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Abstract

We show, unconditionally, that if a language L has a 4-round, black-box, computational
zero-knowledge proof system with negligible soundness error, then L̄ ∈ MA. Assuming the
polynomial hierarchy does not collapse, this means, in particular, that NP-complete languages
do not have 4-round zero-knowledge proofs (at least with respect to black-box simulation).

1 Introduction

A zero-knowledge proof system [20] for a language L is a protocol that enables a prover P to
convince a polynomial-time verifier V that a given instance x is indeed a member of L. Roughly
speaking, the guarantees provided are:

Completeness: If x ∈ L then the honest prover P will convince the honest verifier V to accept,
except possibly with some small probability. If P always convinces V to accept when x ∈ L
then we say the proof system has perfect completeness.

Soundness: If x 6∈ L a cheating prover P∗ will be unable to falsely convince the honest verifier
that x is in L, except with some small probability known as the soundness error.

Zero knowledge: When x ∈ L and the prover is honest, even a malicious verifier V∗ “learns
nothing” beyond the fact that x ∈ L.

There are various ways of formalizing the above properties. In this paper, we are interested in
the case when the soundness property holds against all-powerful provers — i.e., we are interested
in proofs rather than arguments [10] — and we are interested in proof systems with negligible
soundness error. For the proof system to be non-trivial, the completeness error should not be too
large; we will consider both the case of perfect completeness as well as the case when, for x ∈ L,
the honest verifier accepts with any noticeable (i.e., inverse polynomial) probability. Finally, we
focus on the case of computational zero knowledge (CZK) where, informally, the requirement is only
that a polynomial-time cheating verifier learns nothing from the interaction. (Formal definitions
are provided in Section 2.) We let CZK denote the class of languages that admit a computational
zero-knowledge proof system.

In this paper we are interested in the round complexity of CZK proof systems, where a round
consists of a message sent from one party to the other and we assume that the prover and the
verifier speak in alternating rounds. We briefly survey what is known in this regard:
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Unconditional constructions. The only languages currently known to be in CZK unconditionally
are those that admit statistical zero-knowledge (SZK) proofs [20] where, informally, even an all-
powerful cheating verifier learns nothing from its interaction with the prover; we denote the class of
languages admitting statistical zero-knowledge proofs by SZK. While it is not known1 whether all
languages in SZK have constant-round statistical zero-knowledge proof systems, such proof systems
are known for specific languages. In particular, graph non-isomorphism [20] as well as languages
related to various number-theoretic problems [20, 27, 30, 12, 28, 11] are known to have 4-round
SZK proof systems, and graph isomorphism [5] is known to have a 5-round SZK proof system.

Constructions based on one-way functions/permutations. Assuming the existence of one-
way functions, every language in NP has an ω(1)-round CZK proof system where the honest prover
runs in polynomial time given an NP-witness for the statement being proved [18]. (Actually, this
result holds for MA as well.) If no computational restrictions are placed on the honest prover, then
any language in AM has an ω(1)-round CZK proof system under the same assumption, and any
language in IP = PSPACE has a CZK proof system with polynomially-many rounds [26, 8].

Assuming the existence of one-way permutations, Feige and Shamir [14] show a 4-round com-
putational zero-knowledge argument for any language in NP. Their techniques yield a 5-round
argument based on one-way functions, and this was later improved to 4 rounds by Bellare at al. [4].

Constructions based on stronger assumptions. Assuming the existence of a two-round
statistically-hiding commitment scheme, there exists a 5-round CZK proof system for any lan-
guage in NP [16]. (More generally, given a constant-round statistically-hiding commitment scheme,
there exists a constant-round CZK proof system for any language in MA.) Two-round statistically-
hiding commitment schemes, in turn, can be constructed based on a variety of number-theoretic
assumptions [9, 10, 21] or the existence of collision-resistant hash functions [13, 25].

Although statistically-hiding commitment schemes can be constructed from any one-way func-
tion [24], constructions of constant-round statistically-hiding commitment schemes from one-way
functions are unlikely to exist [23].

