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Abstract. The NTRU encryption scheme is an interesting alternative to
well-established encryption schemes such as RSA, ElGamal, and ECIES.
The security of NTRU relies on the hardness of computing short lattice
vectors and thus is a promising candidate for being quantum computer
resistant. There has been extensive research on e�cient implementation
of the NTRU encryption scheme. In this paper, we present a new algo-
rithm for enhancing the performance of NTRU. The proposed method is
between 15% and 22% faster on average than the best previously known
method. We also present a highly e�cient implementation of NTRU
within the Java Cryptography Architecture.
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1 Introduction

Encryption schemes commonly used today are RSA [13], ElGamal [4], and ECIES
[11]. The security of those schemes relies on the di�culty of factoring large com-
posite integers or computing discrete logarithms. However, it is unclear whether
these computational problems remain intractable in the future. For example,
Shor [18] showed that quantum computers can be used to factor integers and to
compute discrete logarithms in the relevant groups in polynomial time. Also, in
the past thirty years there has been signi�cant progress in solving the integer fac-
torization and discrete logarithm problems using classical computers [15,16,3,1].
It is therefore necessary to develop alternative encryption schemes which do not
rely on the di�culty of factoring or computing discrete logarithms and which
are considered secure even against quantum computer attacks.

A promising candidate for such a quantum secure encryption scheme is the
lattice-based public-key cryptosystem NTRU [7] in its NAEP/SVES-3 variant
[9,10]. The cryptosystem is patented by NTRU Cryptosystems, Inc., a company
founded in 1996 by J. Ho�stein, J. Pipher, and J. H. Silverman. SVES-3 is
currently undergoing a standardization process and will presumably be included
in the upcoming IEEE standard 1363.1 [6]. We refer to the SVES-3 variant
proposed in the draft standard as NTRUSVES.
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Our contribution. We propose a new algorithm for fast multiplication of NTRU
polynomials which improves on [6] and [14]. Depending on the used parameters,
our algorithm achieves an average-case speedup between 21% and 35% compared
to [6] and between 15% to 22% compared to [14]. The proposed algorithm also
is very space e�cient.

In addition, we provide a highly e�cient Java implementation of NTRUSVES
according to draft version 8 of IEEE P1363.1 which incorporates our proposed
multiplication algorithm. The implementation is provided within the Java Cryp-
tography Architecture (JCA, [19,20]) and will be part of the Java Cryptographic
Service Provider FlexiProvider [5].

Related work. IEEE P1363.1 [6] proposes an algorithm for fast multiplication of
NTRU polynomials which is due to Bailey et al. [2]. Lee et al. [14] present an
improved sliding window multiplication algorithm. The authors state that using
their algorithm, the NTRU encryption and decryption operations can be sped
up by up to 32% compared to Bailey et al.'s algorithm. However, this seems to
be a best-case estimate. Our experiments show that the average-case speedup is
between 7% and 16%, depending on the used parameter set.

Organization. The paper is organized as follows: Section 2 gives a brief mathe-
matical description of NTRU and NAEP/SVES-3. In Section 3, we describe our
new multiplication algorithm and compare it with the algorithms of Bailey et
al. and Lee et al. Section 4 provides details of our NTRUSVES implementation
as well as measurement results of the implementation. Section 5 concludes the
paper.

2 Mathematical background

In this section, we give a brief mathematical description of NTRU in the binary
and the product form variant. We also illustrate the NTRU Asymmetric Encryp-
tion Padding (NAEP) scheme in its most common instantiation: the Shortest
Vector Encryption Scheme, third revision (SVES-3) [9,10].

2.1 NTRU

The main parameters of NTRU are de�ned in Table 1. The stated security
requirements are taken from IEEE P1361.1-D9 [6], which is the latest draft of
this standard to date.

De�ne the ring of convolution modular polynomials

R := Z[X] / (XN − 1)

using the main parameter N . All computations in this section are performed in
R.

