
E�ciency Improvement for NTRU

Johannes Buchmann, Martin Döring?, and Richard Lindner

Technische Universität Darmstadt
Department of Computer Science

Hochschulstraÿe 10, 64289 Darmstadt, Germany
{buchmann,doering,rlindner}@cdc.informatik.tu-darmstadt.de

Abstract. The NTRU encryption scheme is an interesting alternative to
well-established encryption schemes such as RSA, ElGamal, and ECIES.
The security of NTRU relies on the hardness of computing short lattice
vectors and thus is a promising candidate for being quantum computer
resistant. There has been extensive research on e�cient implementation
of the NTRU encryption scheme. In this paper, we present a new algo-
rithm for enhancing the performance of NTRU. The proposed method is
between 15% and 22% faster on average than the best previously known
method. We also present a highly e�cient implementation of NTRU
within the Java Cryptography Architecture.

Keywords: NTRU, e�ciency improvement, implementation.

1 Introduction

Public key encryption schemes commonly used today are RSA [13], ElGamal [4],
and ECIES [11]. The security of those schemes relies on the di�culty of factoring
large composite integers or computing discrete logarithms. However, it is unclear
whether these computational problems remain intractable in the future. For
example, Shor [18] showed that quantum computers can be used to factor integers
and to compute discrete logarithms in the relevant groups in polynomial time.
Also, in the past thirty years there has been signi�cant progress in solving the
integer factorization and discrete logarithm problems using classical computers
[15,16,3,1]. It is therefore necessary to develop alternative encryption schemes
which do not rely on the di�culty of factoring or computing discrete logarithms
and which are considered secure even against quantum computer attacks.

A promising candidate for such a quantum secure encryption scheme is the
lattice-based public-key cryptosystem NTRU [7] in its NAEP/SVES-3 variant
[9,10]. SVES-3 is currently undergoing a standardization process and will pre-
sumably be included in the upcoming IEEE standard 1363.1 [6]. We refer to the
SVES-3 variant proposed in the draft standard as NTRUSVES.

In this paper, we propose a new algorithm for fast multiplication of NTRU
polynomials. Depending on the parameters, our algorithm achieves an average-
case speedup between 21% and 35% compared to [6] and between 15% to 22%
? Author supported by SicAri, a project funded by the German Ministry for Education
and Research (BMBF). See http://www.sicari.de.

compared to [14], which are the currently best known algorithms. The proposed
algorithm is also very space e�cient.

In addition, we report about a highly e�cient Java implementation of NTRU-
SVES which follows draft version 8 of IEEE P1363.1 and, in addition, includes
our proposed multiplication algorithm. The implementation is compliant with
the Java Cryptography Architecture (JCA, [19,20]) and will be part of the Java
Cryptographic Service Provider FlexiProvider [5].

Related work. IEEE P1363.1 [6] proposes an algorithm for fast multiplication of
NTRU polynomials which is due to Bailey et al. [2]. Lee et al. [14] present an
improved sliding window multiplication algorithm. The authors state that using
their algorithm, the NTRU encryption and decryption operations can be sped
up by up to 32% compared to Bailey et al.'s algorithm. However, this seems to
be a best-case estimate. Our experiments show that the average-case speedup is
between 7% and 16%, depending on the used parameter set.

The paper is organized as follows: Section 2 gives a brief mathematical de-
scription of NTRU and NAEP/SVES-3. In Section 3, we describe our new mul-
tiplication algorithm and compare it with the algorithms of Bailey et al. [2] and
Lee et al. [14]. Section 4 provides details of our NTRUSVES implementation as
well as timing results. Section 5 concludes the paper.

2 Mathematical background

In this section, we give a brief mathematical description of the NTRU encryption
scheme according to IEEE P1361.1-D9 [6].

Parameters. NTRU is used with the following parameters: prime integers N, q,
the integer p = 2, integers dF , dg, dr < N . The security requirements concerning
the choice of the parameters can be found in Annexes A.1 to A.3 of the draft
standard. An algorithm for constructing parameter sets is given in Annex A.4.
Prede�ned parameter sets can be found in Annex A.5 of the draft standard.

All computations in this section are performed in the ring of convolution
modular polynomials

R = Z[X] / (XN − 1),

where polynomials of degree less than N are used as representatives for the
residue classes. Let D(d) denote the set of binary polynomials of degree less
than N with hamming weight d.

