
Merging Prêt-à-Voter and PunchScan

Jeroen van de Graaf

1Laboratório de Computação Cientı́fica – Universidade Federal de Minas Gerais (UFMG)
Av. Antônio Carlos 6627 – 31270-901 – Belo Horizonte (MG) – Brasil

jvdg@lcc.ufmg.br

Abstract. We describe a variation of Prêt-à-Voter that keeps the same ballot
layout but borrows and slightly modifies the underlying cryptographic primi-
tives from Punchscan, substituting the mix network for bit commitments.We also
suggest a limited-resources solution to get to unconditional privacy and uncon-
ditional integrity, and propose ways to have several races on the Pr̂et-à-Voter
ballot.

1. Introduction
Over the last few years we have seen a sequence of papers on voter-verifiable elections.
The idea of such systems is that the voter takes home a receiptwhich allows him to verify
that her vote is included in the tally without revealing any usefull information about her
vote. Though this idea is not new, Chaum’s paper [2] arguablygave a new impetus to this
line of research (see also [1]).

Chaum’s paper was improved upon in two significant ways. First there is a pro-
tocol called Prêt-à-Voter (PaV), as described in [3], which has several advantages over
[2], such as a simpler ballot lay-out, pre-printed ballots on which the voter marks his
preferences with a pen thus insuring that the voting machine(DRE) does not learn the
vote, etc. However, PaV still uses decryption mixing. Inspired by this, Chaum developed
PunchScan (PS). See the sitewww.punchscan.orgfor fancy demos. For a detailed proto-
col description we refer to [7] and [5]. PS differs from PaV inseveral aspects:(1) in each
ballot both the top and bottom layer are permuted;(2) a mark is placed on both layers;
(3) the voter gets to choose which layer he keeps and which gets destroyed;(4) no mixing
takes place; the only cryptographic primitive needed is a Bit Commitment scheme.

In this paper we obtain a new protocol by merging PaV and PS as follows: we
maintain PaV’s ballot lay-out but we borrow the underlying cryptographic primitives from
PS. Apart from giving us a thorough understanding of the similarities and differences
between the two protocols, the final result seems superior toboth because compared to
PaV it disposes of mixing, while compared to PS it results in asimpler ballot lay-out.

The outline of this paper is as follows: we start with a high-level description of
the PaV ballot, but instead of using mixing we describe how toapply the underlying cryp-
tographic ideas used in PS to PaV. We also propose some improvements to the protocol,
and provide a very brief description of the cryptography of Punchscan. We assume that
the reader is familiar with the general setting and the terminology of voting protocols.

2. The Prêt-à-Voter Ballot
The ballots used in PaV are described in detail in [3], section 4, using an example
with 4 candidates. A base canonical ordering of candidates is defined: 0: Anarchist, 1:



Alchemist, 2: Nihilist, 3: Buddhist. An example ballot looks like this (section 4.1):

3: Buddhist X
0: Anarchist
1: Alchemist
2: Nihilist
(Offsetx = 1) Qqkr3c

The left part contains a cyclic permutation (shift) of the candidates1; in this case
the offsetx = 1.The right part is empty except for the last row, and the votervotes by
putting an “X” in one of its first four cells. The magic stringQqkr3c (in reality probably
longer) is an encryption ofx, encrypted with the public keys of the mixes.

Casting the vote consists of separating the left and the right columns, destroying
the left column and scanning the right column. Either manually or through OCR the row
containing the X and the encryption of the offset are associated to the ballot image. The
voter can take the right column home as a receipt. At the end ofthe day, all ballots will
enter the mix process. That is, each mix contributes in decrypting the shift and shuffling
all the ballots; see section 6 of [3].

3. Using bit commitments instead of mixing

Mixing is a tedious process and has several disadvantages: it is difficult to explain to
the average person, the privacy of the ballot is only computational, it is computationally
intensive, etc. A protocol that uses bit commitment does nothave these disadvantages:
pieces of papers in an enveloppe serve as an excellent explanation for BCs, uncondition-
ally hiding bit commitment schemes exist, and they are certainly not less efficient than
mixing. Therefore our purpose here is to develop a variant ofPaV using BCs.

