
A preliminary version of this paper appears in International Colloquim on Automata, Languages,
and Progamming – ICALP 07, Lecture Notes in Computer Science Vol. 4596, pp. 399–410, L. Arge
et al. ed., Springer-Verlag, 2007. This is the full version.

Hash Functions in the Dedicated-Key Setting:

Design Choices and MPP Transforms

Mihir Bellare ∗ Thomas Ristenpart†

October 2007

Abstract

In the dedicated-key setting, one starts with a compression function f : {0, 1}k×{0, 1}n+d →
{0, 1}n and builds a family of hash functions Hf : K×M→ {0, 1}n indexed by a key space K.
This is different from the more traditional design approach used to build hash functions such as
MD5 or SHA-1, in which compression functions and hash functions do not have dedicated key
inputs. We explore the benefits and drawbacks of building hash functions in the dedicated-key
setting (as compared to the more traditional approach), highlighting several unique features
of the former. Should one choose to build hash functions in the dedicated-key setting, we
suggest utilizing multi-property-preserving (MPP) domain extension transforms. We analyze
seven existing dedicated-key transforms with regard to the MPP goal and propose two simple
new MPP transforms.
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1 Introduction

Two settings. A popular method for designing hash functions proceeds as follows. First, one
designs a compression function f : {0, 1}d+n → {0, 1}n, where d is the length of a data block
and n is the length of the chaining variable. Then one specifies a domain extension transform H
that utilizes f as a black box to implement the hash function Hf : M→ {0, 1}n associated to f ,
where M is some large message space. Most in-use hash functions, for example the MD-x [24]
family and SHA-1 [22], were constructed using this approach.

There also exists a second setting for hash function design and analysis, in which compression
functions and hash functions both have a dedicated key input. A dedicated-key compression function
has signature f : {0, 1}k × {0, 1}d+n → {0, 1}n. A transform H now uses f(·, ·) as a black-box to
implement a family of hash functions Hf : K ×M → {0, 1}n indexed by a key space K. We call
this the dedicated-key setting. Note that although we use the term “key”, this does not mean that
a key K ∈ K is necessarily private. Indeed, hash functions often need to be publically computable
(e.g., for verifying digital signatures) and so in these settings every party must have access to the
key.

This paper. Due to recent collision-finding attacks against in-use hash functions such as MD5 and
SHA-1 [30, 31], new hash functions are going to be designed and standardized. A crucial choice
for designers will be whether one should build hash functions in the first setting (continuing in the
current tradition of in-use hash functions) or in the dedicated-key setting. We present a discussion
of the relative merits of the dedicated-key setting, but also its most significant drawbacks.

If one chooses to work in the dedicated-key setting, the natural next question is how to best build
hash functions in it. Because hash functions are currently used in a wide variety of applications with
disjoint security requirements, we suggest building hash functions using multi-property-preserving
(MPP) transforms, introduced for the non-dedicated-key setting in [5]. An MPP transform H
simultaneously preserves numerous properties of interest: if the compression function f has security
property P, then Hf has P also. We investigate nine transforms, two of which are novel, determining
if they successfully preserve each property P of interest.

We now briefly summarize our results in more detail.

The dedicated-key setting. In Section 3, we present relative merits of the dedicated key set-
ting compared to the more traditional setting. On the positive side, we highlight some practical
and concrete benefits of the dedicated key setting in addition to the more widely acknowledged
theoretical benefits. The dedicated key setting enables hash function heterogeneity (allowing users
to specify independent instances of the hash function) and also improves security guarantees (par-
ticularly for message authentication, a wide-spread application of hash functions). On the other
hand, a significant downside of dedicated keys is a decrease in efficiency.

Dedicated-key transforms. In Section 5 we provide an MPP-orientated treatment of trans-
forms in the dedicated-key setting, analyzing seven previously proposed Merkle-Damg̊ard-like trans-
forms: plain Merkle-Damg̊ard (MD) [19, 12], strengthened MD (sMD) [12], prefix-free MD (Pre) [18],
Shoup’s transform (Sh) [28], the strengthened Nested Iteration transform (sNI) [1], the Nested Itera-
tion transform (NI) [18], and the Chain-Shift transform (CS) [18]. Figure 1 summarizes our results
for the existing seven transforms. For each transform we determine if it is collision-resistance
preserving (CR-Pr), message authentication code preserving (MAC-Pr), pseudorandom function
preserving (PRF-Pr), and pseudorandom oracle preserving (PRO-Pr). Each property is important
for a widely-used application of hash functions; see Section 5 for a more detailed discussion. A
“Yes” in the P-Pr column for transform T means that, if a compression function f has property P,
then Tf provably has property P. A “No” means that there exists a compression function f with
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CR-Pr MAC-Pr PRF-Pr PRO-Pr TCR-Pr Efficiency τ(L) Key bits
MD No [19, 12] No Yes No [11] No [9] d(L + 1)/de k

sMD Yes [19, 12] No Yes No [11] No [9] d(L + 65)/de k

Pre No Yes [18] Yes Yes [11] No d(L + 1)/(d− 1)e k

Sh Yes [28] No Yes No Yes [28] d(L + 65)/de k + ζ(L)
sNI Yes Yes [1] Yes Yes [5] No d(L + 65)/de 2k

NI No Yes [18] Yes Yes [5] No d(L + 1)/de 2k

CS No Yes [18] Yes Yes [5] No d(L + 1 + n)/de k

sCS Yes Yes [18] Yes Yes [5] No d(L + 65 + n)/de k

ESh Yes Yes Yes Yes Yes d(L + 65 + n)/de k + ω(L)

Figure 1: Summary of transforms in the dedicated-key setting when applied to a compression
function f : {0, 1}k × {0, 1}n+d → {0, 1}n. Bold-faced claims are novel. Efficiency is measured by
τ(L), the number of compression function applications used to hash an L-bit string. Key bits is
the number of bits of key material required to hash an L-bit string. The functions ζ(L) and ω(L)
are defined as ndlog2 τ(L)e and n(dlog2(τ(L)− 1)e+ 1) for the appropriate τ(L).

property P, but for which Tf does not have P. Only one of the seven transforms preserves the first
four properties (though requiring two keys to do so), and so we suggest a new MPP transform,
called Strengthened Chain-Shift, which is efficient and requires just one key.

We also investigate the property of being a universal one-way hash function [21], which we’ll call
target-collision resistance (following [9]). Preserving this property is potentially of less practical
interest, due to the need for more key material; see the discussion in Section 5. That said, none of
the transforms thus far preserve it along with the other four properties, and so we suggest a new
transform, Enveloped Shoup, which preserves all five properties.