Key pair generation. Choose uniformly at random the binary polynomials F ∈
D(dF) and g ∈ D(dg). Compute f = 1 + pF . If the congruence f · f−1 ≡ 1
(mod q) has a solution, calculate such a solution f−1. Otherwise, start over.
Compute the polynomial

h = f−1pg mod q.

For the rest of the paper, the notation a = b mod q stands for reducing the
coe�cients of b modulo q and assigning the result to a. The private key is f , the
public key is h.

Encryption. The message space is the set of binary polynomials of degree less
than N . To encrypt a message m, randomly choose a binary blinding polynomial
r ∈ D(dr). The ciphertext is the polynomial

e = m + rh mod q.

Decryption. Let e be the ciphertext. Compute

a = fe mod q.

The message m is obtained from a by reducing the coe�cients of a modulo p.

The decryption operation is correct if the parameters dF , dg, and dr are
chosen such that

1 + p(dF + min{dg, dr}) < q.

This is guaranteed for the prede�ned parameter sets of IEEE P1363.1-D9 and
for parameter sets generated by the parameter generation algorithm given in the
draft standard.

Product form variant. The product form variant is a more e�cient variant of
NTRU in which the binary polynomials F and r are replaced by so-called product
form polynomials. Product form polynomials are of the form f1f2 +f3, where f1,
f2, and f3 are very sparse binary polynomials. We omit the detailed description
of the product form variant and instead refer the reader to [6].

NAEP/SVES-3. The NTRU Asymmetric Encryption Padding (NAEP) [9,10] is
a scheme based on NTRU that is provably secure against adaptive chosen cipher-
text attacks in the random oracle model, similar to OAEP+ for RSA. Its most
common instantiation is the Shortest Vector Encryption Scheme, third revision
(SVES-3). The description of NAEP/SVES-3 can be found in Appendix A.

3 Pattern multiplication

We propose a new algorithm for the multiplication of elements of R with bi-
nary polynomials which is based on the ideas of Bailey et al. [2] and Lee et al.
[14]. Like Lee et al., our algorithm uses bit patterns of the binary polynomial.
The algorithm of Lee et al. considers bit patterns up to a maximal length and
precomputes pattern polynomials for each pattern length. Our algorithm con-
siders only the bit patterns actually occurring in b and computes the pattern
polynomials when needed instead of using precomputation.

Depending on the parameters, the proposed algorithm is between 21% and
35% faster on average than the algorithm of Bailey et al. and between 15% and
22% faster on average than the algorithm of Lee et al. (see Section 3.3). We
call the new algorithm pattern multiplication. The algorithm is described in the
following sections.

3.1 Basic idea

Throughout the paper, we identify polynomials a(X) =
∑N−1

i=0 aiX
i ∈ R with

their coe�cient vector (a0, . . . , aN−1). The product ab of two polynomials a, b ∈
R can be represented by the convolution operation c = a ∗ b, which is given by
the equation

ck =
∑

0 ≤ i, j < N
i + j ≡ k (mod N)

aibj

for k = 0, . . . , N − 1.
Bailey et al. [2] observed that if the polynomial b is binary, the product can

be computed using only additions over Z and rotations of the coe�cient vector
of a. In the following, we denote binary polynomials as bit strings. Consider the
following example:

0 0000 1 11111

a

b =

ab =

0 3 4 6 8 10 # rotations

a + X3a + X4a + X6a + X8a + X10a

Fig. 1. Multiplication of a, b using additions and rotations.

For each non-zero coe�cient bi of b, polynomials of the form Xia are added
in order to compute the product ab. The multiplication of a polynomial a with
a monomial Xi in R corresponds to i right rotations of the coe�cient vec-
tor of a, where the right rotation is de�ned as the mapping (a0, . . . , aN−1) 7→
(aN−1, a0, . . . , aN−2).

So if b has hamming weight d, the product ab can be computed with dN
additions over Z (since the resulting polynomial is initialized as zero and all d
summands are added to it). This multiplication algorithm is incorporated into
the IEEE P1363.1 draft standard.

Lee et al. [14] observed that it is possible to reduce the number of additions
needed to compute the product ab by using bit patterns of the binary polynomial
b. By a bit pattern, we understand two 1s separated by a (possibly empty)
sequence of 0s. We say that such a bit pattern has length l if the two 1s are
separated by l − 1 0s.