Lower bounds. Goldreich and Oren [19] show that 2-round CZK proofs exist only for languages
in BPP.2 Extending this result, Goldreich and Krawczyk [17] show that 3-round black-box CZK
proofs exist only for languages in BPP. (A definition of black-box CZK is given in Section 2.) Both
these results hold for arguments as well as proofs.

1.1 Our Result

We show that 4-round black-box CZK proofs exist only for languages whose complement is in MA

(the class MA is defined in Section 2). This result holds even for proof systems without perfect
completeness. Other than the fact that our bound holds only with respect to black-box simulation,
this result is essentially the best one could hope for:

• Under widely-believed number-theoretic assumptions, there exist 5-round CZK proofs for all
of NP [16]. Taken together (and assuming the polynomial hierarchy does not collapse), our
result indicates that the round complexity in this case is optimal.

• Our result applies only to proofs, but not arguments. Indeed, as noted earlier, there exist
4-round CZK arguments for all of NP under relatively weak assumptions [14, 4].

1Constant-round SZK proofs for all of SZK are known based on specific number-theoretic assumptions [6] (see
also [31], but here the verifier is restricted to running in polynomial time during its interaction with the prover.

2Their result applies to auxiliary-input zero knowledge proofs, the type we will be concerned with here as well.
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• There exist unconditional constructions of 4-round CZK proofs for languages believed to be
outside of BPP, such as graph non-isomorphism [20].

Besides shedding further light on the finer structure of the class CZK, our result has a number
of interesting consequences. As observed above, it indicates that (black-box) 4-round CZK proofs
for all of NP are impossible and so the round complexity achieved in [16] is optimal. Our result can
also be seen as offering an “explanation” as to why the known SZK proof for graph isomorphism
requires five rounds [5] even though graph non-isomorphism has a 4-round SZK proof [20].

1.2 Outline of the Paper

Standard definitions, as well as some terminology specific to this paper, are provided in Section 2.
In Section 3 we prove our result for the case of CZK proof systems with perfect completeness.
Technical modifications necessary to deal with the case of imperfect completeness are deferred to
Section 4. We conclude with some open questions in Section 5.

2 Definitions

Given interactive algorithms P and V, we let 〈P(x),V(y)〉 denote the interaction of P, holding
input x, with V, holding input y. We let 〈P(x),V(y)〉 = 1 denote the event that V outputs 1 in the
indicated interaction, where a ‘1’ is interpreted as ‘accept’. We now give the standard notion of an
interactive proof system [20] for a language L.

Definition 1 Interactive algorithms P,V form an interactive proof system for a language L if V
runs in probabilistic polynomial time and there exist positive functions c, s such that:

• For all x ∈ L, it holds that Pr[〈P(x),V(x)〉 = 1] ≥ c(|x|).

• For all x 6∈ L and any P∗ we have Pr[〈P∗,V(x)〉 = 1] ≤ s(|x|).

• There exists a polynomial p such that c(|x|) ≥ s(|x|) + 1/p(|x|)

We call c the acceptance probability, and s the soundness error. If c(|x|) = 1 for all x, we say the
proof system has perfect completeness. If s is negligible, we say the proof system has negligible
soundness error. ♦

Looking ahead, we will only be interested in zero-knowledge proof systems having negligible sound-
ness error.

A round of an interactive proof system consists of a message sent from one party to the other,
and we assume that the prover and the verifier speak in alternating rounds. Following [2], we let
MA denote the class of languages having a 1-round proof system and in this case refer to the prover
as Merlin and the verifier as Arthur ; that is:

Definition 2 L ∈ MA if there exists a probabilistic polynomial-time verifier V, a positive function
ε, and a polynomial p such that the following hold for all sufficiently-long x:

• If x ∈ L then there exists a string w (that can be sent by Merlin) such that

Pr[V(x,w) = 1] ≥ ε(|x|) + 1/p(|x|).