Since Punchscan uses two permutatons, both the top and the bottom layer, a
straightforward idea is to break the offset valuex in two, i.e. to choosex1 andx2 random
such thatx = x1 + x2(mod m). We let the Election Authority(EA) commit tox1 and
x2. We write these BCs at the bottom of the right column on the ballot (like in PaV) or,
alternatively, we have the EA commit to these values publicly and use a unique ballot id
number to establish the link between the two BCs published and the printed ballot.

Furthermore we use the following notation:x is the offset;y is the number of
the row marked by the voter, counting from 0 tom − 1; v is the actual vote, that is, the
row chosen in the canonical representation. Obviously,y = x + v(mod m), where the
modulusm is the number of candidates on the ballot; in the examplem = 4.

Let us now describe the table to be created by the Election Authority (EA) before
the election which is a simplification of Punchscan’s. Note the hats on the symbols for
some columns; these mean that each cell in that column is a bitcommitment. The columns
labelledy, y − x1 andv will remain empty until the counting of the votes, as we will see
below.

1We restrict ourselves to cyclic permutation for simplicityof exposition; unless noted otherwise our
protocols extend to full permutations.



i y ĵ x̂1 y − x1 x̂2 π̂2(j) k v
1
· · ·

· · ·

2R

Observe that the table is divided in a left, middle and right part, with i, j andk as
index, resp. Letπ1 be the permutation between the rows of the first and the secondpart,
andπ2 between the rows of the second and the third part. Then the columns labelled̂j

andπ̂2(j) are used to define and to verify these two permutations. In particular, j should
be the pre-imageπ−1

1 underπ1 for row j, whereask contains the imageπ2(j) underπ2 for
row j.

Auditing the ballot construction Let there be2R rows. The set of rows is
divided randomly in an audit setA and election setE both of sizeR. The EA is now
required to open all bit commitments related toA: it must open all rowsi in the left part
of the table ifi ∈ A and all rows with indexj in the middle part of the table ifj = π1(i)
andi ∈ A. The right part contains no commitments. Scrutineers should check that all bit
commitments were created honestly. After the audit, the EA prints the unopened ballots
with indexi ∈ E.

The election The voter casts her vote as described earlier, and for each vote the
valueyi is determined. Since EA also knowsx1 andx2 he can compute the corresponding
valuesyj − xj1 andvk.

Publishing the results After the election, the EA publishesyi for eachi ∈ E,
yj − xj1 for eachj ∈ π1(E) andvk for eachk ∈ π2(π1(E)). From the column labelledv
he calculates the tally, which can be verified by anybody.

Auditing the votes published The EA could try to cheat by modifying the values
vk. We therefore first define the followingnaiveapproach: for eachj in the middle part
of the table a random bit is created out of EA’s control: Left or Right, which has the
following sematics:

Left The EA openŝxj1 and it is verified whetheryπ−1

1
(j) − xj1 = (y − x1)j holds.

Right The EA openŝxj2 and it is verified whether(y−x1)j = xj2+vπ2(j) holds. Observe
that this equation should be satisfied becausey = x+v = x1 +x2 +v soy−x1 =
x2 + v.

Using this approach we catch a cheating EA with probability1/2 for each vote
vk he modifies. However, too much information is revealed aboutthe overall permutation
π = π2 ⊕ π1 between the left and the right part of the table, violating voter privacy. We
can think of three possible ways out:

(1) We doK versions of this protocol in parallel, each with different bit commit-
ments and one Left/Right choices for all rows in each parallel version. Then the proba-
bility of EA getting away is2−K . This is the solution adopted by Punchscan ([5], section
5.4).

(2) Instead of using two permutationsπ1 andπ2, we use four. We also splitx in
four parts:x = x1 + x2 + x3 + x4(mod m). Then we use Chaum´s improvement [2] of
the mixing protocol proposed in [6]. See [1] for a detailed description.



(3) We use a special kind of bit commitment scheme that has a homomorphic
property: we assume that the multiplication of two bit commitments is equivalent to the
addition(mod m) of their contents. BCs with this property can be constructedfrom from
homomorphic encryption schemes. This variant does not trivially generalize to elections
in which a mere cyclic shift will not do and full permutationsare needed.