Reconsider the polynomial b given in Figure 1. The bit pattern 101 occurs
twice. By computing a + X2a once and storing it in a lookup table, the number
of additions needed to compute the product ab can be reduced from dN = 6 · 11
to 5 · 11 (see Figure 2).

More generally, it is possible to reduce the number of additions needed to
compute the product ab whenever a bit pattern occurs more than once in b. It

0 0000 1 11111

0 4 8

b =

ab =

rotations

a + X3a a + X2a

a + X3a + X4(a + X2a) + X8(a + X2a)

Fig. 2. Multiplication of a, b using bit patterns.

is thus desirable to choose bit patterns in a way that maximizes the number of
pattern occurrences and to e�ciently identify the patterns in b.

The algorithm of Lee et al. only considers bit patterns of length less than or
equal to a parameter w which is chosen as w = 5 for the proposed parameter sets.
For each pattern length l = 1, . . . , w, the polynomial a + X la is precomputed
and stored in a lookup table. The non-zero coe�cients not belonging to any such
bit pattern are treated as in the algorithm of Bailey et al. Binary polynomials
are represented as bit strings. Lee et al. observed that considering bit strings
containing more than two 1s does not achieve any notable speedup because the
probability that these strings occur more than once in b is very low.

Our proposed algorithm also uses bit patterns, but the patterns can be of ar-
bitrary length, and only the patterns actually occurring in b are considered. Thus,
all non-zero coe�cients of b belong to a pattern, except for a single coe�cient in
case that the hamming weight of b is odd. We omit the precomputation step of
the algorithm of Lee et al. and instead compute the polynomials a + X la when
needed. We also represent binary polynomials as the sequence of the degrees of
their monomials, in accordance with the IEEE P1363.1 proposal. It shows that
pattern �nding can be performed much easier and faster in this representation.

3.2 The proposed algorithm

In this section, we describe our proposed algorithms for �nding bit patterns
of a binary polynomial b and for computing the product of b with arbitrary
polynomials a ∈ R using these patterns.

Pattern �nding. A binary polynomial b of hamming weight d is represented by
the sequence D0, . . . , Dd−1 of the degrees of its monomials in ascending order.
The polynomial is traversed once in reverse order, starting at Dd−1. For each
possible pattern length l ∈ 1, . . . , N−d+1, a list Ll of pattern locations is created.
Every pair of degrees (Di, Di−1) represents a bit pattern of length Di − Di−1.
The degree Di is stored in the list LDi−Di−1 and i is decreased by 2. In case that
d is odd, the remaining single degree D0 is stored separately in a list L0. The
detailed description of the algorithm can be found in Algorithm 1.

The algorithm requires bd/2c subtractions over Z and memory for storing
dd/2e integers from the interval [0, N).

Algorithm 1 Pattern �nding

System Parameters: integer N
Input: a binary polynomial b given as the sequence D0, . . . , Dd−1 of the degrees of its

monomials in ascending order
Output: a sequence of lists (L0, . . . , LN−d+1) of bit pattern locations of b

1: create empty arrays (L0, . . . , LN−d+1) . holds the result
2: set index ← d− 1 . start at highest non-zero coe�cient of b

3: while index > 0 do . as long as 2 or more coe�cients remain
4: set len ← Dindex −Dindex−1 . compute pattern length
5: append Dindex to Llen . append degree to corresponding list
6: set index ← index − 2 . go to next pair of coe�cients

7: if index = 0 then . if a single degree remains
8: append D0 to L0 . append it to L0

9: return (L0, . . . , LN−d+1) . return result

Pattern multiplication. In the following, we describe our proposed algorithm for
computing the product ab of an arbitrary polynomial a ∈ R and a binary poly-
nomial b given as the sequence of lists (L0, . . . , LN−d+1) of bit pattern locations
as computed by Algorithm 1.