Let D(d) denote the set of binary polynomials of degree less than N with
hamming weight d. Two space parameters dF , dg ∈ N de�ne the private key
spaces D(dF ), D(dg).



Parameter Description Security requirements

N ∈ N Dim parameter N has to be prime.
p ∈ N Small modulus p has to be equal to 2.
q ∈ N Big modulus q 6= N has to be prime and large enough to pre-

vent decryption errors (see correctness).

Table 1. NTRU main parameters

Key pair generation. Choose uniformly at random the binary polynomials F ∈
D(dF ) and g ∈ D(dg). Compute f := 1 + pF . Check whether f is invertible in
R modulo q and denote the inverse f−1

q . If the inverse does not exist, start over.
Otherwise, compute the polynomial

h := f−1
q pg (mod q).

The private key is f , the public key is h.

Encryption. Encode a message M into a binary polynomial m. Randomly choose
a binary blinding polynomial r. The ciphertext is the polynomial

e := m + rh (mod q).

Decryption. Let e be the ciphertext. Compute

a := fe = fm + pgr (mod q)
(?)
= m + p(Fm + gr) (mod q).

Reduce the coe�cients of a into the interval [0, q). Compute the polynomial

m := a (mod p)

and decode the message M .

Correctness. The correctness of the decryption operation rests upon the follow-
ing easy-to-prove lemma:

Lemma 1. Let b ∈ D(d) and r ∈ R be arbitrary. Then it holds that

‖br‖∞ ≤ d‖r‖∞,

where the max-norm on R is de�ned as∥∥∥∥∥
N−1∑
i=0

riX
i

∥∥∥∥∥
∞

:= max
i=0,...,N−1

{|ri|}.

Decryption works if equality (?) holds over R without taking both sides modulo
q. By Lemma 1 this is guaranteed by choosing dF and dg such that

1 + p(dF + dg) < q.



NTRU can be used with two additional space parameters dm, dr ∈ Z. The
message M is then encoded into a polynomial m ∈ D(dm) and the blinding
polynomial r is chosen from D(dr). Using these additional parameters makes
NTRU more e�cient and the constraint on the parameters is relaxed to

1 + p(min{dF , dm} + min{dg, dr}) < q.

Arithmetic. All arithmetic operations described in the preceding paragraphs are
performed in the ring R. After all computations, the coe�cients of the poly-
nomials are reduced modulo q, except once during decryption, where they are
reduced modulo p. As shown in the previous paragraph, this modulo p step may
be preceded by a reduction modulo q if the space parameters are chosen appro-
priately. Thus, all arithmetic operations can be performed modulo q, that is, in
the �nite ring Rq := Z[X] / (q, XN − 1) instead of R.

2.2 Product form variant

There is a more e�cient variant of NTRU, called the product form variant. In the
product form variant, the binary polynomials F and r are replaced by so-called
product form polynomials. Product form polynomials are of the form f1f2 + f3,
where f1, f2, and f3 are very sparse binary polynomials. In this section, we
describe the di�erences to the regular, sometimes called binary variant.

Parameters. Choose N, p, q as before. The space parameters are df1 , df2 , df3 ,
dg ∈ N.

Key pair generation. Randomly choose fi ∈ D(dfi) for 1 ≤ i ≤ 3 and compute
F := f1f2 + f3. The remaining steps are as before.

Correctness. In the product form variant, it is still needed that

a = fm + pgr = m + p(f1f2m + f3m + gr) in R,

to avoid decryption failures. This is guaranteed if

1 + p(min{df1 , df2} + df3 + dg) < q.

2.3 NAEP/SVES-3

NAEP/SVES-3 is a scheme based on NTRU that is provably secure against adap-
tive chosen ciphertext attacks in the random oracle model, similar to OAEP+
for RSA. The description of NAEP/SVES-3 can be found in Appendix B.