• If x 6∈ L then for all w (sent by a cheating Merlin) it holds that

Pr[V(x,w) = 1] ≤ ε(|x|).

♦
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2.1 Zero Knowledge Proof Systems

A distribution ensemble {X(a)}a∈{0,1}∗ is an infinite sequence of probability distributions, where
a distribution X(a) is associated with each value of a. Two distribution ensembles X and Y are
computationally indistinguishable if for all polynomial-time algorithms D, there exists a negligible
function µ such that for every a we have

∣∣Pr[D(X(a), a) = 1]− Pr[D(Y (a), a) = 1]
∣∣ ≤ µ(|a|).

(We do not need to consider non-uniform distinguishers here since non-uniformity can be incorpo-
rated via the auxiliary input that we will provide to the cheating verifier, below.)

Given interactive algorithms P,V∗, we let transV∗〈P(x),V∗(y)〉 denote the transcript of the
indicated interaction; for convenience, this includes both messages of the prover as well as those
of the verifier. (We remark that we do not need to consider the entire view of V∗ since we will
restrict to deterministic verifiers, as justified below, and the input y of V∗ will be provided to the
distinguisher as per our definition of computational indistinguishability, above.) We now review
the standard definitions for computational zero-knowledge proofs.

Definition 3 An interactive proof system P,V for a language L is said to be a computational
zero-knowledge proof system if for any probabilistic polynomial-time algorithm V∗, there exists an
expected polynomial-time simulator S such that the following distribution ensembles are compu-
tationally indistinguishable:

{transV∗〈P(x),V∗(x, z)〉}x∈L,z∈{0,1}∗ and {S(x, z)}x∈L,z∈{0,1}∗

♦The above definition incorporates an auxiliary input z provided to V∗, and we may therefore restrict
our consideration to deterministic V∗.

A computational zero-knowledge proof system (P,V) is said to be black-box zero knowledge if
there exists a “universal” simulator that takes oracle access to the cheating verifier V∗. That is:

Definition 4 A computational zero-knowledge proof system P,V is black-box zero-knowledge if
there exists an expected polynomial-time oracle machine Sim (called the black-box simulator) such
that for any probabilistic polynomial-time algorithm V∗ the following distribution ensembles are
computationally indistinguishable:

{transV∗〈P(x),V∗(x, z)〉}x∈L,z∈{0,1}∗ and
{
SimV

∗(x,z)(x)
}

x∈L,z∈{0,1}∗

♦

Most known zero-knowledge proof systems are black-box zero knowledge (an exception is the
work of [29]); in particular, the non-black-box protocols of Barak [3] as well as those based on
“knowledge of exponent” assumptions [22, 7] are zero-knowledge arguments.

We denote by rCZK the class of languages that have r-round, black-box, computational zero-
knowledge proof systems with negligible soundness error, and by rCZK0 the class of languages
having r-round, black-box, computational zero-knowledge proof systems with perfect completeness
and negligible soundness error.

Terminology and simplifying assumptions. We will be concerned with 4-round CZK proof
systems, where the verifier sends the first message and the prover sends the final message. We use
α, β, γ, δ to denote the first, second, third, and fourth messages, respectively. We let Px (resp., Vx)
denote the honest prover (resp., honest verifier) algorithm when the common input is x.
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We let α = Vx(r) denote the first message sent by Vx when its random coins are fixed to r, and
let γ = Vx(α, β; r) denote the third message sent by Vx in this case. Finally, Vx(α, β, γ, δ; r) is a
bit denoting whether the verifier accepts (i.e., outputs 1) or rejects. We say that (α, β, γ, δ) and
random coins r form an accepting transcript for a given x if Vx(α, β, γ, δ; r) = 1. Note that we do
not require the verifier’s decision to depend on the actual transcript alone, but allow its decision
to also possibly depend on its random coins.