Algorithm 2 Pattern multiplication

System Parameters: integers N , q
Input: a polynomial a = (a0, . . . , aN−1) ∈ R, a sequence of lists (L0, . . . , LN−d+1) of

bit pattern locations of a binary polynomial b
Output: c = ab mod q

1: create the zero polynomial c = (c0, . . . , cN−1) . holds the result
2: create empty coe�cient array P = (P0, . . . , PN−1) . holds a pattern polynomial

3: for all l > 0 such that Ll is not empty do . process patterns
4: for j from 0 to N − 1 do . compute pattern polynomial P = a + Xla
5: set Pj ← aj + al+j mod N

6: let dl denote the size of Ll . get number of occurrences of this pattern
7: for j from 0 to dl − 1 do . multiply using the pattern polynomial
8: for k from 0 to N − 1 do

9: cLl[j]+k mod N ← cLl[j]+k mod N + Pk

10: if L0 is not empty then . treat possibly remaining single coe�cient
11: for k from 0 to N − 1 do

12: cL0[0]+k mod N ← cL0[0]+k mod N + ak

13: for i from 0 to N − 1 do . reduce coe�cients modulo q
14: set ci ← ci mod q

15: return c . return result

Each non-empty list Ll, l > 0 represents a bit pattern of b with length
l. For each such Ll, the corresponding pattern polynomial P = a + X la is
computed. For each element D of the list Ll, this pattern polynomial is right
rotated D times and added to the resulting polynomial (cf. Figure 2). A possibly
remaining single degree stored in L0 is treated separately without computing a
pattern polynomial. The detailed description of the algorithm can be found in
Algorithm 2.

If no bit pattern occurs more than once in b, the algorithm requires dN
additions over Z. This is the worst case. Let dl denote the number of occurrences
of the bit pattern with length l in b. For each bit pattern with dl > 1, the required
number of additions is reduced by (dl − 1)N .

Additionally, N reductions modulo q are performed. The algorithm requires
memory for storing two polynomials (the result polynomial and a pattern poly-
nomial).

3.3 Timing results and comparison

In this section, we state the results of the performance measurements of the
multiplication algorithms of Bailey et al., Lee et al. [14], and our proposed algo-
rithm. The measurement results are summarized in table 1. Column �Parameter

Parameter set tBailey tLee tpattern

ees251ep6 0.14 ms 0.13 ms (- 7%) 0.11 ms (-21%)
ees347ep2 0.25 ms 0.23 ms (- 8%) 0.19 ms (-24%)
ees397ep1 0.32 ms 0.29 ms (- 9%) 0.23 ms (-28%)
ees491ep1 0.48 ms 0.42 ms (-12%) 0.34 ms (-29%)
ees587ep1 0.68 ms 0.59 ms (-13%) 0.46 ms (-32%)
ees787ep1 1.18 ms 0.99 ms (-16%) 0.77 ms (-35%)

Table 1. Timing results of the di�erent multiplication algorithms

set� denotes the used parameter set. Column �tBailey� denotes the multiplication
algorithm of Bailey et al., column �tLee� denotes the algorithm of Lee et al., and
column �tpattern� denotes our proposed pattern multiplication algorithm. The
stated times are average times taken over 50000 multiplications of randomly
chosen polynomials for each parameter set.

For the algorithm of Lee et al. and our proposed algorithm, the pattern �nd-
ing and precomputation steps are taken into account. For these two algorithms,
the speedup relative to Bailey et al.'s algorithm is given in addition to the ab-
solute times.

The experiments were made using a computer equipped with a Pentium M
1.6 GHz CPU, 512 MB of RAM and running Microsoft Windows XP. The code
was compiled with JDK 1.3 and run under JRE 1.6.

Finally, we would like to remark that the precomputation scenario presented
by Lee et al. is not always applicable to NTRU. During encryption, it applies
only when sending many messages to a single receiver. During decryption, it
only applies to one of the two multiplications involved. We therefore propose to
use a hybrid solution between the approach of Lee et al. and the one we present
in this paper.

4 NTRUSVES implementation

In this section, we provide details of our NTRUSVES implementation. First,
we describe the instantiation of SVES-3 given in IEEE P1363.1. Afterwards, we
describe the supported parameters, the format of the keys, and the encoding
format of polynomials and keys.

4.1 Instantiation

IEEE P1363.1 proposes concrete instantiations of the hash functions G and H
used in the NAEP/SVES-3 scheme. The hash function G is called Blinding Value
Generation Method (BVGM) (in draft 8) or Blinding Polynomial Generation
Method (BPGM) (in draft 9). We decide to use the latter notation for the rest
of the paper. The BPGM itself uses a so-called Seed Expansion Function (SEF)
(draft 8) or Index Generation Function (IGF) (draft 9), which in turn uses a
hash function. Again, we use the latter name for the rest of the paper.