2 Notation and Definitions

Notation. We denote pairwise concatenation by || , e.g. M ||M ′, and write M1 · · ·Mk to mean
M1 ||M2 || · · · ||Mk. The ith bit of a string M is M [i] and so M = M [1] || · · · ||M [|M |]. For
brevity, we define the following semantics for the notation M1 · · ·Mk

d←M where M is a string
of bits: 1) define k = d|M |/de and 2) if |M | mod d = 0 then parse M into M1, M2, . . ., Mk where
|Mi| = d for 1 ≤ i ≤ k, otherwise parse M into M1, M2, . . ., Mk−1, Mk where |Mi| = d for
1 ≤ i ≤ k − 1 and |Mk| = |M | mod d. For any finite set S we write s

$← S to signify uniformly
choosing a value s ∈ S. We write s

$← A(x1, x2, . . .) to mean assign to s the result of running A
with fresh random coins on inputs x1, x2, . . .. A random oracle is an algorithm RFDom,Rng that, on
input X ∈ Dom, returns a value Y

$← Rng . Repeat queries are, however, answered consistently.
We sometimes write RFd,r when Dom = {0, 1}d and Rng = {0, 1}r.
Security notions. We recall the security definitions needed in the rest of the paper. Let F : K×
Dom → Rng be a function with non-empty key space K and define FK(·) = F (K, ·). Then we
define the following security experiments:

• tcr: ε = Pr
[

(X, S) $← A1,K
$← K, X ′ $← A2(S, K) :

X 6= X ′∧
FK(X) = FK(X ′)

]
• cr: ε = Pr

[
K

$← K, (X, X ′) $← A(K) : X 6= X ′ ∧ FK(X) = FK(X ′)
]
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• mac: ε = Pr
[
K

$← K, (X, T ) $← AFK(·) : FK(X) = T ∧X not queried
]

• prf: ε = Pr
[
K

$← K : AFK(·) ⇒ 1
]
− Pr

[
ρ

$← Func(Dom,Rng) : Aρ(·) ⇒ 1
]

where the probabilities are over the specified random choices and the coins used by A. The set
Func(Dom,Rng) includes all functions ρ: Dom→Rng . In the tcr game A = (A1,A2) is a pair of
algorithms. Now letting F be an algorithm given oracle access to an ideal compression function
f = RFn+d,n we define the last security experiment:

• pro: ε = Pr
[
K

$← K : AF f
K(·),f(·)(K)⇒ 1

]
− Pr

[
K

$← K : AF(·),SF (K,·)(K)⇒ 1
]

where the probabilities are over the specified random choices, the coins used by A and S, and the
coins used by F = RFDom,Rng and f = RFn+d,n. The simulator S maintains state across queries
and has oracle access to F . For more details on the pseudorandom oracle definition see [5, 11, 16].

We say that F is (t, L, ε)-xxx for xxx ∈ {tcr, cr} if any adversary A running in time at most t
and outputing messages of length less than or equal to L bits has ε probability of success in the xxx
game. Similarly we say that F is a (t, q, L, ε)-xxx for xxx ∈ {mac,prf} if any adversary A running
in time at most t and making at most q queries each of which has length at most L has at most
ε probability of success in the xxx game. Lastly we say that F is a (tA, tS , q1, q2, L, ε)-pro if for
any adversary A running in time at most tA and asking at most q1 (q2) queries to its first (second)
oracle with maximal query length L bits, there exists a simulator S running in time tS such that
A’s probability of success in the pro game is at most ε.

3 Hash Functions in the Dedicated Key Setting

Hash function heterogeneity. The first major benefit of dedicated-key hash functions is the
enablement of hash function heterogeneity, in which we can utilize numerous different hash function
instances. To understand why this is useful for security, we discuss (as an example) an important
application of publically-computable, collision-resistant hash functions: digital signature schemes.
Recall that in such a scheme each party i picks a public key pki and publishes it. To verify a
message, one hashes it and then applies some verification algorithm that utilizes pki. In current
practice, all users utilize a single hash function Hh, for example SHA-1. Now that Wang, Yin, and
Yu discovered a collision-outputting algorithm A against Hh = SHA-1 [30], simply running A a
single time compromises the security of every user’s digital signature scheme.

If we instead utilize a dedicated-key hash function Hh: K ×M → {0, 1}n within our scheme,
then each user i can pick a key Ki ∈ K and publish it as part of their public key. In this way each
user has his or her own hash function instance, exemplifying hash function heterogeneity. Now,
attackers are faced with a significantly more difficult task, from a practical perspective. If they
can construct a categorical attack algorithm A (i.e., one that works equally well on any key), and
if A executes in w operations, then to attack a single user i requires (as before) w work. But
attacking two users requires 2w work, and in general attacking a group of p users requires pw work.
If w ≈ 269, as is the case for Wang, Yin, and Yu’s SHA-1 attack [30], then even doubling the
amount of work is a significant hurdle to mounting attacks in practice. The situation is even worse
for the attackers if their attack algorithm is key-specific (i.e., it only works well on a particular
key), because then they might have to adapt their attack to each user’s key, which could require
more cryptanalytic effort. In either case, hash function heterogeneity is a significant benefit of the
dedicated-key setting, particularly when attacks are found that are just on the cusp of practicality.

Improved security guarantees. An important and wide-spread application of hash functions is
for message authentication code (MAC) schemes, where we require hash functions to be unforgeable.
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To utilize a traditional hash function Hh: M→ {0, 1}n as a MAC scheme, Hh must be keyed, which
means some of the input is set aside (a posteriori) for key bits. The canonical construct in this
domain is HMAC [3, 2], which is widely standardized and used. (NIST FIPS 198, ANSI X9.71,
IETF RFC 2104, SSL, SSH, IPSEC, TLS, IEEE 802.11i, and IEEE 802.16e are only some instances.)
Note that in these applications keys are secret and never revealed publically.

In the traditional setting, the unforgeability of MACs built from hash functions requires the
compression function to be a pseudorandom function (PRF) when keyed appropriately and the
transform to be PRF-Pr (e.g., prefix-free MD [4], EMD [5], and NMAC [3, 2], etc.). However,
unforgeability is a weaker security goal than being a PRF: any PRF is a good MAC but not vice
versa. The reason we have to rely on PRFs for message authentication is that building transforms
that preserve the unforgeability of a compression function h: {0, 1}n+d → {0, 1}n is inherently
difficult and, in fact, no unforgeability preserving (which we’ll call MAC-Pr) transforms are known
in this setting.

On the other hand, if we work in the dedicated-key setting, then there are straightforward
MAC-Pr transforms [1, 18, 17]. This allows us to utilize hash functions as MACs under just the
assumption that h: {0, 1}k × {0, 1}n+d → {0, 1}n is a good MAC, which provides a better security
guarantee. To see why, note that an attack showing that h is not a PRF does not immediately
imply that h can be forged against and therefore we can still have a guarantee that Hh is a secure
MAC — but this is only true in the dedicated-key setting. In the prior setting we would lose all
security guarantees.

Keying and collision-resistance. Hash functions with dedicated key inputs are an easy solu-
tion for the foundations-of-hashing dilemma [25], which is a problem of theoretical interest. The
dilemma refers to the fact that h: {0, 1}n+d → {0, 1}n can not be collision-resistant: by the pi-
geonhole principle there are two strings X, X ′ both of length n + 1 bits such that h(X) = h(X ′).
Thus there always exists an efficient collision-outputing algorithm A, namely the one that outputs
(X, X ′). However, as Rogaway discusses at length in [25], rigorous provable security for keyless hash
functions is still meaningful, since we can give explicit reductions (though at the cost of slightly
more complex theorem statements). So while the dedicated-key setting enables formally meaningful
collision-resistance and thus simpler theoretical treatments of CR hashing, the practical impact of
this benefit is small.

Efficiency. A significant downside of dedicated keys is efficiency loss. For every message block
hashed using a dedicated-key compression function h: {0, 1}k × {0, 1}n+d → {0, 1}n, a total of
k + n + d bits must be processed. Compare this to the situation of current popular hash functions,
which only have to process n + d bits per block. The efficiency of the hash function therefore goes
down by about k

n+d , which could be an issue in settings where speed is paramount (e.g., message
authentication of network traffic).