3 Pattern multiplication

We propose a new algorithm for the multiplication of elements of Rq with binary
polynomials which is up to 35% faster than the algorithm proposed by IEEE
P1363.1-D8 and up to 22% faster than the algorithm of Lee et al. [14]. We
call the new algorithm pattern multiplication. The algorithm is described in the
following sections.



3.1 Basic idea

Throughout the paper, we identify polynomials a(X) =
∑N−1

i=0 aiX
i ∈ Rq with

their coe�cient vector (a0, . . . , aN−1). The product ab of two polynomials a, b ∈
R can be represented by the convolution operation c = a ∗ b, which is given by
the equation

ck =
∑

i+j≡k (mod N)

aibj

for k = 0, . . . , N−1. This operation generally requires N2 integer multiplications.
However, if the polynomial b is binary, the multiplication can be performed much
faster. Note that the convolution operation c = a ∗ b can also be written as a
vector-matrix multiplication:

c = (b0, . . . , bN−1) ·


a0 . . . aN−2 aN−1

aN−1 . . . aN−3 aN−2

...
. . .

...
...

a1 . . . aN−1 a0

 = (b0, . . . , bN−1) ·


a

Xa
X2a
...

XN−1a

 .

The last equality holds since multiplication of a polynomial a with a monomial
Xi in R corresponds to a rotation to the right of the coe�cient vector of a by i
positions.

If the polynomial b is binary, the multiplication with a therefore amounts to
adding polynomials of the form Xia, which can in turn be computed as rotations
of the coe�cient vector of a, for all i such that bi = 1. So, only additions over Z
are necessary in order to compute the product ab in R. If b has hamming weight
d, the product can be computed with dN additions over Z. The product in Rq

is computed identically, only that the coe�cients of c are additionally reduced
modulo q once at the end of the multiplication. This idea is due to Bailey et
al. [2] and the corresponding multiplication algorithm is incorporated into the
IEEE P1363.1 draft standard.

In the following, we denote binary polynomials as bit strings. It is possible
to reduce the number of additions needed to compute the product ab by using
bit patterns of the binary polynomial b. We consider patterns containing two 1s.
Consider the binary polynomial b in Figure 1.

0 0000 1 11111b =

ab =

rotate 4 rotate 8

a + X
3
a a + X

2
a

a + X
3
a + X

4(a + X
2
a) + X

8(a + X
2
a)

Fig. 1. Multiplication of a, b using pairs as pattern.



The bit pattern 101 occurs twice. By computing a + X2a once and storing
it in a lookup table, the number of additions needed to compute the product
ab can be reduced by N . More general, it is possible to reduce the number of
additions needed to compute ab whenever a bit pattern occurs more than once
in b. It is thus desirable to choose patterns in a way that maximizes the number
of pattern occurrences and to e�ciently identify the patterns in b.

3.2 The proposed algorithm

In this section, we describe our proposed algorithms for �nding bit patterns
of a binary polynomial b and for computing the product of b with arbitrary
polynomials a ∈ Rq using these patterns.

Pattern �nding. A binary polynomial b of hamming weight d is represented by
the sequence b0, . . . , bd−1 of its non-zero coe�cient locations. The polynomial
is traversed once in reverse order, starting at bd−1. Every pair of coe�cient
locations (bi, bi−1) represents a bit pattern of length bi − bi−1. The coe�cient
location bi is stored in a corresponding list and i is decreased by 2. A possibly
remaining single coe�cient location (in case that d is odd) is stored separately.
The description of the algorithm can be found in Algorithm 1.

