
Merging Prêt-à-Voter and PunchScan

Jeroen van de Graaf

1Laboratório de Computação Cientı́fica – Universidade Federal de Minas Gerais (UFMG)
Av. Antônio Carlos 6627 – 31270-901 – Belo Horizonte (MG) – Brasil

jvdg@lcc.ufmg.br

Abstract. We describe a variation of Prêt-à-Voter that keeps the same ballot
layout but borrows and slightly modifies the underlying cryptographic primi-
tives from Punchscan, substituting the mix network for bit commitments.We also
suggest a limited-resources solution to get to unconditional privacy and uncon-
ditional integrity, and propose ways to have several races on the Pr̂et-à-Voter
ballot.

1. Introduction
Over the last few years we have seen a sequence of papers on voter-verifiable elections.
The idea of such systems is that the voter takes home a receiptwhich allows him to verify
that her vote is included in the tally without revealing any usefull information about her
vote. Though this idea is not new, Chaum’s paper [2] arguablygave a new impetus to this
line of research (see also [1]).

Chaum’s paper was improved upon in two significant ways. First there is a proto-
col called Prêt-à-Voter (PaV), as described in [3], whichhas several advantages over [2],
such as a simpler ballot lay-out, pre-printed ballots on which the voter marks his prefer-
ences with a pen thus insuring that the voting machine (DRE) does not learn the vote, etc.
However, PaV still uses traditional mixing. Inspired by this, Chaum developed PunchScan
(PS). See the sitewww.punchscan.orgfor fancy demos. For a detailed protocol descrip-
tion we refer to [7] and [5]. PS differs from PaV in several aspects: (1) in each ballot
both the top and bottom layer are permuted;(2) a mark is placed on both layers;(3) the
voter gets to choose which layer he keeps and which gets destroyed;(4) no mixing takes
place; the only cryptographic primitive needed is a Bit Commitment scheme.

In this paper we obtain a new protocol by merging PaV and PS as follows: we
maintain PaV’s ballot lay-out but we borrow the underlying cryptographic primitives from
PS. Apart from giving us a thorough understanding of the similarities and differences
between the two protocols, the final result seems superior toboth because compared to
PaV it disposes of mixing, while compared to PS it results in asimpler ballot lay-out.

The outline of this paper is as follows: we start with a high-level description of
the PaV ballot, but instead of using mixing we describe how toapply the underlying cryp-
tographic ideas used in PS to PaV. We also propose some improvements to the protocol,
and provide a very brief description of the cryptography of Punchscan. We assume that
the reader is familiar with the general setting and the terminology of voting protocols.

2. The Prêt-à-Voter Ballot
The ballots used in PaV are described in detail in [3], section 4, using an example
with 4 candidates. A base canonical ordering of candidates is defined: 0: Anarchist, 1:



Alchemist, 2: Nihilist, 3: Buddhist. An example ballot looks like this (section 4.1):

3: Buddhist X
0: Anarchist
1: Alchemist
2: Nihilist
(Offsetx = 1) Qqkr3c

The left part contains a cyclic permutation (shift) of the candidates; in this case
the offsetx = 1. The right part is empty except for the last row, and the votervotes by
putting an “X” in one of its first four cells. The magic stringQqkr3c (in reality probably
longer) is an encryption ofx, encrypted with the public keys of the mixes.

Casting the vote consists of separating the left and the right columns, destroying
the left column and scanning the right column. Either manually or through OCR the row
containing the X and the encryption of the offset are associated to the ballot image. The
voter can take the right column home as a receipt. At the end ofthe day, all ballots will
enter the mix process. That is, each mix contributes in decrypting the shift and shuffling
all the ballots; see section 6 of [3].

3. Using bit commitments instead of mixing

Mixing is a tedious process and has several disadvantages: it is difficult to explain to
the average person, the privacy of the ballot is only computational, it is computationally
intensive, etc. A protocol that uses bit commitment does nothave these disadvantages:
pieces of papers in an enveloppe serve as an excellent explanation for BCs, uncondition-
ally hiding bit commitment schemes exist, and they are certainly not less efficient than
mixing. Therefore our purpose here is to develop a variant ofPaV using BCs.

Since Punchscan uses two permutatons, both the top and the bottom layer, a
straightforward idea is to break the offset valuex in two, i.e. to choosex1 andx2 random
such thatx = x1 + x2(mod m). We let the Election Authority(EA) commit tox1 and
x2. We write these BCs at the bottom of the right column on the ballot (like in PaV) or,
alternatively, we have the EA commit to these values publicly and use a unique ballot id
number to establish the link between the two BCs published and the printed ballot.

