypt

First, we define the main parameters of NTRUEncrypt (Table 1). The stated
security requirements are taken from IEEE P1361.1-D9 [5], which is the latest
draft of this standard to date.

Range Description Security requirements

N ∈ N Dim parameter N has to be prime
p ∈ N Small modulus p has to be equal to 2
q ∈ N Big modulus q 6= N has to be prime and big enough to prevent

decryption errors, see correctness.

Table 1. NTRUEncrypt main parameters

Let D(d) denote the set of binary polynomials of degree less than N with d
coefficients equal to 1:

D(d) :=
{

f ∈ Z2[X]
∣∣∣ deg(f) < N and

f has d coefficients equal to 1

}
.

Two additional space parameters dF , dg ∈ N define the private key spaces
D(dF), D(dg).

Using the parameter N from above, define the ring of convolution modular
polynomials

R := Z[X] / (XN − 1).

All computations in this section are performed in R.

Key pair generation. Choose uniformly at random the binary polynomials F ∈
D(dF) and g ∈ D(dg). Change F slightly to obtain f := 1 + pF . Check whether
f is invertible in R modulo q and denote the inverse f−1

q . If the inverse does not
exist, start over. Otherwise, compute the polynomial

h := f−1
q · p · g (mod q).

The private key is f , the public key is h.

Encryption. Encode the message M into a binary polynomial m of degree less
then N . Randomly choose a binary blinding polynomial r ∈ D(dr). The en-
crypted message is

e := m + h · r (mod q).

Decryption. Receive the ciphertext e. Compute

a := f · e = f ·m + p · g · r (mod q)
(?)
= m + p(F ·m + g · r) (mod q).

Reduce the coefficients of a into the interval [0, q[. Decode the message

m := a (mod p).

Correctness. The correctness of the procedure described above rests upon the
following easy-to-prove lemma:

Lemma 1. Let b ∈ D(d) and r ∈ R be arbitrary. Then it holds that

‖br‖∞ ≤ d‖r‖∞.

In the lemma, the max-norm on R is defined as∥∥∥∥∥
N−1∑
i=0

riX
i

∥∥∥∥∥
∞

:= max
i=0,...,N−1

{|ri|}.

Proof. Let B = {i | bi 6= 0} be the set of indices of b’s non-zero coefficients.
Since b ∈ D(d), it holds that |B| = d. Rewrite the product and use the triangle
inequality to obtain

‖br‖∞ =

∥∥∥∥∥∑
i∈B

r(X)Xi

∥∥∥∥∥
∞

≤
∑
i∈B

∥∥r(X)Xi
∥∥
∞

Note that the max-norm of r(X) on R is not changed by a multiplication with
powers of X since this multiplication corresponds to a rotation of the coefficients.
Conclude that

‖br‖∞ ≤
∑
i∈B

∥∥r(X)Xi
∥∥
∞ =

∑
i∈B

‖r(X)‖∞ = d ‖r‖∞ .

ut
Decryption works if equality (?) holds over R without taking both sides modulo
q. By the above lemma this is guaranteed by choosing dF and dg such that

1 + p(dF + dg) < q.

Usually, NTRUEncrypt is used with two additional space parameters dm and
dr. The parameters define the spaces D(dm) and D(dr) from which the message
polynomial m and blinding polynomials r are picked. Using these further param-
eters makes NTRUEncrypt more efficient and the constraint on the parameters
is relaxed to

1 + p(min{dF , dm}+ min{dg, dr}) < q.

Arithmetic. The key pair generation, encryption, and decryption algorithms
described above require arithmetic with polynomials from the ring R. After all
computations, the coefficients of the polynomials are reduced modulo q, except
once during decryption, where they are reduced modulo p. As shown in the
previous paragraph, this modulo p step may be preceded by a reduction modulo
q because if the space parameters are chosen appropriately, the coefficients are
already smaller than q and therefore will not be changed by this reduction. So,
in order to ease implementation, all arithmetic operations can be performed
modulo q, that is, in the finite ring Rq := Z[X] / (q, XN − 1) instead of R.