4. A brief description of Punchscan

The header of the table used by Punchscan is as follows:

i x̂1 x̂2 y ĵ t̂1 y − t1 t̂2 π̂2(j) k v
P.1 P.2 P.3 D.1 D.2 D.3 D.4 D.5 R.1

· · ·

The first row shows the notation introduced in this paper, whereas the second row
shows the notation of [5] and [7]. Observe that where they usex, y, z as the indices of
the left (P), middle (D) and right (R) part of the table, we usei, j, k, so that when they we
write (x, P3) we would writeyi, etc. Also, the description of Punchscan usesm = 2, so
that adding1(mod 2) is called “flipping” or “inverting” the bit.

Simplifying this table by definingx1 = t1; x2 = t2 is tempting but leads to
an insecureprotocol because of the following difference between PaV and PS. In PaV
the offset (or offsets, in the new protocol) is (are) kept secret: the left side of the ballot
is destroyed, and the value on the right side is protected by abit commitment. But in
Punchscan the offset from the top (x1) or bottom (x2) layer can be deduced from the
printed ballot. One layer gets destroyed but the other has its scanned image published, so
this information, combined with the information about the destroyed layer revealed during
the post-election audit, compromises the ballot security,which happens withp = 1/2.
Thereforex1, x2, t1 andt2 are chosen randomly satisfyingx1 + x2 = t1 + t2(mod m).

5. About unconditional integrity and unconditional privacy

The only cryptographic primitive used in PunchScan, and nowin Prêt-à-Voter too, is a
bit commitment scheme. However, instead of using encryptions as bit commitments (as
proposed in PS), it may be more interesting to consider usingbit commitments that are
unconditionally hiding and computationally binding.

The result is an election scheme that has computational integrity, while the pri-
vacy is unconditional or everlasting. Though some people argue that the opposite (un-
conditional integrity and computational privacy, is preferable, we do not think so because
in order to change the outcome of the election, the authorities would have to break the
computational assumptionwhile the election is going on. Though it is very hard to esti-
mate how difficult it is to break a system 50 years from know (computational privacy), it
very well possible to create a system based on a computational assumption that won’t be
broken in the next three months (computational integrity).

Note that a computationally binding bit commitment can be split over various
authorities of which a certain threshold must cooperate in order to open the BC. Such
schemes are known as verifiable secret sharing. From a cryptographic perspective this is
probably the preferred solution.



However, in some instances it is not clear that the authorities can share the power to
open the BCs with others. In Brazil, for instance, one specific entity is by law responsible
for organizing the election, and it cannot share secrets with other entities because that
could make it a hostage of them (“Do what we say otherwise we won’t open our secrets
and the elections will not terminate”). This is one motive for the solution outlined below.

A second motive is the following line of thinking. It is knownthat unconditionally
hiding and unconditionally binding BCs are possible under additional assumptions, for
instance physical assumptions about the channel between the parties, or assumptions that
one party has limited computational resources, like a limited processor, or a limited mem-
ory size. Here we propose a BC scheme in which we make the following assumptions:

1. The computer hardware used by the committing party has limited processor capac-
ity, and it is possible to define computational or cryptographic one-way functions
for which the probability of the processor inverting it during ap day period is
truly negligible. Herep should be bigger than the time between the pre-election
and post-election cerimony, which is typically a couple of months.

2. This hardware is held in a safe place during thesep days in a way that(a) nobody
can touch it, and (b) witnesses are allowed permanent access to make sure that
nobody touches it.

A more detailed description
We can even narrow down this idea even more. Suppose that, to create the keys that
open the bit commitments, one uses a Hardware Security Module (HSM; basically the
equivalent of a smart card but with more security features and higher processing capacity)
which is connected to a trusted computer.

A few weeks before the elections, a cerimony is held to createthe BCs. After
this pre-election cerimony, computer and HSM are kept in a “transparent” room so that
any observer can see it sitting there froma an adjacent “viewing” room, and verify that
nobody touches it. The smart cards used by authorities to activate the HSM are also held
in transparent boxes, next to the HSM. All equipment is beingguarded by heavily armed
people, and political parties are allowed permanent accessto the “viewing” room so they
can organize a 24 hour vigilance, checking that nobody is touching. After the election is
over, a post-election cerimony is held in the required BCs are opened, for all others the
keys to opening them are destroyed.