Backwards-compatibility. In many settings it will be desirable to utilize a hash function that
does not reveal a dedicated-key input. This will be particularly true for backwards-compatibility
with existing applications that utilize a standard hash function H: {0, 1}∗ → {0, 1}n. We point
out that it is easy to allow such compatibility when starting with a dedicated-key hash function
H ′: K× {0, 1}∗ → {0, 1}n. Simply fix an honestly generated and publically-known key K (chosen,
for example, by some trusted entity), and define the unkeyed hash function as H(M) = H ′(K, M).

Adversarially-chosen keys. A dedicated-key hash function’s security guarantees only hold in
situations where the key is generated honestly. This is typically not a concern because most current
cryptographically-sanctified applications of hash functions (e.g., digital signature schemes, message
authentication codes, key derivation, and standard uses of random oracles) only require security
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for honestly generated keys. Still, given the wide-spread use of hash functions in non-standard
settings, one should be aware of the potential for abuse in applications that require security even
in the face of adversarially-chosen keys. A simple solution for such settings would be to require a
fixed, honestly-generated key as mentioned above.

4 Dedicated Key Transforms

Let f : {0, 1}k×{0, 1}n+d → {0, 1}n be a dedicated-key compression function with d ≥ n ≥ 64. We
now describe the various transforms treated in this paper. A transform H describes how to utilize
f (as a black box) in order to generate a hash function Hf : K ×M → {0, 1}n. A transform is
defined in two separate steps. We first specify an injective padding function that maps from {0, 1}∗
or {0, 1}≤264

to either D+ = ∪i≥1{0, 1}id or D◦ = ∪i≥1{0, 1}id+d−n. Then we specify an iteration
function which describes how to hash strings in either D+ or D◦. We define the following padding
functions:
• pad: {0, 1}∗ → D+ is defined by pad(M) = M || 10r

• pads: D → D+ is defined by pads(M) = M || 10r || 〈|M |〉64
• padPF: {0, 1}∗ → D+ is a prefix-free padding function: for any M,M ′ ∈ {0, 1}∗ where |M | <
|M ′| we have that padPF(M) is not a prefix of padPF(M ′). For the rest of the paper we fix the
following concrete realization of a prefix-free encoding. Pad the message with 10r for minimal
value r such that the resulting string has length a multiple of d − 1 bits. Parse the resulting
string into blocks of d− 1 bits, add a zero to each block except the final block, which has a one
added to it, and output the result.

• padCS: {0, 1}∗ → D◦ is defined by padCS(M) = M || 10r

• padCSs: D → D◦ is defined by padCSs(M) = M || 10r || 〈|M |〉64 || 0p

where for pad, pads, and padCS the value r is the minimal number of zeros so that the returned
string is in the range of the padding function. For padCSs we define r and p in two potential ways.
If d ≥ n+64 (there is room for the strengthening in the envelope), then p = 0. If d < n+64 (there
is not enough room for the strengthening in the envelope), then p = d− n. Then r is the number
of zeros needed to make the returned string in D◦. Note that we restrict our attention to padding
functions g such that for any messages M,M ′ for which |M | = |M ′| we have that |g(M)| = |g(M ′)|.

The iteration functions we consider are specified in Figure 2, and we use them to now define
the seven previously proposed and two new transforms.

Plain, Strengthened, and Prefix-free MD. The Merkle-Damg̊ard (MD) iteration f+: {0, 1}k×
D+ → {0, 1}n repeatedly applies f . We define the following transforms using the MD itera-
tion.

Plain MD [19, 12]: MD[f ] = f+(k, pad(m))
Strengthened MD [12]: sMD[f ] = f+(k, pads(m))
Prefix-free MD [18]: Pre[f ] = f+(k, padPF(m))

The placeholders k and m designate how to handle the key and message inputs.

Shoup. The Shoup iteration fSh: ({0, 1}k × {0, 1}κn)×D+ → {0, 1}n utilizes κ = dlog2(σ)e key
masks where σ the maximal number of iterations of f allowed. Also we define ν(i) to be the
largest value x such that 2x divides i. The key masks {Ki}κ1 ∈ {0, 1}κn are κ n-bit keys that
are used to ‘mask’ chaining variable values with secret key material. We define the Shoup
transform as follows.
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Algorithm f+(K, M):
M1 · · ·Mm

d←M ; Y0 ← IV
for i = 1 to m do

Yi ← fK(Yi−1 ||Mi)
Ret Ym

d

M1

f
IV

M2

f
· · ·

n

f

K K K

Mm

Ym
n

Algorithm fSh((K, {Ki}κ1),M):
M1 · · ·Mm

d←M ; Y0 ← IV
for i = 1 to m do

Yi ← fK(Yi−1 ⊕Kν(i) ||Mi)
Ret Ym

d

M1

f
IV

M2

f
· · ·

n

f

K1K0 K0
K K K

Mm

Ym

Kν(m)

Algorithm fNI((K1,K2),M):
M1 · · ·Mm

d←M
Ym−1 ← f+(K1,M1 · · ·Mm−1)
Ret Ym ← fK2(Ym−1 ||Mm)

d

M1

n

f
IV

K1

M2

n

f

K1

· · ·
n

Yk

f

K2

Mm

Algorithm fCS(K, M):
M1 · · ·Mm

d←M
Ym−1 ← f+(K, M1 · · ·Mm−1)
Ret fK(IV 2 || Ym−1 ||Mm)

d

M1

f

n

K

IV 1 · · ·
f

Mk−1

n

f
Yk

Mk

K

K

n

d − n

IV 2

Algorithm fESh((K, {Ki}µ1 ),M):

M1 · · ·Mm
d←M ; Y0 ← IV 1

Ym−1 ← fSh((K, {Ki}t−1
1 ),M1 · · ·Mm−1)

Ret fK((IV 2⊕K0) || (Ym−1⊕Kµ) ||Mm)

d

M1

f

K

· · ·
f

K

Mm−1
Mm

f

K0 K1 Kν(m−1) K

IV 2

K0

d − n

n
Ym

IV 1

Kµ

Figure 2: The algorithms and diagrams detailing the iteration functions we consider. Transforms
are the composition of an iteration function and a padding function.

Shoup [28]: Sh[f ] = fSh(k, pads(m))

(Strengthened) Nested Iteration. The nested iteration fNI: ({0, 1}k×{0, 1}k)×D+ → {0, 1}n
just envelopes an f+ iteration with an application of f using a second key. We define the
following two transforms.

Strengthened Nested Iteration [1]: sNI[f ] = fNI(k, pads(m))
Nested Iteration [18]: NI[f ] = fNI(k, pad(m))

Chain Shift. The chain shift iteration fCS: {0, 1}k × D◦ → {0, 1}n, envelopes an internal f+

iteration with an application of f(IV 2 || ·). We require that IV 2 6= IV 1. Then we have the
following transform.

Chain Shift [18]: CS[f ] = fCS(k, padCS(m))

New transforms. Now we define two new transforms.
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Strengthened Chain Shift: CS[f ] = fCS(k, padCSs(m))
Enveloped Shoup: ESh[f ] = fESh(k, padCSs(m))

The strengthened Chain Shift transform adds strengthening to the CS transform. The En-
veloped Shoup transform applies an internal Shoup iteration and then envelopes the result.
It requires µ = dlog2 σe + 1 n-bit key masks where σ is the maximum number of internal
iterations of f allowed. Note that the key mask schedule has K0 used for both IV 1 and
IV 2. This serves to preserve the uniqueness of the two initialization vectors across the xor
operations, which we leverage in the proof that ESh is PRO-Pr. Additionally, the key mask
Kµ is only used for the chaining variable fed into the envelope, which means that Kµ − 1
masks are available for the internal Shoup iteration. The distinct key mask for the envelope
is important for ensuring (target) collision resistance preservation in the case that d < n+64
(in this case the strengthening does not fit in the envelope and so must be placed in the
second to last compression function application).