The draft standard proposes two di�erent BPGM instantiations. The �rst
one (LBP-BPGM1) is used to generate a binary blinding polynomial, the second
one (LBP-BPGM2) produces a product form blinding polynomial. Both use the
same IGF (IGF-MGF1). The underlying hash function is either SHA-1 or SHA-
256 for the proposed parameter sets (see Section 4.2).

The input (ID ||m||b) to the BPGM can be extended to (ID ||m||b||hTrunc),
where hTrunc are some bits of the encoded public key h. Although this option
is not used with the proposed parameter sets (i.e., the length of hTrunc is 0), it
is supported by our implementation (see also Section 4.3).

The function H is called Mask Generation Function (MGF) and uses a hash
function. The draft standard proposes one instantiation (MGF1) which uses
either SHA-1 or SHA-256 as hash function.

We do not describe the BPGM, IGF, and MGF algorithms in this paper, but
rather refer the reader to [6]. Our implementation follows the description of the
algorithms of draft 8 precisely.

4.2 Parameters

Our implementation supports all recommended parameter sets of draft version 9
of IEEE P1363.1 (see Annex A.5 of the draft standard). For each choice of the
main parameter N ∈ {251, 347, 397, 491, 587, 787}, there is a binary and a
product form parameter set. The parameter choices correspond to bit security

levels of 80, 112, 128, 160, 192, and 256 bits, respectively. Each parameter set is
chosen to maximize e�ciency for the selected security level.

4.3 Key pairs

The name of the parameter set used to generate the keys is stored both in the
public and in the private key.

Public key. The public key is the polynomial h = f−1pg mod q.

Private key. Di�ering from the draft standard, we do not store the polynomial f
as the private key. Instead, the pair of polynomials (F, g) is stored, where F either
is a binary or a product form polynomial, and g is a binary polynomial. On the
one hand, this speeds up decryption (see Section 4.4) and reduces the size of the
encoded private key (see Section 4.6). On the other hand, the public polynomial
h is needed to generate the input to the Blinding Polynomial Generation Method
(see Section 4.1), so it must be possible to reconstruct h from the private key.

4.4 Decryption

The central decryption operation is the computation of the polynomial

a = fe mod q,

where f = 1 + pF is the private polynomial. Since in our implementation, the
(binary or product form) polynomial F is stored in the private key (see Section
4.3), this computation is performed as

a = e + peF mod q,

using the e�cient multiplication algorithms described in Section 4.5 for the com-
putation of eF .

4.5 E�cient multiplication

We employ the pattern multiplication algorithm proposed in this paper to com-
pute the product of polynomials in R with binary polynomials. For the product
form variant, the algorithm of Bailey et al. is used, which is described in Section
6.2.6 of IEEE P1363.1-D9.

4.6 Encoding of polynomials and keys

Several steps of the encryption and decryption processes require the encoding of
polynomials as (and the decoding from) octet strings. Additionally, in order to
make the keys usable by public key infrastructures, they have to be encoded as
well. In the following sections, we describe the encoding format of polynomials
and keys.

Binary polynomials. Sparse binary polynomials are stored as a sorted array of
the degrees of the monomials having a non-zero coe�cient. The degrees are
encoded in descending order. Each degree is an integer in the interval [0, N − 1],
which is encoded as an octet string (byte array) of length dlog256(N − 1)e in
big endian byte order. Non-sparse binary polynomials are encoded using the
BRE2OSP primitive described in Section 7.7.1 of IEEE P1363.1-D8.

Product form polynomials. A product form polynomial f = f1f2 + f3 consists of
three sparse binary polynomials with the same number of non-zero coe�cients.
Product form polynomials are encoded as the concatenation of the encodings of
f1, f2, and f3 (see preceding paragraph).

Other ring elements. Since all ring computations are performed modulo q, ring
elements are stored as their coe�cient vector with coe�cients reduced modulo q.
The ring elements are encoded using the RE2OSP primitive described in Section
7.5.1 of IEEE P1363.1-D8.

NTRUSVES keys. NTRUSVES keys are encoded into ASN.1 structures in order
to be used with public key infrastructures. The polynomials are encoded as
octet strings as described in the preceding sections. The ASN.1 de�nitions of
the NTRUSVES public and private key can be found in Appendix B.