In this scheme, the computer inside the transparent room cannot rig the election
because it has insufficient computational power to break thecomputational assumption
that guarantees the binding property of the BCs (apart from all other safety features
present). And even the NSA cannot rig the election since it cannot access the data in-
side the HSM/trusted computer.

Note that the observers do not have to verify the correctnessof the software that
is being used. As long as they verify(1) that nobody can access the machines between
the two cerimonies, and(2) that the bit commitments that are opened are correct, they can
trust the outcome of the election. (But the authorities, of course, have an interest in the
correctness of the software to make sure that the election completes.)

Note that most cryptographers (and I consider myself one of them) usually don’t
like special equipments (and it is our job not to like them), but we should recognize



that, for instance, all of PKI is based on them: VeriSign stores its root certificates in an
HSM held in a well-protected strong-room in a well-protected building. This is known
technology that could have its place in voting.

Moreover, from a psychological point of view, with HSM-likesolutions it may be
easier to win the trust of the lay-man, since they are easier to grasp than advanced cryp-
tographic protocols. When designing systems that need to betrusted by a large majority
of the population, such as voting, these kind of arguments play an important role. A so-
phisticated voting protocol that I cannot explain to my colleagues in the computer science
department over a cup of coffee is probably doomed. A simple,understandable, robust
method of making a system secure may be preferable.

6. More flexible ballot lay-outs for Prêt-à-Voter

it might seem that cutting the vote in two as in PaV severely limits the ballot lay-out of
PaV. We will show some simple trick to get around this apparent limitation. Our solution
will show how to have multiple races on the ballot, or how to enter a several digit number.
(This is the way voting is done in Brazil: each candidate getsa number assigned for the
election. Numbers are between 2 and 5 digits long, dependingon the race.)

For the initial idea please look at the following ballot lay-out; once you get the
idea the generalizations are straightforward.

3: Buddhist 1: BBB X
0: Anarchist 2: CCC
1: Alchemist 0: AAA X
2: Nihilist
(Offsetx = 1) (Offsetx = 2) Qqkr3c bkuryt

This ballot shows two different, unrelated races: one in thefirst and third column,
and one in the second and fourth. Note that there are two encryptions in the bottom
row of the third and fourth column. This allows that the rightpart of the ballot be split
again between the third and fourth column, thus hiding any correlations between the two
different races. If this is not necessary, then one encryption containing the two offset
values would be sufficient.

So we see that the hardest part is not the ballot lay-out, but finding a way to help
the voter.There are many options; we will outline one for concreteness. Suppose that all
the four columns have the same width. Imagine now a mask that vertically shows only the
first column. In addition there is a horizontal ruler which highlights one cell in the first
column and has a whole at the same height in then third column,through which the voter
can write an X or perforate a hole. Then by shifting the mask one column to the right (or
the ballot to the left), the second and fourth column are serviced.

Alternatively, we can put the left part on top of the right part. So instead of a
left and a right column, we suppose two equal-sized pieces ofpaper. What was the left
column now goes on top, while the right column constitutes the bottom, and we suppose
that the voter casts his vote by perforating a hole through both layers simultaneously. As
before, the top layer contains a permuted version of the candidate list and will be destroyed
afterwards, while the bottom layer contains an encryption of this permutation and will be
retained. The idea is outlined in the following diagram, which showes the upper and lower



layer of a vote for candidate 35423:

4 2 3 6 9
5 3 4 7 0•

6 4 5 8 1
7 5 6 9 2•

8 6 7 0 3•
9 7 8 1 4
0 8 9 2 5•

1 9 0 3 6
2 0 1 4 7
3 1 2 5 8•

•

•

•

•

•

Qqkr3c

This is very similar to PunchScan, except that there is no permutation on the bot-
tom layers. I.e. the bottom sheets are identical for everybody.

A serious drawback of perforating a hole in both layers is that the top (former left)
part now contains the full information of the vote, which is undesirable. One solution is to
reverse the order of the sheets: putting the right part, madeof some transparent material,
on which the voter marks his votes. By using glass between thesheets it can be avoided
that any trace of the voter’s choice remains on the bottom (left) sheet. In fact, glass with
pre-drilled “wells” (i.e. not all the way through) could be used for perforation avoiding
that the botom layers is affected.