For a fixed compression function f each transform defines a hash function, e.g. MDf = MD[f ]
is the hash function with signature MDf : {0, 1}k × {0, 1}∗ → {0, 1}n defined by MDf (K, M) =
f+(K, pad(M)).

For each padding function g (and therefore each transform) we define an efficiency func-
tion τg: N → N defined as τg(L) = d|g(M)|/de for any M ∈ {0, 1}L. For brevity we will often
just write τ(L) where the padding function of interest is clear from context. Note that efficiency
functions are called application functions in [18]. Figure 1 lists the the efficiency functions of the
nine transforms.

5 Security Analysis of the Transforms

In this section we give a concrete security treatment of the nine transforms in terms of the five
different security goals identified in the introduction. We investigate each transform for each of the
five properties. For each transform, property pair we seek either a counter-example (a compression
function for which the transform constructs a hash function without the property in question) or
a proof that the property is preserved by the transform. Some results are already established by
prior work, see Figure 1 for citations. The next few sections contain detailed analyses to establish
the new results. First, we discuss each of the properties and motivate their importance and then
give a brief summary of the results and their implications.

MPP transforms. As observed in [5], current hash function usage spans a wide range of ap-
plications, many with disjoint security requirements. For example, hash functions are currently
simultaneously utilized for being CR and for instantiating random oracles (in schemes such as RSA-
OAEP [7] and RSA-PSS [8] specified in the RSA PKCS#1 v2.1 standard [23]). Hash functions are
also keyed and used as message authentication codes (MACs) and pseudrandom functions (PRFs).
(For example, HMAC [3], a popular hash-function based construction, is used for message authenti-
cation in SSH, IPsec [15], and TLS [13] and for key derivation, where it must be a PRF, in TLS [13]
and IKE [14].) Hash function design should reflect such usage, and for transforms this means being
multi-property-preserving : a transform should simultaneously preserve many properties of interest.
This enables building a single hash function that can be used for a variety of applications, easing the
burden of implementation and standardization. To be useful for all the applications listed above,
we therefore ask that our transforms be collision-resistance preserving (CR-Pr), MAC preserving
(MAC-Pr), PRF preserving (PRF-Pr), and pseudorandom-oracle preserving (PRO-Pr).
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Besides these four properties, one can also ask for a fifth, namely target collision resistance
(TCR). This has applications in the setting of some digital signature schemes, for a discussion
see [9]. Unfortunately, the best transforms (Sh being one) require a significant number of key bits,
in fact logarithmic in the number of blocks hashed. To make matters worse, there is strong evidence
that we’re not likely to do much better with MD-style transforms [20, 27]. Nevertheless we add
this property to the list, and investigate which transforms are target collision-resistance preserving
(TCR-Pr) in Section 5.5.

Summary of results and discussion. The summary of our analysis is given in Figure 1.
It shows that only the strengthened Nested Iteration (sNI) transform simultaneously preserves
CR, MAC, PRF, and PRO. However it requires two keys, and one can do better with the (new)
strengthened Chain Shift (sCS) transform. This last just adds strengthening to CS. If TCR is
added to the list, then none of the transforms, including sCS, preserve all five properties. Hence
the Enveloped Shoup transform which accomplishes just that. Note that the two new transforms
only differ in the masks; in particular ESh with all the masks set to zero bits is exactly sCS.

5.1 Collision Resistance Preservation

Collision-resistance preservation is typically achieved via strengthening: appending the length of
a message to it before processing. Not surprisingly, transforms that omit strengthening are not
CR-Pr: we show this for Pre, NI, and CS. On the other hand, those that include strengthening are
CR-Pr, as we show for sNI, sCS, and ESh.

Theorem 5.1 [Negative results: Pre, NI, CS] If there exists a function f : {0, 1}k×{0, 1}n+d →
{0, 1}n−1 that is (t, n + d, ε)-cr, then there exists a function g: {0, 1}k × {0, 1}n+d → {0, 1}n that
is (t − c1, n + d, ε)-cr but Pre[g],NI[g],CS[g] are at most (c2, 3d − 3, 1)-cr where c1, c2 are small
constants. �

Proof: We lift the counter-example from [5] to the dedicated-key setting. Without loss of generality
let IV = 0n. Let f : {0, 1}k×{0, 1}n+d → {0, 1}n−1 be (t, n+d, ε)-cr. Then we construct a function
g: {0, 1}k × {0, 1}n+d → {0, 1}n defined by

g(K, M) =
{

0n if M = 0n || 0d

f(K, M) || 1 otherwise
.

Then we can see that g is (t − c1, n + d, ε)-cr via a standard argument. Now we give adversaries
attacking the hash functions constructed via Preg, NIg, and CSg. For Preg simply output 0d−1 || 0d−1

and 0d−1 || 0d−1 || 0d−1. For NIg and CSg have the adversary output 0d and 0d || 0d. These pairs of
messages directly lead to collisions under the respective hash functions built using g.

Theorem 5.2 [Positive results: sNI, sCS, ESh] Let f : {0, 1}k×{0, 1}n+d → {0, 1}n be a (t, n+
d, ε)-cr function. Then T[f ] is (t′, L, ε′)-cr where for
(1) T = sNI we have t′ = t− c1Tfτ(L) and ε′ = 2ε

(2) T ∈ {sCS,ESh} we have t′ = t− c2Tfτ(L) and ε′ = ε
where c1, c2 are small constants and Tf is the time to compute f . �

Proof: For part (1), let A be an (t′, L, ε′)-cr adversary against sNIf . Let B1 and B2 be the two cr
adversaries against f defined below.
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Adversary B1(K)

K2
$← {0, 1}k; (M,M ′) $← A(K, K2)

P1 . . . Pm
d← pads(M); P ′

1 . . . P ′
m′

d← pads(M ′)
Y0 ← Y ′

0 ← IV
For i ∈ [1 ..m− 1] do Yi ← fK(Yi−1 || Pi)
For i ∈ [1 ..m′ − 1] do Y ′

i ← fK(Y ′
i−1 || P ′

i )
Let δ be smallest value s.t.

Ym−δ−1 || Pm−δ 6= Y ′
m′−δ−1 || P ′

m′−δ

If δ = 0 then Ret ⊥
Ret (Ym−δ−1 || Pm−δ, Y

′
m′−δ−1 || P ′

m′−δ)

Adversary B2(K)

K1
$← {0, 1}k; (M,M ′) $← A(K1,K)

P1 . . . Pm
d← pads(M); P ′

1 . . . P ′
m′

d← pads(M ′)
Y0 ← Y ′

0 ← IV
For i ∈ [1 ..m− 1] do Yi ← fK(Yi−1 || Pi)
For i ∈ [1 ..m′ − 1] do Y ′

i ← fK(Y ′
i−1 || P ′

i )
Let δ be smallest value s.t.