Furthermore we use the following notation:x is the offset;y is the number of
the row marked by the voter, counting from 0 tom − 1; v is the actual vote, that is, the
row chosen in the canonical representation. Obviously,y = x + v(mod m), where the
modulusm is the number of candidates on the ballot; in the examplem = 4.

Let us now describe the table to be created by the Election Authority (EA) before
the election which is a simplification of Punchscan’s. Note the hats on the symbols for
some columns; these mean that each cell in that column is a bitcommitment. The columns
labelledy, y − x1 andv will remain empty until the counting of the votes, as we will see
below.



i y ĵ x̂1 y − x1 x̂2 π̂2(j) k v
1
· · ·

· · ·

2R

Observe that the table is divided in a left, middle and right part, with i, j andk as
index, resp. Letπ1 be the permutation between the rows of the first and the secondpart,
andπ2 between the rows of the second and the third part. Then the columns labelled̂j

andπ̂2(j) are used to define and to verify these two permutations. In particular, j should
be the pre-imageπ−1

1 underπ1 for row j, whereask contains the imageπ2(j) underπ2 for
row j.

Auditing the ballot construction Let there be2R rows. The set of rows is
divided randomly in an audit setA and election setE both of sizeR. The EA is now
required to open all bit commitments related toA: it must open all rowsi in the left part
of the table ifi ∈ A and all rows with indexj in the middle part of the table ifj = π1(i)
andi ∈ A. The right part contains no commitments. Scrutineers should check that all bit
commitments were created honestly. After the audit, the EA prints the unopened ballots
with indexi ∈ E.

The election The voter casts her vote as described earlier, and for each vote the
valueyi is determined. Since EA also knowsx1 andx2 he can compute the corresponding
valuesyj − xj1 andvk.

Publishing the results After the election, the EA publishesyi for eachi ∈ E,
yj − xj1 for eachj ∈ π1(E) andvk for eachk ∈ π2(π1(E)). From the column labelledv
he calculates the tally, which can be verified by anybody.

Auditing the votes published The EA could try to cheat by modifying the values
vk. We therefore first define the followingnaiveapproach: for eachj in the middle part
of the table a random bit is created out of EA’s control: Left or Right, which has the
following sematics:

Left The EA openŝxj1 and it is verified whetheryπ−1

1
(j) − xj1 = (y − x1)j holds.

Right The EA openŝxj2 and it is verified whether(y−x1)j = xj2+vπ2(j) holds. Observe
that this equation should be satisfied becausey = x+v = x1 +x2 +v soy−x1 =
x2 + v.

Using this approach we catch a cheating EA with probability1/2 for each vote
vk he modifies. However, too much information is revealed aboutthe overall permutation
π = π2 ⊕ π1 between the left and the right part of the table, violating voter privacy. We
can think of three possible ways out:

(1) We doK versions of this protocol in parallel, each with different bit commit-
ments and one Left/Right choices for all rows in each parallel version. Then the proba-
bility of EA getting away is2−K . This is the solution adopted by Punchscan ([5], section
5.4).

(2) Instead of using two permutationsπ1 andπ2, we use four. We also splitx in
four parts:x = x1 + x2 + x3 + x4(mod m). Then we use Chaum´s improvement [2] of
the mixing protocol proposed in [6]. See [1] for a detailed description.



(3) We use a special kind of bit commitment scheme that has a homomorphic
property: we assume that the multiplication of two bit commitments is equivalent to the
addition(mod m) of their contents. BCs with this property can be constructedfrom from
homomorphic encryption schemes. This variant does not trivially generalize to elections
in which a mere cyclic shift will not do and full permutationsare needed.

4. A brief description of Punchscan
The header of the table used by Punchscan is as follows:

i x̂1 x̂2 y ĵ t̂1 y − t1 t̂2 π̂2(j) k v
P.1 P.2 P.3 D.1 D.2 D.3 D.4 D.5 R.1

· · ·

The first row shows the notation introduced in this paper, whereas the second row
shows the notation of [5] and [7]. Observe that where they usex, y, z as the indices of
the left (P), middle (D) and right (R) part of the table, we usei, j, k, so that when they we
write (x, P3) we would writeyi, etc. Also, the description of Punchscan usesm = 2, so
that adding1(mod 2) is called “flipping” or “inverting” the bit.