To avoid voters mistakes, we could also use a DRE-like machine. The left sheet,
now made of transparent material, is put on top of the screen of the DRE. The latter knows
about the general lay-out of the ballot (the exact positionsof the 5 columns with 10 rows)
and the restrictions (exactly one mark per column) and so canguide voter. However, the
DRE doesnot know what the voter voted for since this is encoded in the top sheet. Once
the voter is done the exact screen image is printed and the voter puts the transparent top
sheet on top of the printout for a final verification. If confirmed, the top sheet is destroyed
while the bottom sheet is kept by the voter as a receipt. The DRE keeps the information
about the cells chosen. A little issue is the ballot ID, whichthe DRE must learn. One
possibility is to have a barcode sticker on the (top) sheet, which will be read by the DRE
before the voter begins and which is printed on receipt. As one of the last steps, the sticker
is peeled of the top sheet and sticked just above its image printed on the printout of the
bottom sheet, allowing for quick visual verification.

7. Conclusion

This paper started as a study the similarities and differences between Pret-a-Voter and
Punchscan. Surprisingly we found a merge which seems an improvement on both. The
Section 4 shows that cryptographically PS is actually slightly more complicated than the
PaV variant presented in Section 3. The fact thatboth the top and the bottom layer can
be flipped seems to complicate matters, without any real benefit. In particular, the choice
between top and bottom layers does not seem to add to the security of Punchscan, unlike in
[2]. Also in terms of ballot lay-out there seems little difference between the two schemes.



History and shortcoming of this version

This paper is the result of a long-overdue task I had set myself: going to the cryptographic
core of both Prêt-à-Voter and PunchScan. This effort resulted in Sections 1 thru 4 which,
together with the references, were submitted as a short paper to the Simpósio Brasileiro
de Segurança. Drafts of Sections 5 and 6 were written at the same time, but they did not
fit; they are included now for completeness.

Intended as a short paper (4 pages only), I am aware of the short-comings of the
current version: if you do not know the subject already (or without reading the cited
papers) it is almost incomprehensible, and there are not many references. Furthermore,
a more detailed comparison of the differences (e.g. encryption printed on the ballot vs.
ballot ids printed + bit commitment elsewhere), including atable listing them, is still
missing.

Acknowledgments

Ben Hosp and Stefan Popovenuic very kindly provided me with [5], and the first clarified
some other doubts that remained. Peter Ryan avoided that I make a fool of myself in
Section 6 when I proposed to drill two equidistant holes simultaneously in the left and
right part, instead of superimposing them. With David ChaumI had various discussions
about PunchScan (ballot lay-out with arrows; internet solutions), though we never went
over the crypto aspects.

References

[1] Ryan, P.Y.A.Variant of the Chaum Voting Scheme.Technical Report CS-TR-864, Univer-
sity of Newcastle, 2004. Also Proceedings of the Workshop onIssues in the Theory
of Security(ACM), 2005. pg 81-88.

[2] Chaum, D.Secret-Ballot receipts: True Voter-Verifiable elections.IEEE Security and Pri-
vacy, 2(1):38-47, Jan/Feb 2004.

[3] Chaum, D., Ryan, P. Schneider, S.A Practical Voter-Verifiable Election Scheme.???.

[4] Crépeau, C., van de Graaf, J. and Tapp, A.Committed Oblivious Transfer and Private
Multy-Party Computation.CRYPTO’95, Springer, LNCS, vol. 963, 1995, pp.110-
123.

[5] Hosp, B., Popovenuic, S.Punchscan Voting Summary.Version dated Feb 13, 2006, ob-
tained from first author.

[6] Jakobsson, M., Juels, A. and Rivest, R.Making Mix Nets Robust For Electronic Voting By
Randomized Partial Checking.Usenix 2002.

[7] Popovenuic, S., Hosp, B.An Introduction to Punchscan.Version dated Oct 15, 2006.
http://punchscan.org/papers/popoveniuchosppunchscanintroduction.pdf.