Ym−δ−1 || Pm−δ 6= Y ′
m′−δ−1 || P ′

m′−δ

If δ 6= 0 then Ret ⊥
Ret (Ym−1 || Pm, Y ′

m′−1 || P ′
m′)

Adversary B1 succeeds in the case that A finds a collision against an internal application of f ,
whereas B2 succeeds in the case that A will find a collision against the enveloping function. First
we prove that for both adversaries δ is well-defined whenever M 6= M ′ but the messages collide
under sNIf . If |M | 6= |M ′| then because pads includes strengthening we have trivially that δ = 0.
Otherwise |M | = |M ′| and so there must exist some block Pi 6= P ′

i for an i ∈ [1 ..m]. (If not, then
M = M ′ and this violates our assumption.) Thus δ is well defined. Now we note that since δ is the
minimal value and M and M ′ collide, we have that necessarily Ym−δ = Y ′

m′−δ and so the messages
returned by either adversary must form a collision against f .

Let CollA be the event that A succeeds in the cr game and similarly define CollB1 and CollB2 . Then

Pr [CollA ] = Pr [CollA ∧ δ = 0 ] + Pr [ CollA ∧ δ 6= 0 ]

= Pr [CollB1 ] + Pr [CollB2 ] . (1)

Note that both B1 and B2 run in time t′ + cTf l where l = max{m,m′} and c is a small constant.
Letting ε = maxB{Advcr

f (B)} for all adversaries B running in time at most t′ + cTf l. Then by
equation (1) we have that ε = ε′/2. Part (1) of the theorem follows.

The proof of part (2) is similar. Let A be a (t′, L, ε′)-cr adversary against EShf and we define an
adversary B as shown below.

Adversary B(K)

{Ki}µ1
$← ({0, 1}n)µ; (M,M ′) $← A(K, {Ki}µ1 )

P1 . . . Pm
d← padCSs(M); P ′

1 . . . P ′
m′

d← padCSs(M ′)
Y0 ← Y ′

0 ← IV 1

For i ∈ [1 ..m− 1] do Yi ← fK(Yi−1 ⊕Kν(i), Pi)
For i ∈ [1 ..m′ − 1] do Y ′

i ← fK(Y ′
i−1 ⊕Kν(i), P

′
i )

Let δ be smallest value s.t. (Ym−δ−1⊕Kν(m−δ)) || Pm−δ 6= (Y ′
m′−δ−1⊕Kν(m′−δ)) || P ′

m′−δ

If δ = 0 then Ret ((IV 2 ⊕K0) || (Ym−1 ⊕Kµ) || Pm , (IV 2 ⊕K0) || (Y ′
m′−1 ⊕Kµ) || P ′

m′)
Ret ((Ym−δ−1 ⊕Kν(m−δ)) || Pm−δ , (Y ′

m′−δ−1 ⊕Kν(m′−δ)) || P ′
m′−δ)

We now show that δ is well-defined and the message B returns as a result of δ is always a collision
against f if A successfully found a collision against EShf . If |M | 6= |M ′| and d ≥ n+64, then padCSs

ensures that δ = 0 and since A’s messages collide the output of the envelope for these two messages
is equal. If |M | 6= |M ′| and d < n + 64, then padCSs ensures that Pm = P ′

m′ = 0d−n. Now if
Ym−1 6= Y ′

m′−1 then we are done with δ = 0 because this implies also that Ym−1⊕Kµ 6= Y ′
m′−1⊕Kµ

and the output of the envelope for both messages is equal. Otherwise, if Ym−1 = Y ′
m′−1 then δ = 1,
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since the strengthening ensures that Pm−1 6= P ′
m′−1 and so fK(Ym−2⊕Kν(m−1) || Pm−1) = Ym−1 =

Y ′
m′−1 = fK(Y ′

m′−2 ⊕Kν(m′−1) || P ′
m′−1), yielding a collision against f .

If |M | = |M ′|, then there must exist a δ such that Pm−δ 6= P ′
m′−δ, since otherwise M = M ′.

Because it is the least such value and M,M ′ collide, we have that Ym−δ = Y ′
m′−δ which guarantees

a collision on f . Thus we have that Advcr
f (B) = ε = ε′.

Adversary B can be modified easily for a reduction to sCS: just set all key masks to zero bits and
do not give them to A as input. The argument above holds in this case as well. Adversary B runs
in time t = t′ + cTf l where l is the number of blocks of the longer message output by A and c is a
small constant.

5.2 MAC (Unforgeability) Preservation

We show that MD, sMD, and Sh do not preserve unforgeability. Recall that in this setting, the
key material (including the key masks of Sh) is secret and therefore unknown to the adversary.
While it may not be surprising that MD and sMD are not MAC-Pr, one might be tempted to think
that the large amount of secret key material used in Sh could assist in preserving unforgeability.
Unfortunately this is not the case. On the positive side, we have that ESh is MAC-Pr.

Theorem 5.3 [Negative results: MD, sMD, Sh] If there exists a function f : {0, 1}k×{0, 1}n+d

→ {0, 1}n−1 that is a (t, q, n+d, ε)-mac, then there exists a function g: {0, 1}k×{0, 1}n+d → {0, 1}n
that is a (t− c1q, q, n + d, ε)-mac but
(1) MD[g], sMD[g] are at most (c2, n− 1, 3d, 1/2)-mac
(2) Sh[g] is at most a (c3, 2(n− 1), 3d, 1/4)-mac
where c1, c2, and c3 are small constants. �

The theorem gives that MD, sMD, and Sh are not MAC-Pr: there exists a compression function g
that is a good MAC but for which there exists efficient adversaries that can forge against MDg,
sMDg, and Shg with high probability. Our proof shows this by constructing a special compression
function that “leaks” information about the chaining variable input. While unimportant for the
unforgeability of g itself, functions built using g and one of the above transforms are susceptible
to “length reduction attacks”: the MACs of longer messages give enough information to determine
the MAC of a shorter message.

Proof: Let s = dlog2 ne. We start by defining a compression function g in terms of f :

gK(Y ||M) =
{

fK(Y ||M) || Y [i] if M = 〈i〉s || 0d−s for i ∈ [1 .. n− 1]
fK(Y ||M) || Y [n] otherwise

(2)

The function g outputs a string that “leaks” information about the input Y . We show that this
does not compromise the unforgeability of the compression function: as long as f is unforgeable, so
too is g. Intuitively this is because an adversary against g already knows the value Y , so “leaking”
it gives no information to the adversary. Formally, let A be an (t′, q, n + d, ε) mac-adversary that
attacks the unforgeability of g. Then we build an adversary B that attacks f : B runs A, using its
oracle to simulate g as per (2). When A outputs a pair (M,T ), B outputs (M,T |n−1) (i.e., the tag
with last bit dropped). By (2), if (M,T ) is a valid forgery for g then (M,T |n−1) must be a valid
forgery against f . Adversary B runs in time t′ + c1q for a small constant c1.