Algorithm 1 Pattern �nding

System Parameters: integer N
Input: a binary polynomial b given as the sequence b0, . . . , bd−1 of its non-zero coe�-

cient locations
Output: a sequence of arrays (L0, . . . , LN−d+1) of bit pattern locations of a

1: create empty arrays (L0, . . . , LN−d+1) . holds the result
2: set index ← d− 1 . start at highest index of b

3: while index > 0 do . as long as 2 or more coe�cients remain
4: set dist ← bindex − bindex−1 . compute pattern size
5: append bindex to Ldist . append start index to corresponding array
6: set index ← index − 2 . jump to next pair of coe�cients

7: if index = 0 then . if a single coe�cient remains
8: append b0 to L0 . append it to L0

9: return (L0, . . . , LN−d+1) . return result

The algorithm essentially requires bd/2c subtractions over Z and memory for
storing dd/2e integers from the interval [0, N).

Pattern multiplication In the following, we describe our proposed algorithm for
computing the product ab of an arbitrary polynomial a ∈ Rq and a binary
polynomial b given as the sequence of arrays (L0, . . . , LN−d+1) of bit pattern
locations as computed by Algorithm 1.



Each non-empty list Li, i > 0 represents a bit pattern of b. For each such
Li, the corresponding pattern P = a + Xia is computed. This pattern is then
successively rotated by the elements of Li and added to the result polynomial.
A possibly remaining single coe�cient is treated separately without computing
a pattern. The detailed description of the algorithm can be found in Algorithm
2.

Algorithm 2 Pattern multiplication

System Parameters: integers N , q
Input: a polynomial a = (a0, . . . , aN−1) ∈ Rq, a sequence of arrays (L0, . . . , LN−d+1)

of pattern locations of a binary polynomial b
Output: c = a ∗ b

1: create empty coe�cient array c = (c0, . . . , cN−1) . holds the result
2: create empty coe�cient array P = (P0, . . . , PN−1) . holds a pattern

3: for all i > 0 such that Li is not empty do . process patterns
4: for j from 0 to N − 1 do . compute pattern P = a + Xia
5: set Pj ← aj + ai+j (mod N)

6: let di denote the size of Li . get number of occurrences of this pattern
7: for j from 0 to di − 1 do . multiply using the pattern
8: for k from 0 to N − 1 do

9: cLi[j]+k (mod N) ← cLi[j]+k (mod N) + Pk

10: if L0 is not empty then . treat possibly remaining single coe�cient
11: for k from 0 to N − 1 do

12: cL0[0]+k (mod N) ← cL0[0]+k (mod N) + ak

13: for i from 0 to N − 1 do . reduce coe�cients
14: set ci ← ci (mod q)

15: return c . return result

The algorithm requires at most dN additions over Z in the case that no bit
pattern occurs more than once in b. For each pattern occurring di > 1 times, the
number of additions is reduced by (di−1)N . Additionally, N reductions modulo
q are performed. The algorithm requires memory for storing two polynomials
(the result polynomial and a pattern polynomial).

3.3 Comparison and discussion

The multiplication algorithm of Bailey et al. does not consider bit patterns of
the binary polynomial b. So, for every non-zero coe�cient of b, N additions over
Z have to be performed.

The algorithm of Lee et al. uses bit patterns consisting of two neighboring 1s.
We say that such a pattern has length l if the two 1s are separated by l − 1 0s.
The algorithm only considers patterns of length less than or equal to a parameter



w which is chosen as w = 5 for the proposed parameter sets. For each pattern
length l = 1, . . . , w, the polynomial a + X la is computed and stored in a lookup
table. The non-zero coe�cients not belonging to any such pattern are treated
as in the algorithm of Bailey et al. Binary polynomials are represented as bit
strings.

Our algorithm also uses bit patterns consisting of two neighboring 1s, but the
patterns can be of arbitrary length, and only the patterns actually occurring in b
are considered. We omit the precomputation step and compute the polynomials
a+X la when needed. We also represent binary polynomials as the array of their
non-zero coe�cient locations, in accordance with the IEEE P1363.1 proposal.
It shows that pattern �nding can be performed much easier and faster in this
representation.

As already outlined by Lee et al., considering patterns consisting of more
than two 1s does not achieve any notable speedup because the probability that
these patterns occur more than once in b is very low. Also, an adjusted pat-
tern multiplication algorithm for the product-form variant does not achieve any
notable speedup for the same reasons.