Without loss of generality, we make a number of simplifying assumptions about the behavior
of black-box simulator Sim. The first query of Sim to V∗ will simply be a “prompt” query to which
V∗ responds with α. Subsequent queries by Sim are all of the form (α, β) (for some β of Sim’s
choice), to which V∗ will respond with some γ. (We can assume Sim makes no queries of the form
(α, β, γ, δ) since V∗ can simply refuse to respond to such queries.) We assume Sim makes a given
query only once. Finally, if the simulator outputs the transcript (α′, β, γ, δ) we assume that α′ = α,
and that the simulator previously queried (α, β) to V∗ and received response γ.

3 CZK Proof Systems with Perfect Completeness

In this section, we prove our main result:

Theorem 1 4CZK0 ⊆ coMA.

In the following section we will deal with the case of imperfect completeness, but it will be instructive
to handle the easier case of perfect completeness first.

As intuition for the proof, consider the case of a malicious verifier V∗ who acts in the following
way: it sends an initial message α, and then in response to the prover’s second message β it chooses
a random message γ consistent with α. Formally, if we let R denote the set of random coins for
which the honest verifier would send α (i.e., r ∈ R implies Vx(r) = α), then in response to β
the malicious verifier chooses a random r ∈ R and computes γ = Vx(α, β; r). Intuitively, it will
be difficult to simulate an accepting transcript for such a verifier since each time the simulator
“rewinds” V∗ it will be given a message γ consistent with a different set of random coins. In fact,
we can prove that if x 6∈ L then the simulator will not be able to simulate an accepting transcript
for such a verifier, since the ability to do so with non-negligible probability could be translated into
the ability to violate the soundness condition of the proof system with non-negligible probability.
(A proof of this fact is similar to, though more complicated than, what is done in [17].)

On the other hand, when x ∈ L the zero-knowledge condition implies that Sim should be able to
simulate an accepting transcript for such a verifier. This fact is not immediate since, as described
above, the verifier V∗ may not run in polynomial time (whereas simulation is only guaranteed
for polynomial-time verifiers). It is possible, however, to obtain a V∗ with the desired behavior
that runs in polynomial time by giving V∗ as auxiliary input a sequence of sufficiently many coins
r1, . . . , rs that are all consistent with the same α. (I.e., using the notation above, r1, . . . , rs ∈ R.)

Combining the above, we obtain an MA proof system for L̄: Merlin sends Arthur a sequence
r1, . . . , rs of random coins, and Arthur simulates an execution of SimV

∗

. If this does not result in
an accepting transcript then Arthur accepts, while if it does lead to an accepting transcript then
Arthur rejects.

We now formalize the above intuition and show how to handle various technicalities that arise.
Fix L ∈ 4CZK0. This means that, for this language, there exists a prover P, a verifier V, and
a black-box simulator Sim satisfying Definitions 1–4. Assume without loss of generality that the
second message of the protocol always has length m(·), and let ℓ(·) denote the number of random
coins used by V. Let T (·) denote an upper-bound on the expected running time of Sim.
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Consider the following MA proof system for the language L̄, where Merlin (i.e., the prover) and
Arthur (i.e., the verifier) share in advance an input x of length n:

Notation: Let ℓ = ℓ(n), m = m(n), and T = T (n). Set s = 50 · T 2.

Merlin’s message: Merlin sends a sequence of s coins r1, . . . , rs ∈ {0, 1}
ℓ.

Arthur’s actions: Arthur proceeds as follows:

1. Set α = Vx(r1). Check that α = Vx(ri) for all 1 < i ≤ s, i.e., that all the random coins are
consistent with the same first message α. If not, output 0; otherwise, go to the next step.

2. Choose a random 5T -wise independent hash function h : {0, 1}m → {1, . . . , s}. Construct the
following deterministic verifier V∗:

(a) Send first message α to the prover.

(b) Upon receiving message β from the prover, compute i = h(β) and send the message
γ = Vx(α, β; ri) to the prover.