Now we prove part (2) of the theorem statement (part (1) will be an easy corollary). Partic-
ularly, we build a (c2, 2(n − 1), 3d, 1/4) mac-adversary A against Shg. For notational ease let
HK,{Ki}κ

1
(·) = Shg((K, {Ki}κ1), · ). Figure 3 details A. It first chooses a one-block message M

12



Adversary AO( · ):
00 M ← 0d

01 for i← 1 to n− 1 do
02 Y ← O(M || 10d−64−1 || 〈d〉64 || 〈i〉s || 0d−s)
03 Let yi be the last bit of Y
04 for i← 1 to n− 1 do
05 Z ← O(〈i〉s || 0d−s)
06 Let zi be the last bit of Z
07 a, b

$← {0, 1}
08 for i← 1 to n− 1 do
09 ti ← yi ⊕ zi ⊕ IV [i]⊕ a
10 Ret (M, ti || · · · || tn−1 || b)

For i ∈ [1 .. n− 1]:

yi = HK,{Ki}κ
1
(M)⊕K0[i]⊕K2[n]

zi = IV [i]⊕K0[i]⊕K1[n]

ti = HK,{Ki}t
1
(M)⊕K1[n]⊕K2[n]⊕ a

d

IV

K1K0

K K K
K0

K
K2

M

n

g g g g

〈i〉s || 0d−s 10d−64−1 || 〈3d〉10d−64−1||〈d〉64

d

IV

K1K0

K K

n

g g

10d−64−1 || 〈d〉〈i〉s || 0d−s

Figure 3: (Top left) The adversary utilized in the proof of Theorem 5.3. Recall that here the
oracle O implements HK,{Ki}κ

1
( · ) = Shg((K, {Ki}κ1), · ). (Top right) Values computed in the

course of the adversary’s attack. (Bottom) Diagrams of the responses to the adversary’s queries.

that it will forge against. On lines 01–03 it queries its oracle (implementing Shg) n − 1 times
to gather information about an intermediate value in the calculation of a specially crafted mes-
sage M || 10d−64−1 || 〈d〉64 || 〈i〉p || 0d−s. The first two blocks of the message are exactly the string
pads(M). The last block is used to specify which bit of the chaining variable should be “leaked”.
From this A learns the bit string HK,{Ki}κ

1
(M)|n−1 ⊕K0|n−1 ⊕K2[n]n−1 of length n− 1. Figure 3

(bottom left) depicts the structure of the responses to these queries.

To be able to strip off the (secret) value K0, the adversary A performs a second set of n−1 queries
to its oracle on the messages 〈i〉s || 0d−s (lines 04–06). The responses allow it to learn the bit string
IV |n−1 ⊕ K0|n−1 ⊕ K1[n]n−1 again of length n − 1 bits. The bottom right diagram in Figure 3
depicts the structure of the responses. Now the adversary chooses a bit a uniformly, which is its
guess of the value K1[n]⊕K2[n]. This allows A to construct (with probability 1/2) the bit string
HK,{Ki}κ

1
(M)|n−1, performed by lines 08–09. It also chooses a bit b uniformly to guess the last bit

of a HK,{Ki}κ
1
(M) and outputs the resulting forgery. The equivalences shown in Figure 3 on the

right summarize the values used by A.

With probability 1/2 we have that a = K1[n]⊕K2[n] and with probability 1/2 the choice of b will
be correct. Thus A wins with probability 1/4. We see that A makes 2(n−1) queries, each of length
no longer than 3d blocks and requires a small constant amount of time proportional to n. Part (2)
of the theorem statement follows.
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For part (1), we must show similar results for MDg and sMDg. We can modify A from part (2) in
the following way. Omit lines 04–06 and 08–09, change line 07 to b

$← {0, 1}, and replace line 10
with Ret (M,yi || · · · || yn−1 || b). These changes are the result of the simpler transforms which
do not use key masks. In this case A makes n − 1 queries of length at most 3d and wins with
probability 1/2, justifying the bounds in part (2) of the theorem statement.

Theorem 5.4 [Positive results: ESh] Let f : {0, 1}k × {0, 1}n+d → {0, 1}n be a (t, q, n + d, ε)-
mac. Then ESh[f ] is a (t− c(q′ + 1)τ(L), q′, L, ε′)-mac where

q′ = (q − τ(L) + 1)/τ(L) and ε′ = (q2/2 + 3q/2 + 1)ε

for c a small constant and any {Ki}µ1 ∈ {0, 1}µn with µ = dlog2(τ(L)− 1)e+ 1. �

Proof: Let {Ki}µ1 ∈ {0, 1}µn (these need not be public or distributed uniformly for the proof).
We use the general approach to proving unforgeability for MD-style constructions due to Maurer
and Sjödin [18], adapting in particular their proof that CSf is unforgeable. Let A be a (t′, q′, L, ε′)
forger against fESh. Let σ be the total number of applications of f required to answer A’s q′ queries
(necessarily σ ≤ q′τ(L)). We build a forger B against f using A. First, B picks a forging strategy
randomly from a set of potential forging strategies FS and then it runs A, proceeding according
to the strategy. A forging strategy will specify how B is to use A to forge against f . For all the
strategies B simulates A’s EShf oracle using its own f oracle, in the natural way. Upon A halting
with output a forgery message and tag (if B had not already stopped the simulation), B computes
EShf on the forgery message using its oracle.

We will show that the set of forging strategies we specify in a moment is complete, which means
that if A succeeds in forging then at least one of the strategies in FS is successful at extracting a
forgery against f . Adversary B’s advantage will then simply be equal to A’s advantage divided by
the size of FS. We define the set of potential forging strategies as

FS =
{
(j, IV 1) : j ∈ [1 .. σ]

}
∪

{
(j, IV 2) : j ∈ [1 .. σ]

}
∪{

(j, i) : j ∈ [1 .. σ] ∧ 1 ≤ i < j
}
∪

{
(σ, T)}

A strategy (j, z) specifies that B should run A, simulating its EShf oracle as described above. The
number j tells B when to stop the simulation: right before the jth query to its f oracle. The value z
specifies a forgery value to output right after B stops the simulation. Let N j ∈ {0, 1}n+d be the
string that would have formed B’s jth query. Let Kj be the key mask associated with the jth query
by B. Particularly, Kj = Kµ or Kj = Kν(c) where c is one more than the number of queries used
thus far to simulate A’s current query (i.e., the query causing B’s jth query). Then there are four
types of values for z in FS:

• If z = IV 1, then B returns (N j , IV 1 ⊕Kj+1 ⊕K0). This corresponds to B predicting that A
causes some chaining variable to equal IV 1 (after accounting for the key masks).

• If z = IV 2 then B returns (N j , IV 2 ⊕ Kj+1 ⊕ K0). This corresponds to B predicting that A
causes some chaining variable to equal IV 2 (after accounting for the key masks).

• If z = i for some i < j, then B returns (N j , Y i⊕Ki+1⊕Kj+1) where Y i is the response from B’s
ith query. This corresponds to B predicting that A causes the outputs of two internal chaining
variables to collide (after accounting for the key masks).

• If z = T (here T is just a flag), then B returns (Nσ, T ) where T is the forgery tag output by A.
This is referred to as the naive strategy in [18] and corresponds to B predicting that A can
correctly predict the output T of EShf on the forgery message.

14



We now show that FS is complete: if the coins given to A would result in a forgery for a given
choice of K then at least one of the strategies in S is successful. We do this via case analysis based
on the four types of strategies. Assume that strategy (σ, T) is not successful (otherwise the claim
is proven). The only way this strategy does not succeed is if there existed a previous query by B
on the same message, i.e there exists a query index i < σ such that N i = Nσ. Let i be the earliest
such query. Now we show that this implies that one of the other strategies succeeds. We do so via
case analysis regarding the query i.

First consider the case in which query i was queried while simulating the internal iteration of EShf

(as opposed to the envelope). Then this means that the first n bits of N i must equal IV 2 ⊕K0.
If N i was queried as the first application of f for one of A’s queries, then this would mean that
the low n bits of N i are equal to IV 1 ⊕ K0 which can’t equal IV 2 ⊕ K0 since IV 1 6= IV 2.
Therefore, the low n bits of N i are equal to fK(N i−1)⊕Ki. But for N i = Nσ we then have that
fK(N i−1) = IV 2 ⊕Ki ⊕K0. This implies that the (i− 1, IV 2) strategy succeeds.