2.2 Product form variant

There is a more efficient variant of NTRUEncrypt, called the product form vari-
ant. In this section, we describe the differences to the regular, sometimes called
binary variant. In the product form variant, the binary polynomials F and r are
replaced by so-called product form polynomials. Product form polynomials are of
the form f1 ·f2+f3, where f1, f2, and f3 are very sparse binary polynomials. The
product form variant is faster than the binary variant because of an optimized
algorithm for multiplication of elements of Rq with product form polynomials
(see section 3.4).

Parameters. Choose N, p, q as before. The space parameters are df1 , df2 , df3 ,
dg ∈ N.

Key pair generation. Randomly choose fi ∈ D(dfi
) for 1 ≤ i ≤ 3 and compute

F := f1 · f2 + f3. The remaining steps are as before.

Correctness. In the product form variant, it is still needed that

a = f ·m + p · g · r = m + p(f1 · f2 ·m + f3 ·m + g · r) in R,

to avoid decryption failures. This is guaranteed if

1 + p(min{df1 , df2}+ df3 + dg) < q.

2.3 NAEP/SVES-3

NAEP/SVES-3 is a scheme based on NTRUEncrypt that is provably secure
against adaptive chosen ciphertext attacks in the random oracle model, similar
to OAEP+ for RSA. The scheme uses two hash functions G and H. Fix the
maximal message bit length maxLen and the bit length bLen of some random
strings. Precompute the internal message bit length

nLen := bLen + (log2(maxLen) + 1) + maxLen.

Encryption (see Figure 1). In order to encrypt a message M , compute its bit
length MLen and choose a random string b of length bLen. Compute a blinding
polynomial r = G(b||M ||ID), where ID is a number that uniquely identifies the
used parameter set.

ID

XOR

M

Mb

b

MLen 00 . . . G(. . .)

H(. . .)

r

rh

+m

e

Fig. 1. SVES-3 encryption

Pad the message as (b||MLen||M ||00 . . .) to obtain a string M of the prede-
fined bit length nLen. Compute the exclusive-or of M with H(r · h), the image
of the product of the blinding polynomial and the public key under the second
hash function H to obtain m. Encrypt m using the NTRUEncrypt encryption
primitive as described in section 2.1.

Decryption (see Figure 2). Decrypt a ciphertext e with the NTRUEncrypt de-
cryption primitive as described in section 2.1 into a polynomial m. Compute the
difference rh := e −m and the exclusive-or of e with rh to obtain a bit string
of length nLen. Interpret this bit string as (b′||MLen ′||M ′||trunc). Check that
trunc consists only of zeroes and that MLen ′ is the bit length of M ′. Compute
r′ = G(b′||M ′||ID) and check whether r′h equals rh which was computed earlier.
If all checks are positive, return M as the decrypted message.

e

a = fe (mod q)

m′ = a (mod p) a−m′

=?

ID

XOR

M ′b′ MLen′

M

00 . . .?

G(. . .)

H(. . .)

r

rh

Fig. 2. SVES-3 decryption

3 Implementation notes

In this section, we provide details of our NTRUSVES implementation. We begin
with describing the instantiation of SVES-3 given in IEEE P1363.1. Afterwards,
we describe the supported parameters, the format of the keys, the used arith-
metic, and the encoding format of polynomials and keys.

3.1 Instantiation

IEEE P1363.1 proposes concrete instantiations of the hash functions G and H
used in the NAEP/SVES-3 scheme. The hash function G is called Blinding Value
Generation Method (BVGM) (in draft 8) or Blinding Polynomial Generation
Method (BPGM) (in draft 9). We decide to use the latter notation for the rest
of the paper. The BPGM itself uses a so-called Seed Expansion Function (SEF)
(draft 8) or Index Generation Function (IGF) (draft 9), which in turn uses a
hash function. Again, we use the latter name for the rest of the paper.