3. Run SimV
∗

(x) for at most 5T steps using uniformly-chosen random coins for Sim. If Sim does
not output an accepting transcript within this time bound, output 1. Otherwise, output 0.
(Formally, output 0 iff Sim outputs (α, β, γ, δ), within the allotted time bound, such that
Vx(α, β, γ, δ; rh(β)) = 1.)

The following claims show that the above is a valid MA-protocol for L̄, thus proving Theorem 1.

Claim 1 For x 6∈ L̄ sufficiently long and for any message r1, . . . , rs sent by Merlin, the probability
that Arthur accepts is at most 2/5.

Proof Define the following polynomial-time verifier V̂ that takes as inputs a statement x and
auxiliary input z = r1, . . . , rs, h:

1. Send first message Vx(r1) to the prover.

2. Upon receiving message β from the prover, compute i = h(β) and send the message γ =
Vx(α, β; ri) to the prover.

3. Receive final message δ from the prover.

Say that an interaction of Px with V̂(x, z) results in an accepting transcript if (α, β, γ, δ; ri) is an
accepting transcript.

Now, fix some r1, . . . , rs sent by Merlin. Assume Vx(ri) = Vx(rj) for all 1 ≤ i, j ≤ s since,
if not, Arthur rejects immediately. In this case, V∗ as defined by Arthur behaves identically to
V̂(x, z) as defined above. When x 6∈ L̄ we have x ∈ L and, by perfect completeness, the interaction
of the honest prover Px with V̂(x, z) would result in an accepting transcript with probability 1.

The zero-knowledge condition thus implies that, for x sufficiently long, SimV
∗

(x) = SimV̂(x,z)(x)
outputs an accepting conversation with probability at least 4/5. It follows that even the truncated
version of Sim, where its execution is halted after 5T steps, outputs an accepting conversation with
probability at least 3/5. Arthur thus accepts with probability at most 2/5, as claimed.

Claim 2 For x ∈ L̄ sufficiently long, there exists a message r1, . . . , rs such that Arthur will accept
with probability at least 1/2.
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Proof Fix x ∈ L̄. We show a randomized strategy that allows Merlin to convince Arthur with
probability at least 1/2; this implies the claim.

Merlin proceeds as follows: choose random r1 ∈ {0, 1}
ℓ and compute α = Vx(r1). Let R

def
=

{r | Vx(r) = α}; i.e., R is the set of coins for the honest verifier that are consistent with the first
message α. Then choose r2, . . . , rs uniformly from R. (These need not be distinct; in particular,
it may be that R = {r1}.) Send r1, . . . , rs to Arthur. Let p∗ denote the probability that Arthur
rejects. Note that this is exactly the probability that SimV

∗

(x) outputs an accepting transcript
within the allotted time bound.

We upper-bound p∗ by considering a slightly different experiment involving an all-powerful
cheating prover P∗ attempting to falsely convince the honest verifier Vx that x ∈ L. The strategy
of P∗ is defined as follows:

1. Receive message α from the verifier. Let R
def
= {r | Vx(r) = α}.

2. Run Sim using uniformly-chosen random coins, for at most 5T steps. Sim expects to be given
oracle access to a (cheating) verifier, and P∗ simulates the actions of such a verifier as follows:

(a) Choose a random index q ← {1, . . . , 5T}.

(b) Send α as the verifier’s first message.

(c) In response to the ith simulator message (α, βi) for i 6= q, choose a random ri ← R,
compute γi = Vx(α, βi; ri), and give γi to Sim. (Recall we assume that Sim never makes
the same query twice.)

(d) In response to the qth simulator message (α, βq), send βq to the (external) honest verifier,
and receive in return a message γq. Give γq to Sim.

3. If Sim outputs a conversation (α, β, γ, δ) with β = βq within the allotted time bound, then
send δ to the (external) honest verifier.