Finally, we would like to remark that the precomputation scenario presented
by Lee et al. is not always applicable to NTRU. During encryption, it applies
only when sending many messages to a single receiver. During decryption, it
only applies to one of the two multiplications involved. We therefore propose to
use a hybrid solution between the approach of Lee et al. and the one we present
in this paper.

3.4 Measurement results

In this section, we state the results of the performance measurements of the
multiplication algorithms of Bailey et al., Lee et al. [14], and our proposed algo-
rithm. The measurement results are summarized in table 2. Column �Parameter

Parameter set tBailey tLee tpattern

ees251ep6 0.14 ms 0.13 ms (+ 7%) 0.11 ms (+21%)
ees347ep2 0.25 ms 0.23 ms (+ 8%) 0.19 ms (+24%)
ees397ep1 0.32 ms 0.29 ms (+ 9%) 0.23 ms (+28%)
ees491ep1 0.48 ms 0.42 ms (+12%) 0.34 ms (+29%)
ees587ep1 0.68 ms 0.59 ms (+13%) 0.46 ms (+32%)
ees787ep1 1.18 ms 0.99 ms (+16%) 0.77 ms (+35%)

Table 2. Time measurement results of the di�erent multiplication algorithms

set� denotes the used parameter set. Column �tBailey� denotes the multiplication
algorithm of Bailey et al., column �tLee� denotes the algorithm of Lee et al., and
column �tpattern� denotes our proposed pattern multiplication algorithm. The



stated times are average times taken over 50000 multiplications of randomly
chosen polynomials for each parameter set.

For the algorithm of Lee et al. and our proposed algorithm, the pattern �nd-
ing and precomputation steps are taken into account. For these two algorithms,
the speedup relative to Bailey et al.'s algorithm is given in addition to the ab-
solute times.

The experiments were made using a computer equipped with a Pentium M
1.6 GHz CPU, 512 MB of RAM and running Microsoft Windows XP. The code
was compiled with JDK 1.3 and run under JRE 1.6.

4 NTRUSVES implementation

In this section, we provide details of our NTRUSVES implementation. First,
we describe the instantiation of SVES-3 given in IEEE P1363.1. Afterwards, we
describe the supported parameters, the format of the keys, and the encoding
format of polynomials and keys.

4.1 Instantiation

IEEE P1363.1 proposes concrete instantiations of the hash functions G and H
used in the NAEP/SVES-3 scheme. The hash function G is called Blinding Value
Generation Method (BVGM) (in draft 8) or Blinding Polynomial Generation
Method (BPGM) (in draft 9). We decide to use the latter notation for the rest
of the paper. The BPGM itself uses a so-called Seed Expansion Function (SEF)
(draft 8) or Index Generation Function (IGF) (draft 9), which in turn uses a
hash function. Again, we use the latter name for the rest of the paper.

The draft standard proposes two di�erent BPGM instantiations. The �rst
one (LBP-BPGM1) is used to generate a binary blinding polynomial, the second
one (LBP-BPGM2) produces a product form blinding polynomial. Both use the
same IGF (IGF-MGF1). The underlying hash function is either SHA-1 or SHA-
256 for the proposed parameter sets (see Section 4.2).

The input (ID ||m||b) to the BPGM can be extended to (ID ||m||b||hTrunc),
where hTrunc are some bits of the encoded public key h. Although this option
is not used with the proposed parameter sets (i.e., the length of hTrunc is 0), it
is supported by our implementation (see also Section 4.3).

The function H is called Mask Generation Function (MGF) and uses a hash
function. The draft standard proposes one instantiation (MGF1) which uses
either SHA-1 or SHA-256 as hash function.

We do not describe the BPGM, IGF, and MGF algorithms in this paper, but
rather refer the reader to [6]. Our implementation follows the description of the
algorithms of draft 8 precisely.