Simplifying this table by definingx1 = t1; x2 = t2 is tempting but leads to
an insecureprotocol because of the following difference between PaV and PS. In PaV
the offset (or offsets, in the new protocol) is (are) kept secret: the left side of the ballot
is destroyed, and the value on the right side is protected by abit commitment. But in
Punchscan the offset from the top (x1) or bottom (x2) layer can be deduced from the
printed ballot. One layer gets destroyed but the other has its scanned image published, so
this information, combined with the information about the destroyed layer revealed during
the post-election audit, compromises the ballot security,which happens withp = 1/2.
Thereforex1, x2, t1 andt2 are chosen randomly satisfyingx1 + x2 = t1 + t2(mod m).

5. About unconditional integrity and unconditional privacy
The only cryptographic primitive used in PunchScan, and nowin Prêt-à-Votertoo, is a
bit commitment scheme. Instead of using encryptions as bit commitments (a proposed
in PS), it is interesting to consider bit commitments that are unconditionally hiding and
computationally binding. One possible example is the BC scheme described in [6] based
on hash functions; another example are BCs based on the discrete log problem.

The reason that using unconditional BCs is interesting is the following: it is per-
fectly conceivable to have one authority (or group of several authorities) create these BCs
using specific cryptographic hardware in a controled environment, the operation of which
is controlled with smart cards kept in sealed and signed enveloppes and which is used only
in cerimonies witnessed by all the political parties, etc. The keys of al the BCs would re-
main inside this equipment, during official cerimonies all BCs that need to be opened are
opened, and when the election is over the keys to the not-opened BCs are destroyed. From
that moment on it is impossible to prove how the ballots were constructed.

In this way one obtains unconditional, that is, everlastingprivacy, whereas upto
now Prêt-à-Voterand PunchScan only provide computational privacy, which will be bro-
ken eventually. This is why substituting (Chaum-like) mixing and using BC instead is so
important: with mixing there was no hope to get to everlasting privacy, but with BCs it
possible



The only reason to prefer BCs that are unconditionally binding is that one gets
unconditionally integrity of the election outcome and onlycomputational privacy of the
vote. But in order to change the outcome the authority would have to break the computa-
tional assumptionwhile the election is going on.Though it is very hard to estimate how
difficult it is to break a system 40 years from know, it very well possible to create a system
based on a computational assumption that wont be broken in the next three months.

We can even narrow down this idea even more. Suppose one uses aHardware
Security Module (or HSM, basically the equivalent of a smartcard but with more security
features and higher processing capicity) which is connected to a trusted computer to create
the keys that open the bit commitments.

Before the elections you a cerimony is held to create the BCs.The smart cards that
activate the HSM are then held by the authorities (or maybe intransparent boxes next to
the HSM). After this pre-election cerimony computer and HSMare kept in a ”transparent”
room so that any observer can see it sitting there. Apart frombeing guarded by heavily
armed people, political parties are allowed access to the ”viewing” room and can organize
a 24 hour vigilance checking that nobody is touching the thing.

After the election is over, a post-election cerimony is heldin which half of the
remaining BCs are opened and the other halfs are destroyed.

Now the computer inside the transparent room cannot rig the election because,
apart from all the physical protection involved that makes it impossible for the computer
to run unauthorized software, it has insufficient computational power to break the compu-
tational assumption that guarantees the binding property of the BCs. And even the NSA
cannot rig the election since it cannot access the data inside the HSM and/or the trusted
computer.

Compared to overall cost of elections this solution is not outlandish; in fact it is
very reasonable. And I believe people and political partieswill love it: the security of
the system is concentrated in one very well-identifiable place with one very well-defined
task: looking at the damned thing and see that nobody touchesit. You can even broadcast
the image on tv if you want, though it would be rather boring.

By the way, note that the observers do not have to verify the correctness of the
software that is being used. As long as they verify that (1) nobody can access the machines
between the two cerimonies, ans (2) the bit commitments thatare opened are correct, they
can trust the outcome of the election. (But the authorities of course have an interest in the
correctness of the software to make sure that the election completes.)

Note that most cryptographers usually don’t like special equipments (and it is their
job not to like them) but they should not forget that all of PKIis based on it: VeriSign
stores its root certificates in an HSM held in a well-protected strong-room in a well-
protected building And banks use HSMs to store their master keys, so this is known tech-
nology that could be applied to voting.

Of course, from a cryptographic point of view a computationally hiding verifiable
secret sharing scheme may be preferable here. But from a psychological point of view,
with an HSM-like solution it may be easier to win the trust of the lay-man. When design-
ing systems that need to be trusted by a large majority of the population such arguments



shouldn’t be overlooked. A simple, understandable, robustmethod of making a system
secure may be preferable over a superior cryptographic protocol that only a tiny fraction
of the population can hope to understand. (If I can’t explainit to my colleagues in the
computer science department over a cup of coffee, I think it is doomed.)