4.7 Timing results

In this section, we state the experimental results of the measurements of our
NTRUSVES implementation. We provide time measurements as well as key sizes
for all parameter sets proposed by IEEE P1363.1-D9. In Appendix C, we provide
similar results for the RSA PKCS #1 v2.1 encryption scheme andcompare the
complexity of the two encryption schemes based on these experiments.

The measurement results of our NTRUSVES implementation are summa-
rized in table 2. Column �Parameter set� denotes the used parameter set. The
�rst six parameter sets are binary parameter sets, the other six sets are product
form parameter sets. Column �k� denotes the bit security level of NTRUSVES
with the given parameter set. The estimates are taken from IEEE P1363.1-D9.
Columns �sprivKey� and �spubKey� denote the size of the DER-encoded private
key and public key ASN.1 structures, respectively (see Section 4.6). Columns
�tkpg�, �tenc�, and �tdec� denote the time measurement results for key pair gen-
eration, encryption, and decryption, respectively.

For the binary parameters sets, the pattern multiplication algorithm pro-
posed in this paper has been used. For each parameter set, 500 key pairs were
generated. For each key pair, 2000 random messages of random length between
1 and the maximal possible length were encrypted and decrypted.

The experiments were made using a computer equipped with a Pentium M
1.6 GHz CPU, 512 MB of RAM and running Microsoft Windows XP. The code
was compiled with JDK 1.3 and run under JRE 1.6.

Parameter set k sprivKey spubKey tkpg tenc tdec

ees251ep6 80 218 bytes 296 bytes 15.0 ms 0.2 ms 0.2 ms
ees347ep2 112 529 bytes 740 bytes 26.7 ms 0.3 ms 0.4 ms
ees397ep1 128 595 bytes 840 bytes 34.8 ms 0.3 ms 0.5 ms
ees491ep1 160 723 bytes 1028 bytes 51.3 ms 0.5 ms 0.7 ms
ees587ep1 192 853 bytes 1220 bytes 71.7 ms 0.6 ms 1.0 ms
ees787ep1 256 1118 bytes 1620 bytes 127.8 ms 1.0 ms 1.5 ms

ees251ep7 80 194 bytes 548 bytes 14.9 ms 0.1 ms 0.2 ms
ees347ep3 112 462 bytes 740 bytes 27.7 ms 0.2 ms 0.3 ms
ees397ep2 128 518 bytes 840 bytes 35.6 ms 0.2 ms 0.3 ms
ees491ep2 160 630 bytes 1028 bytes 53.6 ms 0.3 ms 0.5 ms
ees587ep2 192 738 bytes 1220 bytes 74.8 ms 0.5 ms 0.7 ms
ees787ep2 256 969 bytes 1620 bytes 131.7 ms 0.7 ms 1.1 ms

Table 2. NTRUSVES key sizes and time measurement results

5 Conclusion

In this paper, we present an e�cient multiplication algorithm for NTRU which
achieves an average-case speedup between 15% and 22% compared to the pre-
viously best-known results. Since the algorithm also is very space e�cient, it is
especially well-suited for resource-constrained devices. Since NTRU is currently
undergoing an IEEE standardization process, it would be reasonable to incor-
porate our proposed algorithm into the upcoming standard. We also present a
highly e�cient implementation of NTRUSVES according to the IEEE P1363.1-
D8 draft standard as part of a Java Cryptographic Service Provider. The imple-
mentation can be used with any application that uses the cryptographic frame-
work provided by Java.

References

1. K. Aoki, J. Franke, T. Kleinjung, A. K. Lenstra, and D. A. Osvik. A kilobit special
number �eld sieve factorization. Cryptology ePrint Archive, Report 2007/205,
2007. Available at http://eprint.iacr.org/2007/205.

2. D. V. Bailey, D. Co�n, A. Elbirt, J. H. Silverman, and A. D. Woodbury. Ntru in
constrained devices. In Proceedings of the Third International Workshop on Cryp-
tographic Hardware and Embedded Systems (CHES '01), volume 2162 of Lecture
Notes in Computer Science, pages 262�272. Springer Verlag, 2001.

3. S. Cavallar, B. Dodson, A. K. Lenstra, W. M. Lioen, P. L. Montgomery, B. Murphy,
H. te Riele, K. Aardal, J. Gilchrist, G. Guillerm, P. C. Leyland, J. Marchand,
F. Morain, A. Mu�ett, C. Putnam, C. Putnam, and P. Zimmermann. Factorization
of a 512-Bit RSA Modulus. In Advances in Cryptology � EUROCRYPT 2000,
volume 1807 of Lecture Notes in Computer Science, pages 1�18. Springer Verlag,
2000.