4.2 Parameters

Our implementation supports all recommended parameter sets of draft version 9
of IEEE P1363.1 (see Annex A.5 of the draft standard). For each choice of the



main parameter N ∈ {251, 347, 397, 491, 587, 787}, there is a binary and a
product form parameter set. The parameter choices correspond to bit security
levels of 80, 112, 128, 160, 192, and 256 bits, respectively. Each parameter set is
chosen to maximize e�ciency for the selected security level.

4.3 Key pairs

The name of the parameter set used to generate the keys is stored both in the
public and in the private key.

Public key. The public key is the polynomial h = f−1
q pg (mod q).

Private key. Di�ering from the draft standard, we do not store the polynomial f
as the private key. Instead, the pair of polynomials (F, g) is stored, where F either
is a binary or a product form polynomial, and g is a binary polynomial. On the
one hand, this speeds up decryption (see Section 4.4) and reduces the size of the
encoded private key (see Section 4.6). On the other hand, the public polynomial
h is needed to generate the input to the Blinding Polynomial Generation Method
(see Section 4.1), so it must be possible to reconstruct h from the private key.

4.4 Decryption

The central decryption operation is the computation of the polynomial

a = fe (mod q),

where f = 1 + pF is the private polynomial. Since in our implementation, the
(binary or product form) polynomial F is stored in the private key (see Section
4.3), this computation is performed as

a = e + peF (mod q),

using the e�cient multiplication algorithms described in Section 4.5 for the com-
putation of eF .

4.5 E�cient multiplication

We employ the pattern multiplication algorithm proposed in this paper to com-
pute the product of polynomials in Rq = Z[X]/(q, XN − 1) with binary polyno-
mials. For the product form variant, the algorithm described in Section 6.2.6 of
the IEEE P1363.1 draft is used.

4.6 Encoding of polynomials and keys

Several steps of the encryption and decryption processes require the encoding of
polynomials as (and the decoding from) octet strings. Additionally, in order to
make the keys usable by public key infrastructures, they have to be encoded as
well. In the following sections, we describe the encoding format of polynomials
and keys.



Binary polynomials. Sparse binary polynomials are stored as a sorted array of
the degrees of the monomials having a non-zero coe�cient. The degrees are
encoded in descending order. Each degree is an integer in the interval [0, N − 1],
which is encoded as an octet string (byte array) of length dlog256(N − 1)e in
big endian byte order. Non-sparse binary polynomials are encoded using the
BRE2OSP primitive described in Section 7.7.1 of IEEE P1363.1-D8.

Product form polynomials. A product form polynomial f = f1f2 + f3 consists of
three sparse binary polynomials with the same number of non-zero coe�cients.
Product form polynomials are encoded as the concatenation of the encodings of
f1, f2, and f3 (see preceding paragraph).

Other ring elements. Since all ring computations are performed modulo q, ring
elements are stored as their coe�cient vector with coe�cients reduced modulo q.
The ring elements are encoded using the RE2OSP primitive described in Section
7.5.1 of IEEE P1363.1-D8.

NTRUSVES keys. NTRUSVES keys are encoded into ASN.1 structures in order
to be used with public key infrastructures. The polynomials are encoded as
octet strings as described in the preceding sections. The ASN.1 de�nitions of
the NTRUSVES public and private key can be found in Appendix C.

4.7 Measurement results

In this section, we state the experimental results of the measurements of our
NTRUSVES implementation. We provide time measurements as well as key sizes
for all parameter sets proposed by IEEE P1363.1-D9. In Appendix D, we provide
similar results for the RSA PKCS #1 v2.1 encryption scheme andcompare the
complexity of the two encryption schemes based on these experiments.