The other case is that query i was made to compute the envelope of EShf for some query by A. This
means that N i is of the form (IV 2⊕K0) || (Y i−1⊕Kµ)⊕P i where P i are message bits specified by
A. Then for N i = Nσ to hold, Y i−1⊕Kµ = Y σ−1⊕Kµ and so Y i−1 must equal Y σ−1. (Recall that
fESh specifies that the mask for the envelope is always fixed to Kµ.) Let P1 · · ·Pm ∈ D◦ be the query
by A (after padding) that resulted in query i by B. Let P ′

1 · · ·P ′
m′ ∈ D◦ be the forgery message

output by A (after padding). Define the intermediate chaining variables Yi = fK(Yi−1⊕Kν(i) ||Mi)
for 1 ≤ i ≤ m− 1 and Y ′

i = fK(Yi−1 ⊕Kν(i) || Pi) for 1 ≤ i ≤ m′ − 1 where Y0 = Y ′
0 = IV 1. Then

we have that Y i−1 = Ym−1 and Y σ = Y ′
m′−1. Let δ such that 0 < δ < min{m,m′} be the least

value such that Ym−δ−1 || Pm−δ 6= Y ′
m′−δ−1 || P ′

m′−δ. We have three potential cases:

• 0 < δ < min{m,m′}: In this case we have that the (j − δ, i− δ) strategy must succeed.
• δ is undefined and m 6= m′: Without loss of generality assume that m < m′ (the argument

for the other direction is symmetric). Because δ is undefined we have that (IV 1 ⊕K0) || P1 =
(Ym′−m ⊕Kν(m′−m)) || P ′

m′−m, which means that Ym′−m = IV 1 ⊕Kν(m′−m) ⊕K0. This implies
that the (σ −m, IV 1) strategy succeeds.

• δ is undefined and m = m′: This case cannot occur because it implies that P1 · · ·Pm = P ′
1 · · ·P ′

m′ ,
which means A did not output a valid forgery.

So in all cases at least one of B’s strategies succeeds, and so the probability of B’s success is simply
equal to ε′ divided by the total number of strategies, which we now count. The first and second kinds
of strategies contribute σ distinct tuples each. The third kind of strategy has at most (σ2 − σ)/2
total tuples. The final type of strategy contributes a single tuple. So |FS| = (σ2 − σ)/2 + 2σ + 1
and therefore we have that B’s advantage is at least

ε =
ε′

0.5σ2 − 0.5σ + 2σ + 1
and solving for ε′ we have that

ε′ =
(

σ2 + 3σ

2
+ 1

)
ε .

In the worst case all of A’s queries require τ(L) queries to f by B. This means that σ = q =
q′τ(L)+ τ(L)−1 where we add in the extra τ(L)−1 applications of f used for the forgery. Solving
for q′ we have that q′ = (q − τ(L) + 1)/τ(L) as specified in the theorem statement. Adversary B
runs A and needs a small constant amount of overhead for each block of message output by A (the
queries and the forgery). Thus t = t′ + c(q′ + 1)τ(L).
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procedure O(M) G0 G1
c← c + 1; M c

1 · · ·M c
m

d←M
Let (s, j) be largest previous prefix
if j = 0 then Y c

0 ← IV
else Y c

j ← g[Y s
j−1,M

s
j ]

for i← j + 1 to m− 1 do
Y c

i
$← {0, 1}n

if g[Y c
i−1,M

c
i ] 6= ⊥ then

bad← true , Y c
i ← g[Y c

i−1,M
c
i ]

g[Y c
i−1,M

c
i ]← Y c

i

Ret Y c
m

procedure O(M) G2
c← c + 1; M c

1 · · ·M c
m

d←M
Let (s, j) be largest previous prefix
if j = 0 then Y c

0 ← IV
else Y c

j ← g[Y s
j−1,M

s
j ]

D ∪←{(Y c
j ,M c

j+1)}
for i← j + 1 to m− 1 do

g[Y c
i−1,M

c
i ]← Y c

i
$← {0, 1}n

D ∪←{(Y c
i ,M c

i+1)}
Ret g[Y c

m−1,M
c
m]← Y c

m
$← {0, 1}n

procedure Finalize
bad← ∃(Y, M), (Y ′,M ′) ∈ D s.t.

Y = Y ∧M = M ′

Figure 4: Games used in proof that MD is PRF-Pr. Initially the table g is everywhere set to ⊥ and
c = 0. The “largest previous prefix” is shorthand for specifying the largest values (s, j) such that
there exists a query M s for which M s

i = M c
i for 1 ≤ i ≤ j.

5.3 Pseudorandom Function Preservation

In the non-dedicated-key setting, building PRF preserving transforms is non-trivial and the proofs
of security can be quite complex [3, 4, 2]. In stark contrast to this, we show that all of the
dedicated-key transforms considered here are PRF-Pr, and the proof establishing this is relatively
straightforward. We note that the main difference between the two settings is that length-extension
attacks, possible in the non-dedicated-key setting, are no longer possible here because the adversary
can not compute the (secretly) keyed compression function on its own.

Theorem 5.5 [Positive results: MD, sMD, Pre, Sh, sNI, NI, CS, sCS, ESh] Let f : {0, 1}k ×
{0, 1}n+d → {0, 1}n be a (t, q, n + d, ε)-prf. Then T[f ] is a (t′, q′, L, ε′)-prf where for
(1) T ∈ {MD, sMD,Pre,Sh,CS, sCS,ESh}, t′ = t− cqτ(L), q′ = q/τ(L), ε′ = ε + q2τ(L)2/2n,
(2) T ∈ {sNI,NI}, t′ = t− cqτ(L), q′ = q/τ(L), ε′ = 2ε + q2(τ(L)− 1)2/2n

where c is a small constant and {Ki}µ1 ∈ {0, 1}µn for µ = dlog2(τ(L)− 1)e+ 1. �

Proof: We start by proving that the MD iteration f+ is a good PRF as long as f is also. This
immediately implies the part (1) results for MD, sMD, and Pre; the others are straightforward
corollaries. Let A be a (t′, q′, L, ε′)-prf-adversary that attempts to distinguish between f+(K, ·) for
K

$← {0, 1}k and ρ
$← Func(D+, n). Let σ be the max number of message blocks queried by A.

Let Adv(A(·)1 ,A(·)2) ≡ Pr
[
A(·)1 ⇒ 1

]
−Pr

[
A(·)2 ⇒ 1

]
. We utilize a hybrid argument, bounding

Adv(Af+(K,·),Aρ(·)) = Adv(Af+(K,·),Ag+(·)) + Adv(Ag+(·),Aρ(·))

where K
$← {0, 1}k, g

$← Func(n + d, n), and ρ
$← Func(D+, n). Here g+(M) is just the MD

iteration but replacing fK with a truly random compression function g. We can use a standard
argument to bound the first term by ε, the advantage of a prf-adversary attempting to distinguish
between f and g that runs in time t = t′ + cqτ(L) and using q = q′τ(L) queries

We bound the difference between the second two terms with a simple game-playing argument [10].
Figure 4 shows two games, G0 and G1. Game G0 (boxed statement included) implements an oracle
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that exactly simulates the construction g+ where g
$← Func(n + d, n). Game G1 (boxed statement

removed) replies with a random sequence of n bits for every query, thus simulating exactly a random
function ρ

$← Func(D+, n). The two games are identical-until-bad and so by the above reasoning
and the fundamental lemma of game playing [10] we have that

Adv(Ag+(·),Aρ(·)) = Adv(AG0,AG1) ≤ Pr
[
AG1 sets bad

]
.