4. T. Elgamal. A Public Key Cryptosystem and a Signature Scheme Based on Discrete
Logarithms. In Advances in Cryptology � CRYPTO '84, volume 196 of Lecture
Notes in Computer Science, pages 10�18. Springer Verlag, 1985.

5. The FlexiProvider group at Technische Universität Darmstadt. FlexiProvider, an
open source Java Cryptographic Service Provider, 2001�2007. Available at http:
//www.flexiprovider.de/.

6. The IEEE P1363 Study Group for Future Public-Key Cryptography Standards.
Draft Standard for Public-Key Cryptographic Techniques Based on Hard Prob-
lems over Lattices. Available at http://grouper.ieee.org/groups/1363/lattPK/
draft.html, January 2007.

7. J. Ho�stein, J. Pipher, and J. H. Silverman. NTRU: A Ring-Based Public Key
Cryptosystem. In Proceedings of the Third International Symposium on Algorith-
mic Number Theory, volume 1423 of Lecture Notes in Computer Science, pages
267�288. Springer Verlag, 1998.

8. R. Housley, W. Polk, W. Ford, and D. Solo. RFC 3280 (Proposed Standard):
Internet X.509 Public Key Infrastructure Certi�cate and Certi�cate Revocation
List (CRL) Pro�le. Available at http://www.ietf.org/rfc/rfc3280.txt, April
2002. Updated by RFCs 4325, 4630.

9. N. Howgrave-Graham, J. H. Silverman, A. Singer, and W. Whyte. NAEP: Provable
Security in the Presence of Decryption Failures. Cryptology ePrint Archive, Report
2003/172, 2003. Available at http://eprint.iacr.org/2003/172.

10. N. Howgrave-Graham, J. H. Silverman, and W. Whyte. Choosing Parameter Sets
for NTRUEncrypt with NAEP and SVES-3. In Topics in Cryptology CT-RSA
2005, volume 3376 of Lecture Notes in Computer Science, pages 118�135. Springer
Verlag, 2005.

11. IEEE. IEEE Standard Speci�cations for Public-Key Cryptography, January 2000.
See also �IEEE 1363 Amendment 1: Additional Techniques�.

12. RSA Laboratories. PKCS #8: Private-Key Information Syntax Standard (version
1.2). Available at http://www.rsa.com/rsalabs/node.asp?id=2130, November
1993.

13. RSA Laboratories. PKCS #1: RSA Cryptography Standard (version 2.1). Available
at http://www.rsa.com/rsalabs/node.asp?id=2125, June 2002.

14. M.-K. Lee1, J. W. Kim, J. E. Song, and K. Park. Sliding Window Method for
NTRU. In Proceedings of ACNS 2007, volume 4521 of Lecture Notes in Computer
Science, pages 432�442. Springer Verlag, 2007.

15. A. K. Lenstra and H. W. Lenstra, Jr., editors. The development of the number
�eld sieve, volume 1554 of Lecture Notes in Mathematics. Springer Verlag, 1993.

16. A. K. Lenstra and E. R. Verheul. Selecting cryptographic key sizes. Journal of
Cryptology, 14(4):255�293, 2001.

17. National Institute of Standards and Technology (NIST) Computer Security Re-
source Center (CSRC). SP 800-57 Part 1, Recommendation for Key Management
� Part 1: General (Revised). Available at http://csrc.nist.gov/CryptoToolkit/
tkkeymgmt.html, March 2007.

18. P. W. Shor. Algorithms for Quantum Computation: Discrete Logarithms and
Factoring. In Proceedings of the 35th Annual IEEE Symposium on Foundations of
Computer Science (FOCS 1994), pages 124�134. IEEE Computer Society Press,
1994.

19. Sun Microsystems. The Java Cryptography Architecture API Speci�cation &
Reference, 2002. Available at http://java.sun.com/j2se/1.4.2/docs/guide/

security/CryptoSpec.html.

20. Sun Microsystems. The Java Cryptography Extension (JCE) Reference Guide,
2002. Available at http://java.sun.com/j2se/1.4.2/docs/guide/security/

jce/JCERefGuide.html.