In the above experiment, each “query” βi of Sim is answered by using a random element ri ← R
to compute the response γi = Vx(α, βi; ri). This is immediate for i 6= q, but is true also for i = q
since, from the perspective of P∗ and Sim, the coins being used by the external, honest verifier are
uniformly-distributed in R. Let p̂ denote the probability that Sim outputs an accepting transcript
in this case, within the allotted time bound. Since Sim makes at most 5T queries to its oracle in
the above experiment, P∗ convinces the honest verifier to output 1 with probability p̂/5T . Since
the proof system has negligible soundness error we have that, for x sufficiently long, p̂ ≤ 1/4.

We return now to consideration of p∗. When Arthur runs SimV
∗

(x), he does so by first choosing
a random h and then answering the simulator’s ith query (α, βi) by using element rh(βi) to compute
the response γi = Vx(α, βi; rh(βi)). Since Merlin chooses each of the ri uniformly from R, these
responses are distributed identically to the above experiment unless there is a collision in h; that
is, unless there exist some βi 6= βj with h(βi) = h(βj). Because h is chosen in a 5T -wise independent
fashion and Sim is restricted to making only 5T queries, a standard birthday bound shows that the
probability of such a collision is at most (5T )2/2s = 1/4. Conditioned on a collision not occurring,
the probability that SimV

∗

(x) outputs an accepting conversation is exactly p̂ ≤ 1/4. We conclude
that p∗ ≤ 1/4 + 1/4 = 1/2, and so Arthur rejects with probability at most 1/2 (and accepts with
probability at least 1/2).
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4 Handling Imperfect Completeness

In the previous section we assumed perfect completeness, and in fact this is essential for the MA

proof system given there. To see one problem that may arise, assume the proof system P,V is such
that the honest verifier immediately rejects whenever its random coins are all 0. Then a cheating
Merlin can send r1 = · · · = rs = 0ℓ and this will cause Arthur to accept with probability 1 even
when x 6∈ L̄.

We show here that this is essentially the only problem that can arise. More to the point, if
we can force Merlin to always send coins ri such that Vx(ri) accepts with noticeable probability
(over the random coins of Px), then the same MA proof system as before will lead Arthur to reject
with high probability when x 6∈ L̄. This is easy to enforce by having Arthur run SimVx(ri)(x) to
check that this leads to an accepting transcript with sufficiently-high probability. Unfortunately,
this makes the honest Merlin’s job a little harder when x ∈ L̄ since in this case SimVx(ri)(x) may
(legitimately) never lead to an accepting transcript. This special case can be handled separately.

Before presenting the modified proof system, we introduce some notation. For a given ran-
domized experiment Expt that can be run in polynomial time, we let estimateε(Prr[Expt]) denote
a procedure that estimates the given probability to within an additive factor of ε, except with
probability at most ε. That is:

Pr
[ ∣∣estimateε(Prr[Expt = 1])− Prr[Expt = 1]

∣∣ ≥ ε
]
≤ ε.

This can be done in the standard way using Θ(ε−2 log 1
ε ) independent executions of Expt. The

important thing to note is that when ε is noticeable, this estimation can be done in polynomial time.
In the experiments we will be considering, some variables will be fixed as part of the experiment and
others will be chosen at random; we will always subscript those variables being chosen at random
(as done above with the subscripted r).

In the below, we let V̂ denote the same malicious verifier introduced in the proof of Claim 1.
Specifically, on input x and auxiliary input z = r1, . . . , rs, h, where each ri represents coins for the
honest verifier and h is a hash function, V̂ acts as follows:

1. Send first message Vx(r1) to the prover.

2. Upon receiving message β from the prover, compute i = h(β) and send the message γ =
Vx(α, β; ri) to the prover.

3. Receive final message δ from the prover.

An interaction of Px with V̂(x, z) results in an accepting transcript if (α, β, γ, δ; ri) is an accepting
transcript.