The draft standard proposes two different BPGM instantiations. The first
one (LBP-BPGM1) is used to generate a binary blinding polynomial, the second
one (LBP-BPGM2) produces a product form blinding polynomial. Both use the
same IGF (IGF-MGF1). The underlying hash function is either SHA-1 or SHA-
256 for the proposed parameter sets (see section 3.2).

The input (ID||m||b) to the BPGM can be extended to (ID||m||b||hTrunc),
where hTrunc are some bits of the encoded public key h. Although this option
is not used with the proposed parameter sets (i.e., the length of hTrunc is 0),
it is supported by our implementation (see also section 3.3).

The function H is called Mask Generation Function (MGF) and uses a hash
function. The draft standard proposes one instantiation (MGF1) which uses
either SHA-1 or SHA-256 as hash function.

We do not describe the BPGM, IGF, and MGF algorithms in this paper, but
rather refer the reader to [5]. Our implementation follows the description of the
algorithms of draft 8 precisely.

3.2 Parameters

Our implementation supports all recommended parameter sets of draft version
9 of IEEE P1363.1 (see Annex A.5 of the draft standard). For each choice of
the main parameter N ∈ {251, 347, 397, 491, 587, 787}, there is a binary and a
product form parameter set. The parameter choices correspond to bit security
levels of 80, 112, 128, 160, 192, and 256 bits, respectively. Each parameter set is
chosen to maximize efficiency for the selected security level.

3.3 Key pairs

The name of the parameter set used to generate the keys is stored both in the
public and in the private key.

Public key. The public key is the polynomial h = f−1
q · p · g (mod q).

Private key. Differing from the draft standard, we do not store the polynomial f
as the private key. Instead, the pair of polynomials (F, g) is stored, where F either
is a binary or a product form polynomial, and g is a binary polynomial. On the
one hand, this speeds up decryption (see section 3.5) and reduces the size of the
encoded private key (see section 3.6). On the other hand, the public polynomial
h is needed to generate the input to the Blinding Polynomial Generation Method
(see section 3.1), so it must be possible to reconstruct h from the private key.

3.4 Arithmetic

IEEE P1363.1 proposes two algorithms optimized for the multiplication of el-
ements of the ring Rq = Z[X]/(q, XN − 1) with binary polynomials and with
product form polynomials, respectively. These algorithms are considerably faster
than the generic algorithm for the multiplication of two arbitrary elements of
Rq.

The first algorithm is described in section 6.2.5 of draft 8. If a binary poly-
nomial has d coefficients equal to 1, then the algorithm requires dN additions
over Z and N reductions modulo q.

The second algorithm is described in section 6.2.6. of the draft. For product
form polynomials consisting of three binary polynomials each with d coefficients
equal to 1, the algorithm requires 3dN multiplications over Z and N reductions
modulo q.

3.5 Decryption

The central decryption operation is the computation of the polynomial

a = f · e (mod q),

where f = 1 + pF is the private polynomial. Since in our implementation, the
(binary or product form) polynomial F is stored in the private key (see section
3.3), this computation is performed as

a = e + p · e · F (mod q),

using the efficient multiplication algorithms described in section 3.4 for the com-
putation of e · F .

3.6 Encoding of polynomials and keys

Several steps of the encryption and decryption processes require the encoding of
polynomials as (and the decoding from) octet strings. Additionally, in order to
make the keys usable by public key infrastructures, they have to be encoded as
well. In the following sections, we describe the encoding format of polynomials
and keys.

Sparse binary polynomials. Sparse binary polynomials are stored as a sorted
array of the degrees of the monomials having a non-zero coefficient. The de-
grees are encoded in descending order. Each degree is an integer in the interval
[0, N − 1]. It is encoded as an octet string (byte array) of length dlog256(N −1)e
in big endian byte order.