6. Adapting the Pret-a-Voter ballot lay-out to the Brazilian system

A peculiarity of the Brazilian election system is that each political party has a two-digit
number. And in races were more than one candidate per party are allowed, additional
digits are added, resulting in a possible 5-digit number forthe representatives in the federal
house.

With PaV it is fairly easy to think of a way to present several digits on one ballot.
Let us first describe how to transform the ballot of Section 2 in this new format. Instead of
a left and a right column, we suppose two equal-sized pieces of paper. What was the left
column now goes on top, while the right column constitutes the bottom, and we suppose
that the voter casts his vote by perforating a hole through both layers simultaneously. As
before, the top layer contains a permuted version of the candidate list and will be destroyed
aftrewards, while the bottom layer contains an encryption of this permutation and will be
retained. This constitutes a completely equivalent (isomorphic) ballot.

The only observation now is that instead of having 1 column with 4 candidates,
one can have 5 columns with 10 numbers (where we suppose that the cyclic permutations
on each column are independently chosen). In order to cast a valid vote the voter must
perforate 5 numbers, one in each column; in all other respects the protocol is identical.
The idea is outlined in the following diagram, which showes the upper and lower layer of
a vote for candidate 35423:

4 2 3 6 9
5 3 4 7 0•

6 4 5 8 1
7 5 6 9 2•

8 6 7 0 3•
9 7 8 1 4
0 8 9 2 5•

1 9 0 3 6
2 0 1 4 7
3 1 2 5 8•

•

•

•

•

•

Qqkr3c

Note the similarity with PunchScan: there, one would have the right part, with 10
holes per columns, put on top of the left part, and a dauber formarking the vote on both
layers simultaneously.

7. Conclusion

This paper started as a study the similarities and differences between Pret-a-Voter and
Punchscan. Surprisingly we found a merge which seems an improvement on both. The
Section 4 shows that cryptographically PS is actually slightly more complicated than the
PaV variant presented in Section 3. The fact thatboth the top and the bottom layer can



be flipped seems to complicate matters, without any real benefit. In particular, the choice
between top and bottom layers does not seem to add to the security of Punchscan, unlike in
[2]. Also in terms of ballot lay-out there seems little difference between the two schemes.

History and shortcoming of this version

This paper is the result of a long-overdue task I had set myself: going to the cryptographic
core of both Prêt-à-Voter and PunchScan. This effort resulted in Sections 1 thru 4 which,
together with the references, were submitted as a short paper to the Simpósio Brasileiro
de Segurança. Drafts of Sections 5 and 6 were written at the same time, but they did not
fit; they are included now for completeness.

Intended as a short paper (4 pages only), I am aware of the short-comings of the
current version: if you do not know the subject already (or without reading the cited
papers) it is almost incomprehensible, and there are not many references. Furthermore,
a more detailed comparison of the differences (e.g. encryption printed on the ballot vs.
ballot ids printed + bit commitment elsewhere), including atable listing them, is still
missing.

Acknowledgments

Ben Hosp and Stefan Popovenuic very kindly provided me with [5], and the first clarified
some other doubts that remained. Peter Ryan avoided that I make a fool of myself in
Section 6 when I proposed to drill two equidistant holes simultaneously in the left and
right part, instead of superimposing them. With David ChaumI had various discussions
about PunchScan (ballot lay-out with arrows; internet solutions), though we never went
over the crypto aspects.

References

[1] Bryans, J. and Ryan, P.A dependability analysis of the Chaum Voting Scheme.Technical
Report CS-TR-809, University of Newcastle, 2003.

[2] Chaum, D.Secret-Ballot receipts: True Voter-Verifiable elections.IEEE Security and Pri-
vacy, 2(1):38-47, Jan/Feb 2004.

[3] Chaum, D., Ryan, P. Schneider, S.A Practical Voter-Verifiable Election Scheme.???.

[4] Crépeau, C., van de Graaf, J. and Tapp, A.Committed Oblivious Transfer and Private
Multy-Party Computation.CRYPTO’95, Springer, LNCS, vol. 963, 1995, pp.110-
123.

[5] Hosp, B., Popovenuic, S.Punchscan Voting Summary.Version dated Feb 13, 2006, ob-
tained from first author.

[6] Jakobsson, M., Juels, A. and Rivest, R.Making Mix Nets Robust For Electronic Voting By
Randomized Partial Checking.Usenix 2002.

[7] Popovenuic, S., Hosp, B.An Introduction to Punchscan.Version dated Oct 15, 2006.
http://punchscan.org/papers/popoveniuchosppunchscanintroduction.pdf.