Let L ∈ 4CZK, and assume L has a 4-round CZK proof system P,V with acceptance probability
c(·) where c is noticeable (i.e., c = Ω(1/p) for some polynomial p). Let ℓ,m, and T be as in the
previous section. Once again, Merlin and Arthur share in advance an input x of length n. The MA

proof system for the language L̄ follows:

Notation: Let c = c(n), ℓ = ℓ(n), m = m(n), and T = T (n). Assume n is large enough so that

c > 0. Set ε = c/20, and s = 4T 2ε−3. (Note that ε is noticeable, and s is polynomial.) Let S̃im

denote an execution of Sim for at most 2T/ε steps.

Merlin’s message: Merlin sends a sequence of s coins r1, . . . , rs ∈ {0, 1}
ℓ.

Arthur’s actions: Arthur proceeds as follows:
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1. Compute

p1 = estimateε

(
Prr,r′

[
S̃im

Vx(r′)
(x; r) outputs an accepting transcript

])
.

If p1 < c− 2ε then accept; otherwise, continue to the next step.

2. Set α = Vx(r1). Check that α = Vx(ri) for all 1 < i ≤ s. If not, reject; otherwise, continue to
the next step.

3. Choose i ← {1, . . . , s} and coins r and run S̃im
Vx(ri)

(x; r). If this does not result in an
accepting transcript, reject; otherwise, continue to the next step.

4. Let H denote a family of 2T/ε-wise independent hash functions h : {0, 1}m → {1, . . . , s}.
Compute

p2 = estimateε

(
Prh←H,r

[
S̃im

V̂(x;r1,...,rs,h)
(x; r) outputs an accepting transcript

])
.

If p2 < c− 10ε accept; else reject.

(It should be clear that we have not attempted to optimize any of the parameters of the above
proof system.) We now prove claims analogous to those in the previous section.

Claim 3 For x 6∈ L̄ sufficiently long and for any message r1, . . . , rs sent by Merlin, the probability
that Arthur accepts is at most c− 6ε.

Proof If x 6∈ L̄ then x ∈ L and so the interaction of Px with Vx results in an accepting transcript
with probability at least c. The zero-knowledge condition implies that, for x sufficiently long,

Prr,r′ [S̃im
Vx(r′)

(x; r) outputs an accepting transcript] ≥ c− ε.

This means that, except with probability at most ε, the value p1 computed by Arthur satisfies
p1 ≥ c− 2ε; thus, Arthur accepts in the first step with probability at most ε.

Fix some r1, . . . , rs sent by Merlin. We may assume Vx(ri) = Vx(rj) for all 1 ≤ i, j ≤ s since, if
not, Arthur rejects in the second step. Define

p̂ = Pri←{1,...,s},r

[
S̃im

Vx(ri)
(x; r) outputs an accepting transcript

]
.

There are two cases to consider:

Case 1: If p̂ < c− 7ε, then the probability that Arthur does not reject in step 3 is at most c− 7ε.

Case 2: On the other hand, if p̂ ≥ c− 7ε then (again using the zero-knowledge property)

Pri←{1,...,s},r [〈Px(r),Vx(ri)〉 = 1] ≥ c− 8ε.

By definition of V̂ it holds that

Prh←H,r

[〈
Px(r), V̂(x, r1, . . . , rs, h)

〉
results in an accepting transcript

]

= Pri←{1,...,s},r [〈Px(r),Vx(ri)〉 = 1].
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Thus, relying on the zero-knowledge property once again,

Prh←H,r

[
S̃im

V̂(x;r1,...,rs,h)
(x; r) outputs an accepting transcript

]
≥ c− 9ε.

So, except with probability at most ε, the value p2 computed by Arthur satisfies p2 ≥ c−10ε; thus,
Arthur accepts in the last step with probability at most ε.

Combining the above, we see that Arthur accepts with probability at most ε + max{c− 7ε, ε},
which is at most c− 6ε.

Claim 4 For x ∈ L̄ sufficiently long, there exists a message r1, . . . , rs such that Arthur will accept
with probability at least c− 5ε.

Proof Fix x ∈ L̄. Define

p̂ = Prr,r′

[
S̃im

Vx(r′)
(x; r) outputs an accepting transcript

]
.