Non-sparse binary polynomials are encoded using the BRE2OSP primitive
described in section 7.7.1 of IEEE P1363.1-D8.

Product form polynomials. A product form polynomial f = f1 · f2 + f3

consists of three sparse binary polynomials with the same number of non-zero
coefficients. Product form polynomials are encoded as the concatenation of the
encodings of f1, f2, and f3 (see section 3.6).

Other ring elements. Since all ring computations are performed modulo q,
ring elements are stored as their coefficient vector with coefficients reduced mod-
ulo q. The ring elements are encoded using the RE2OSP primitive described in
section 7.5.1 of IEEE P1363.1-D8.

NTRUSVES keys. NTRUSVES keys are encoded into ASN.1 structures in
order to be used with public key infrastructures. The polynomials are encoded
as octet strings as described in the preceding sections.

Public key. The NTRUSVES public key ASN.1 structure is

NTRUSVESPublicKey ::= SEQUENCE {
paramName IA5STRING -- name of the parameter set
encH OCTET STRING -- encoded polynomial h

}

This structure is embedded into a SubjectPublicKeyInfo structure as defined in
RFC 3280 [7].

Private key. The NTRUSVES private key ASN.1 structure is

NTRUSVESPrivateKey ::= SEQUENCE {
paramName IA5STRING -- name of the parameter set
encF OCTET STRING -- encoded polynomial F
encG OCTET STRING -- encoded polynomial g

}

This structure is embedded into a PrivateKeyInfo structure as defined in PKCS
#8 [12].

4 Measurement results and comparison

In this section, we state the experimental results of the measurements of our
NTRUSVES implementation. We provide time measurements as well as key
sizes for all parameter sets proposed by IEEE P1363.1-D9. We also provide
similar results for the RSA PKCS #1 v2.1 encryption scheme. Based on these
experiments, we compare the complexity of the two encryption schemes. The
experiments were made using a computer equipped with a Pentium M 1.6 GHz
CPU, 512 MB of RAM and running Microsoft Windows XP. The code was
compiled with JDK 1.3 and run under JRE 1.6.

4.1 NTRUSVES

In this section, we state the results of the measurements of our NTRUSVES
implementation. The results are summarized in table 2.

Column “Parameter set” denotes the used parameter set. The first six param-
eter sets are binary parameter sets, the other six sets are product form parameter
sets.

Column “k” denotes the bit security level of NTRUSVES with the given
parameter set. The estimates are taken from IEEE P1363.1-D9.

Columns “sprivKey” and “spubKey” denote the size of the DER-encoded pri-
vate key and public key ASN.1 structures, respectively (see section 3.6).

Columns “tkpg”, “tenc”, and “tdec” denote the time measurement results for
key pair generation, encryption, and decryption, respectively. For each parameter
set, 500 key pairs were generated. For each key pair, 2000 random messages of
random length between 1 and the maximal possible length were encrypted and
decrypted.

Parameter set k sprivKey spubKey tkpg tenc tdec

ees251ep6 80 218 bytes 296 bytes 17.9 ms 0.2 ms 0.3 ms
ees347ep2 112 529 bytes 740 bytes 31.7 ms 0.3 ms 0.5 ms
ees397ep1 128 595 bytes 840 bytes 40.9 ms 0.4 ms 0.6 ms
ees491ep1 160 723 bytes 1028 bytes 62.0 ms 0.6 ms 1.0 ms
ees587ep1 192 853 bytes 1220 bytes 87.2 ms 0.9 ms 1.4 ms
ees787ep1 256 1118 bytes 1620 bytes 155.0 ms 1.4 ms 2.3 ms

ees251ep7 80 194 bytes 548 bytes 17.5 ms 0.1 ms 0.2 ms
ees347ep3 112 462 bytes 740 bytes 32.5 ms 0.2 ms 0.3 ms
ees397ep2 128 518 bytes 840 bytes 42.2 ms 0.2 ms 0.3 ms
ees491ep2 160 630 bytes 1028 bytes 63.7 ms 0.3 ms 0.5 ms
ees587ep2 192 738 bytes 1220 bytes 89.9 ms 0.5 ms 0.7 ms
ees787ep2 256 969 bytes 1620 bytes 159.8 ms 0.7 ms 1.1 ms