A NAEP/SVES-3

The scheme uses two hash functions G and H. Fix the maximal message bit
length maxLen and the bit length bLen of some random strings. Precompute
the internal message bit length

nLen = bLen + (log2(maxLen) + 1) + maxLen.

Encryption (see Figure 3). In order to encrypt a message M , compute its bit
length MLen and choose a random string b of length bLen. Compute a blinding
polynomial r = G(b||M ||ID), where ID is a number that uniquely identi�es the
used parameter set.

Pad the message as (b||MLen||M ||00 . . .) to obtain a string M of the prede-
�ned bit length nLen. Compute the exclusive-or of M with H(rh), the image
of the product of the blinding polynomial and the public key under the second
hash function H to obtain m. Encrypt m using the NTRU encryption primitive
as described in Section 2.

Decryption (see Figure 4). Decrypt a ciphertext e with the NTRU decryption
primitive as described in Section 2 into a polynomial m. Compute the di�erence
rh = e−m and the exclusive-or of e with rh to obtain a bit string of length nLen.
Interpret this bit string as (b′||MLen ′||M ′||trunc). Check that trunc consists only
of zeroes and that MLen ′ is the bit length of M ′. Compute r′ = G(b′||M ′||ID)
and check whether r′h equals rh which was computed earlier. If all checks are
positive, return M as the decrypted message.

B ASN.1 structures

Public key. The NTRUSVES public key ASN.1 structure is

NTRUSVESPublicKey ::= SEQUENCE {

paramName IA5STRING -- name of the parameter set

encH OCTET STRING -- encoded polynomial h

}

The public key structure is embedded into a SubjectPublicKeyInfo structure as
de�ned in RFC 3280 [8].

M

Mb

b ID

MLen 00 . . . G(. . .)

r

XOR H(. . .) rh

m +

e

Fig. 3. SVES-3 encryption

e

a = fe (mod q)

m′ = a (mod p) a−m′

XOR H(. . .) =?

b′ MLen′ M ′ 00 . . .? rh

ID G(. . .) r

M

Fig. 4. SVES-3 decryption

Private key. The NTRUSVES private key ASN.1 structure is

NTRUSVESPrivateKey ::= SEQUENCE {

paramName IA5STRING -- name of the parameter set

encF OCTET STRING -- encoded polynomial F

encG OCTET STRING -- encoded polynomial g

}

The private key structure is embedded into a PrivateKeyInfo structure as de�ned
in PKCS #8 [12].

C RSA PKCS #1 v2.1 measurement results and
comparison

In this section, we state the results of the measurements of our RSA PKCS #1
v2.1 implementation. The implementation is part of the Java Cryptographic
Service Provider FlexiProvider [5]. The implementation uses the built-in modular
arithmetic of Java (class BigInteger). The results are summarized in table 3.

Column �Key size� denotes the bit size of the modulus. Column �k� denotes
the bit security level of RSA for the given key size. The estimates are taken from
the NIST Key Management Guideline [17]. Columns �sprivKey� and �spubKey�
denote the size of the DER-encoded private key and public key ASN.1 struc-
tures, respectively (see Section 4.6). Columns �tkpg�, �tenc�, and �tdec� denote
the time measurement results for key pair generation, encryption, and decryp-
tion, respectively.

For each key size, 20 key pairs were generated. The public exponent was
chosen as e = 216 + 1 for all key sizes and key pairs. For each key pair, 1000
random messages of random length between 1 and the maximal possible length
were encrypted and decrypted.

Key size k sprivKey spubKey tkpg tenc tdec

1024 80 634 bytes 162 bytes 0.9 s 0.7 ms 13.2 ms
2048 112 1218 bytes 194 bytes 6.8 s 2.7 ms 91.7 ms
3072 128 1794 bytes 422 bytes 27.3 s 5.9 ms 294.4 ms
4096 144 2374 bytes 550 bytes 104.1 s 10.3 ms 682.5 ms

Table 3. RSA PKCS #1 v2.1 key sizes and time measurement results

Comparison The measurement results given in Section 4.7 show that the
NTRUSVES key pair generation, encryption and decryption operations are sub-
stantially faster than their RSA counterparts for the same security level. This

is true also for larger security parameters because the asymptotic complexity of
NTRUSVES grows slower in terms of the security parameter than the complexity
of RSA.

For the same security level, the size of NTRUSVES private keys is about 1/3
of the size of RSA private keys. NTRUSVES public keys are about twice as large
as RSA public keys.