The measurement results of our NTRUSVES implementation are summa-
rized in table 3. Column �Parameter set� denotes the used parameter set. The
�rst six parameter sets are binary parameter sets, the other six sets are product
form parameter sets. Column �k� denotes the bit security level of NTRUSVES
with the given parameter set. The estimates are taken from IEEE P1363.1-D9.
Columns �sprivKey� and �spubKey� denote the size of the DER-encoded private
key and public key ASN.1 structures, respectively (see Section 4.6). Columns
�tkpg�, �tenc�, and �tdec� denote the time measurement results for key pair gen-
eration, encryption, and decryption, respectively.

For the binary parameters sets, the pattern multiplication algorithm pro-
posed in this paper has been used. For each parameter set, 500 key pairs were
generated. For each key pair, 2000 random messages of random length between
1 and the maximal possible length were encrypted and decrypted.

The experiments were made using a computer equipped with a Pentium M
1.6 GHz CPU, 512 MB of RAM and running Microsoft Windows XP. The code
was compiled with JDK 1.3 and run under JRE 1.6.



Parameter set k sprivKey spubKey tkpg tenc tdec

ees251ep6 80 218 bytes 296 bytes 15.0 ms 0.2 ms 0.2 ms
ees347ep2 112 529 bytes 740 bytes 26.7 ms 0.3 ms 0.4 ms
ees397ep1 128 595 bytes 840 bytes 34.8 ms 0.3 ms 0.5 ms
ees491ep1 160 723 bytes 1028 bytes 51.3 ms 0.5 ms 0.7 ms
ees587ep1 192 853 bytes 1220 bytes 71.7 ms 0.6 ms 1.0 ms
ees787ep1 256 1118 bytes 1620 bytes 127.8 ms 1.0 ms 1.5 ms

ees251ep7 80 194 bytes 548 bytes 14.9 ms 0.1 ms 0.2 ms
ees347ep3 112 462 bytes 740 bytes 27.7 ms 0.2 ms 0.3 ms
ees397ep2 128 518 bytes 840 bytes 35.6 ms 0.2 ms 0.3 ms
ees491ep2 160 630 bytes 1028 bytes 53.6 ms 0.3 ms 0.5 ms
ees587ep2 192 738 bytes 1220 bytes 74.8 ms 0.5 ms 0.7 ms
ees787ep2 256 969 bytes 1620 bytes 131.7 ms 0.7 ms 1.1 ms

Table 3. NTRUSVES key sizes and time measurement results

5 Conclusion

In this paper, we present an e�cient multiplication algorithm for NTRU which
achieves an average-case speedup between 15% and 22% compared to the pre-
viously best-known results. Since the algorithm also is very space e�cient, it is
especially well-suited for resource-constrained devices. Since NTRU is currently
undergoing an IEEE standardization process, it would be reasonable to incor-
porate our proposed algorithm into the upcoming standard. We also present a
highly e�cient implementation of NTRUSVES according to the IEEE P1363.1-
D8 draft standard as part of a Java Cryptographic Service Provider. The imple-
mentation can be used with any application that uses the cryptographic frame-
work provided by Java.
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A Proof of Lemma 1

Proof. Let B = {i | bi 6= 0} be the set of indices of b's non-zero coe�cients.
Since b ∈ D(d), it holds that |B| = d. Rewrite the product and use the triangle
inequality to obtain

‖br‖∞ =

∥∥∥∥∥∑
i∈B

r(X)Xi

∥∥∥∥∥
∞

≤
∑
i∈B

∥∥r(X)Xi
∥∥
∞

Note that the max-norm of r(X) on R is not changed by a multiplication with
powers of X since this multiplication corresponds to a rotation of the coe�cients.
Conclude that

‖br‖∞ ≤
∑
i∈B

∥∥r(X)Xi
∥∥
∞ =

∑
i∈B

‖r(X)‖∞ = d ‖r‖∞ .

ut

B NAEP/SVES-3

The scheme uses two hash functions G and H. Fix the maximal message bit
length maxLen and the bit length bLen of some random strings. Precompute
the internal message bit length

nLen := bLen + (log2(maxLen) + 1) + maxLen.