There are two cases to consider:

Case 1: If p̂ < c − 3ε then, except with probability at most ε, the value p1 computed by Arthur
satisfies p1 < c− 2ε; thus, Arthur accepts in the first step with probability at least 1− ε ≥ c− 5ε.

Case 2: On the other hand, say p̂ ≥ c−3ε. As in the proof of Claim 2, Merlin proceeds as follows:

choose random r1 ∈ {0, 1}
ℓ and compute α = Vx(r1). Let R

def
= {r | Vx(r) = α}, and choose

r2, . . . , rs uniformly from R. Send r1, . . . , rs to Arthur. We show that Arthur will accept with high
probability.

Arthur can reject in either step 3 or step 4. We upper-bound the probability that Arthur
rejects in either of these steps individually, and then apply a union bound to upper-bound the total
probability that Arthur rejects.

Each ri, taken individually, is uniformly distributed in {0, 1}ℓ. Thus, in step 3, choosing a
random i ∈ {1, . . . , s} and using coins ri is equivalent to choosing uniformly-random coins for Vx.
It follows that the probability that Arthur rejects in step 3 is exactly equal to 1− p̂ ≤ 1− c + 3ε.

We proceed to analyze step 4. As in the proof of Claim 2, say a collision occurs in an execution

of S̃im
V̂(x;r1,...,rs,h)

(x; r) if the simulator makes two distinct queries (α, βi) and (α, βj) for which
h(βi) = h(βj). Let coll denote such an event. As before, we have

Pr
r1,...,rs,h,r

[
S̃im

V̂(x;r1,...,rs,h)
(x; r) outputs an accepting transcript

]
≤ (1)

Pr
r1,...,rs,h,r

[coll] + Pr
r1,...,rs,h,r

[
S̃im

V̂(x;r1,...,rs,h)
(x; r) outputs an accepting transcript | coll

]
,

where r1, . . . , rs are chosen by Merlin as described above (and not uniformly and independently
at random). The probability of a collision is independent of r1, . . . , rs, and is upper-bounded by

Pr[coll] ≤ (2T/ε)2

2s = ε
2 . As in the proof of Claim 2, for sufficiently-long x it holds that

Prr1,...,rs,h,r

[
S̃im

V̂(x;r1,...,rs,h)
(x; r) outputs an accepting transcript | coll

]
≤ ε2/2;
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this means that, except with probability at most ε, the r1, . . . , rs chosen by Merlin satisfy

Prh,r

[
S̃im

V̂(x;r1,...,rs,h)
(x; r) outputs an accepting transcript | coll

]
≤ ε/2.

Using Equation (1), we see that except with probability at most ε, the r1, . . . , rs chosen by Merlin
satisfy

Prh,r

[
S̃im

V̂(x;r1,...,rs,h)
(x; r) outputs an accepting transcript

]
≤ ε < c− 11ε.

Assuming the above to be the case, Arthur will reject in step 4 with probability at most ε. Taken
together, this means that Arthur rejects in step 4 with probability at most 2ε.

Summing the probabilities of rejection in steps 3 and 4, we see that, overall, Arthur rejects with
probability at most 1− c + 5ε, or accepts with probability at least c− 5ε.

5 Open Questions

Coupled with the trivial fact that 4CZK ⊆ AM, this work shows that 4CZK ⊆ AM ∩ coMA. Due
to the similarity with the fact that SZK ⊆ AM ∩ coAM [15, 1], as well as the fact that the only
languages known to be in 4CZK (under any assumption) are also in SZK, it is natural to conjecture
that 4CZK ⊆ SZK.

Another interesting direction would be to show any broad positive results for 4CZK: say, along
the lines of proving that NP ∩ coNP ⊆ 4CZK.

This work investigates the finer structure of the class CZK. Similar investigations can be carried
out for SZK. One particular nagging question is whether every language in SZK has a constant-
round SZK proof (unconditionally).
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