Table 2. NTRUSVES key sizes and time measurement results

4.2 RSA PKCS #1 v2.1

In this section, we state the results of the measurements of our RSA PKCS #1
v2.1 implementation. The implementation is part of the Java Cryptographic
Service Provider FlexiProvider [4]. The implementation uses the built-in modular
arithmetic of Java (class BigInteger). The results are summarized in table 3.

Column “Key size” denotes the bit size of the modulus. Column “k” denotes
the bit security level of RSA for the given key size. The estimates are taken from
the NIST Key Management Guideline [17].

Columns “sprivKey” and “spubKey” denote the size of the DER-encoded pri-
vate key and public key ASN.1 structures, respectively (see section 3.6).

Columns “tkpg”, “tenc”, and “tdec” denote the time measurement results for
key pair generation, encryption, and decryption, respectively. For each key size,
20 key pairs were generated. The public exponent was chosen as e = 216 + 1
for all key sizes and key pairs. For each key pair, 1000 random messages of
random length between 1 and the maximal possible length were encrypted and
decrypted.

Key size k sprivKey spubKey tkpg tenc tdec

1024 80 634 bytes 162 bytes 0.9 s 0.7 ms 13.2 ms
2048 112 1218 bytes 194 bytes 6.8 s 2.7 ms 91.7 ms
3072 128 1794 bytes 422 bytes 27.3 s 5.9 ms 294.4 ms
4096 144 2374 bytes 550 bytes 104.1 s 10.3 ms 682.5 ms

Table 3. RSA PKCS #1 v2.1 key sizes and time measurement results

4.3 Comparison

The measurement results stated above show that the NTRUSVES key pair gen-
eration, encryption and decryption operations are substantially faster than their
RSA counterparts for the same security level. This is true also for larger security
parameters because the asymptotic complexity of NTRUSVES grows slower in
terms of the security parameter than the complexity of RSA.

For the same security level, the size of NTRUSVES private keys is about 1/3
of the size of RSA private keys. NTRUSVES public keys are about twice as large
as RSA public keys.

5 Conclusion

In this paper, we present an efficient implementation of NTRUSVES. The imple-
mentation provides superior time complexity and competitive key sizes compared
to the widely used RSA encryption scheme. This demonstrates that it is already
possible today to use quantum computer resistant encryption schemes without
any loss of efficiency. Because NTRUSVES is implemented as part of a Java
Cryptographic Service Provider, it can be used with any application that uses
the cryptographic framework provided by Java.

References

1. K. Aoki, J. Franke, T. Kleinjung, A. K. Lenstra, and D. A. Osvik. A kilobit special
number field sieve factorization. Cryptology ePrint Archive, Report 2007/205,
2007. Available at http://eprint.iacr.org/2007/205.

2. S. Cavallar, B. Dodson, A. K. Lenstra, W. M. Lioen, P. L. Montgomery, B. Murphy,
H. te Riele, K. Aardal, J. Gilchrist, G. Guillerm, P. C. Leyland, J. Marchand,
F. Morain, A. Muffett, C. Putnam, C. Putnam, and P. Zimmermann. Factorization
of a 512-Bit RSA Modulus. In Advances in Cryptology – EUROCRYPT 2000,
volume 1807 of Lecture Notes in Computer Science, pages 1–18. Springer Verlag,
2000.

3. T. Elgamal. A Public Key Cryptosystem and a Signature Scheme Based on Discrete
Logarithms. In Advances in Cryptology – CRYPTO ’84, volume 196 of Lecture
Notes in Computer Science, pages 10–18. Springer Verlag, 1985.