Encryption (see Figure 2). In order to encrypt a message M , compute its bit
length MLen and choose a random string b of length bLen. Compute a blinding
polynomial r = G(b||M ||ID), where ID is a number that uniquely identi�es the
used parameter set.

Pad the message as (b||MLen||M ||00 . . .) to obtain a string M of the prede-
�ned bit length nLen. Compute the exclusive-or of M with H(rh), the image
of the product of the blinding polynomial and the public key under the second
hash function H to obtain m. Encrypt m using the NTRU encryption primitive
as described in Section 2.1.

Decryption (see Figure 3). Decrypt a ciphertext e with the NTRU decryption
primitive as described in Section 2.1 into a polynomial m. Compute the di�erence
rh := e−m and the exclusive-or of e with rh to obtain a bit string of length nLen.
Interpret this bit string as (b′||MLen ′||M ′||trunc). Check that trunc consists only
of zeroes and that MLen ′ is the bit length of M ′. Compute r′ = G(b′||M ′||ID)
and check whether r′h equals rh which was computed earlier. If all checks are
positive, return M as the decrypted message.
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C ASN.1 structures

Public key. The NTRUSVES public key ASN.1 structure is

NTRUSVESPublicKey ::= SEQUENCE {

paramName IA5STRING -- name of the parameter set

encH OCTET STRING -- encoded polynomial h

}

The public key structure is embedded into a SubjectPublicKeyInfo structure as
de�ned in RFC 3280 [8].

Private key. The NTRUSVES private key ASN.1 structure is

NTRUSVESPrivateKey ::= SEQUENCE {

paramName IA5STRING -- name of the parameter set

encF OCTET STRING -- encoded polynomial F

encG OCTET STRING -- encoded polynomial g

}

The private key structure is embedded into a PrivateKeyInfo structure as de�ned
in PKCS #8 [12].

D RSA PKCS #1 v2.1 measurement results and
comparison

In this section, we state the results of the measurements of our RSA PKCS #1
v2.1 implementation. The implementation is part of the Java Cryptographic
Service Provider FlexiProvider [5]. The implementation uses the built-in modular
arithmetic of Java (class BigInteger). The results are summarized in table 4.

Column �Key size� denotes the bit size of the modulus. Column �k� denotes
the bit security level of RSA for the given key size. The estimates are taken from
the NIST Key Management Guideline [17]. Columns �sprivKey� and �spubKey�
denote the size of the DER-encoded private key and public key ASN.1 struc-
tures, respectively (see Section 4.6). Columns �tkpg�, �tenc�, and �tdec� denote
the time measurement results for key pair generation, encryption, and decryp-
tion, respectively.

For each key size, 20 key pairs were generated. The public exponent was
chosen as e = 216 + 1 for all key sizes and key pairs. For each key pair, 1000
random messages of random length between 1 and the maximal possible length
were encrypted and decrypted.



Key size k sprivKey spubKey tkpg tenc tdec

1024 80 634 bytes 162 bytes 0.9 s 0.7 ms 13.2 ms
2048 112 1218 bytes 194 bytes 6.8 s 2.7 ms 91.7 ms
3072 128 1794 bytes 422 bytes 27.3 s 5.9 ms 294.4 ms
4096 144 2374 bytes 550 bytes 104.1 s 10.3 ms 682.5 ms

Table 4. RSA PKCS #1 v2.1 key sizes and time measurement results

Comparison The measurement results given in Section 4.7 show that the
NTRUSVES key pair generation, encryption and decryption operations are sub-
stantially faster than their RSA counterparts for the same security level. This
is true also for larger security parameters because the asymptotic complexity of
NTRUSVES grows slower in terms of the security parameter than the complexity
of RSA.

For the same security level, the size of NTRUSVES private keys is about 1/3
of the size of RSA private keys. NTRUSVES public keys are about twice as large
as RSA public keys.