4. The FlexiProvider group at Technische Universität Darmstadt. FlexiProvider, an
open source Java Cryptographic Service Provider, 2001–2007. Available at http:

//www.flexiprovider.de/.
5. The IEEE P1363 Study Group for Future Public-Key Cryptography Standards.

Draft Standard for Public-Key Cryptographic Techniques Based on Hard Prob-
lems over Lattices. Available at http://grouper.ieee.org/groups/1363/lattPK/
draft.html, January 2007.

6. J. Hoffstein, J. Pipher, and J. H. Silverman. NTRU: A Ring-Based Public Key
Cryptosystem. In Proceedings of the Third International Symposium on Algorith-
mic Number Theory, volume 1423 of Lecture Notes in Computer Science, pages
267–288. Springer Verlag, 1998.

7. R. Housley, W. Polk, W. Ford, and D. Solo. RFC 3280 (Proposed Standard):
Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation
List (CRL) Profile. Available at http://www.ietf.org/rfc/rfc3280.txt, April
2002. Updated by RFCs 4325, 4630.

8. N. Howgrave-Graham, J. H. Silverman, A. Singer, and W. Whyte. NAEP: Provable
Security in the Presence of Decryption Failures. Cryptology ePrint Archive, Report
2003/172, 2003. Available at http://eprint.iacr.org/2003/172.

9. N. Howgrave-Graham, J. H. Silverman, and W. Whyte. Choosing Parameter Sets
for NTRUEncrypt with NAEP and SVES-3. In Topics in Cryptology CT-RSA
2005, volume 3376 of Lecture Notes in Computer Science, pages 118–135. Springer
Verlag, 2005.

10. IEEE. IEEE Standard Specifications for Public-Key Cryptography, January 2000.
See also ”IEEE 1363 Amendment 1: Additional Techniques”.

11. International Telecommunication Union. X.680: Information technology - Abstract
Syntax Notation One (ASN.1): Specification of basic notation, 2002. Available at
http://www.itu.int/rec/T-REC-X.680/.

12. RSA Laboratories. PKCS #8: Private-Key Information Syntax Standard (version
1.2). Available at http://www.rsa.com/rsalabs/node.asp?id=2130, November
1993.

13. RSA Laboratories. PKCS #12: Personal Information Exchange Syntax (version
1.0). Available at http://www.rsa.com/rsalabs/node.asp?id=2138, June 1999.

14. RSA Laboratories. PKCS #1: RSA Cryptography Standard (version 2.1). Avail-
able at http://www.rsa.com/rsalabs/node.asp?id=2125, June 2002.

15. A. K. Lenstra and H. W. Lenstra, Jr., editors. The development of the number
field sieve, volume 1554 of Lecture Notes in Mathematics. Springer Verlag, 1993.

16. A. K. Lenstra and E. R. Verheul. Selecting cryptographic key sizes. Journal of
Cryptology, 14(4):255–293, 2001.

17. National Institute of Standards and Technology (NIST) Computer Security Re-
source Center (CSRC). SP 800-57 Part 1, Recommendation for Key Management
– Part 1: General (Revised). Available at http://csrc.nist.gov/CryptoToolkit/
tkkeymgmt.html, March 2007.

18. P. W. Shor. Algorithms for Quantum Computation: Discrete Logarithms and
Factoring. In Proceedings of the 35th Annual IEEE Symposium on Foundations of
Computer Science (FOCS 1994), pages 124–134. IEEE Computer Society Press,
1994.

19. Sun Microsystems. The Java Cryptography Architecture API Specification &
Reference, 2002. Available at http://java.sun.com/j2se/1.4.2/docs/guide/

security/CryptoSpec.html.
20. Sun Microsystems. The Java Cryptography Extension (JCE) Reference Guide,

2002. Available at http://java.sun.com/j2se/1.4.2/docs/guide/security/

jce/JCERefGuide.html.