We slightly modify G1 to yield game G2: instead of setting bad up-front, we collect all the domain
points of g in a multiset D. If at the end of the game D contains two identical pairs then we
set bad. Since everytime bad was set in G1 a duplicate pair will be placed in D in G2 we have
that Pr

[
AG1 sets bad

]
= Pr

[
AG2 sets bad

]
. We can now bound the probability of bad being set

in G2 as follows. We have that during finalization |D| ≤ qσ. For each pair in D, the first element
is chosen independently from all others first elements. Thus we have that

Pr
[
AG2 sets bad

]
≤ Pr

[
∃(Y, M), (Y ′,M ′) ∈ D s.t. Y = Y ′ ] =

(
qσ

2

)
1
2n
≤ q2σ2

2n
.

Substituting τ(L) appropriately for σ and combining with the other portion of the hybrid gives ε′

as specified in the theorem statement.

The proof can be straightforwardly modified to handle Sh, CS, sCS, and ESh. We omit the details,
but point out that, in fact, the result holds even if the key masks are made public (hence the
quantification over any possible key masks made in the theorem statement). To prove part (2),
simply expand the hybrid argument to account for two different uses of f . Then observe that using
the same (truly random) compression function in the games can only lead to a looser bound.

5.4 Pseudorandom Oracle Preservation

Establishing that a transform is PRO-Pr ensures that the constructed hash function “behaves like
a random oracle” under the assumption that the compression function is ideal. This is important
for usage of hash functions to instantiate random oracles, as discussed at length in [11]. To reason
about dedicated-key transforms, we model a compression function f : {0, 1}k×{0, 1}n+d → {0, 1}n
as a family of random oracles, one for each key in {0, 1}k. However, since we only ever use one or two
keys from {0, 1}k, we will (without loss of generality) simply utilize two separate random oracles
f = RFn+d,n and g = RFn+d,n from the family. This simplifies our analysis, and, in particular,
means that many results from the keyless setting carry over directly to the dedicated-key setting
(see Figure 1). For example, the negative results that MDf and sMDf are not PROs follows from
simple length-extension attacks (see [11]) and the security of sCS is implied by the security of
EMD [5].

We point out that Shf is not a PRO. Since the key masks are public, simple length extension
attacks enable an adversary to differentiate between it and a true variable-input-length random
oracle. On the other hand EShf is a PRO.

Theorem 5.6 [Negative result: Sh] Let f = RFn+d,n be a random oracle. Then there exists
an (c, tS , 1, 2, 2d, 1− 2−n)-pro adversary A against Shf for any simulator S with arbitrary running
time tS . The running time of A is a small constant c. �

Proof: LetA work as follows. Recall that it has two oraclesO1 andO2 and is run on input K, {Ki}κ1 .
It chooses random strings M1 ∈ {0, 1}d−65 and M2 ∈ {0, 1}d−65. It queries O(M1) to get response Y
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and O1(M1 || 1 || 〈d〉65 ||M2) to get response Z. It then queries O2((Y ⊕ K1) ||M2 || 1 || 〈d〉65),
receiving Z ′. If Z = Z ′ then it outputs 1 (guessing it is in the world where O1 is Shf ) and
otherwise outputs 0. It is easy to verify that Pr[AShf ((K,{Ki}κ

1 ),·),f(·) ⇒ 1] = 1 where the probability
is taken over random choice of f and K, {Ki}κ1 and the coins used by A. On the other hand
Pr[AF(·),SF ((K,{Ki}κ

1 ),·) ⇒ 1] = 2−min{n,d−65} where the probability is taken over random choice of
F and K, {Ki}κ1 and the coins used by A and S. This is so because the simulator is only queried
once, at which point it has no information about M1. It can either guess M1 or the appropriate
output Z ′. (In the case that n ≥ d− 65 we can increase the advantage back to 1− 2−n by utilizing
more message blocks.)

Theorem 5.7 [Positive result: ESh] Let f = RFn+d,n be a random oracle and let {Ki}µ1 ∈
{0, 1}µn and let IV 1, IV 2 ∈ {0, 1}n with IV 1 6= IV 2. Then EShf is a (tA, tS , q1, (q2 + q3), L, ε)-pro
where

ε ≤ l2q2
1 + (lq1 + q2)(q2 + q3)

2n
+

lq1 + q2

2n

for l = τ(L) and L being the maximal message length queried. Here q2 is the number of queries to
the f oracle with low n bits not equal to IV 2 ⊕K0 and q3 is the number of queries to f with low n
bits equal to IV 2 ⊕K0. The running time tA is arbitrary while tS = O(q2

2 + q2q3). �

Proof: We adapt the proof that EMD is PRO-Pr from [5] to prove a more general result, that fESh,
the iteration function underlying EShf , is a PRO. The core of the proof is captured by two lemmas,
one showing that we can bound the advantage of an adversary against fESh by the advantage of
an adversary against gfESh. This is the fESh iteration except with the last application of f (the
envelope) replaced by a distinct FIL random oracle g. The second lemma bounds the ability of any
adversary against gfESh.

First we detail the two simulators SA and SB used in the proof, shown in Figure 5. Both simulators
have access to all the key masks {Ki}µ1 , which can be any constant values. The first simulates a
single random oracle f while the second simulates two random oracles f and g. We concentrate
on explaining the simulator SB. It internally builds a tree data structure that serves to correlate
queries from the adversary. The tree initially has one root node labeled IV 1. Now, upon receiving
an f -query on X the simulator parses X into V and U of lengths n and d bits. It then checks to
see if V is equal to the IV 1 xor’d with the key mask K0. If so, this query is believed to correspond
to the first application of f in handling a message (whose first message block is U). The simulator
therefore adds a new node to the tree labeled with the randomly chosen chaining variable Y , and
adds an edge between the (root) node labeled IV 1 and the new node. The edge is labeled U . The
operation of adding such a node and edge to the tree is notated by NewNode(U)← Y .

If V 6= IV 1 ⊕ K0, then the simulator checks the state of the tree for nodes that V should be
associated with. The operation M1 · · ·Mi ← GetNode1(V ) performs this, as follows. For each
node with label N at depth i in the tree, the simulator checks if V = N ⊕Kν(i). If so, then the
simulator sets M1 · · ·Mi to be the concatenation of the labels of the edges on the path from the
root to this node. (If no such node is found, then the empty string is returned and the predicate
evaluates to false.) Next the simulator adds a new node labeled with the randomly chosen chaining
variable Y and adds an edge from the node just found (i.e., the one located at the end of the path
labeled by M1 · · ·Mi) with label U . This operation is represented by NewNode(M1 · · ·MiU)← Y .
In this way the simulator builds the tree that tracks all queries.

For g-queries, the simulator parses a query X into W , V , and U of lengths n, n, and d − n. If
W = IV 2 then the simulator looks for a node in a similar same manner as it did during f -queries
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On query SBf (X):

Y
$← {0, 1}n

Parse X into V || U s.t.
|U | = d, |V | = n

if V = IV 1 ⊕K0 then NewNode(U)← Y
if M1 · · ·Mi ← GetNode1(V ) then

NewNode(M1 · · ·MiU)← Y
Ret Y

On query SBg(X):
Parse X into W || V || U s.t.
|V | = n, |U | = d− n, |W | = n

if W = IV 2 ⊕K0 and
M1 · · ·Mi ← GetNode2(V ) then

Ret F(M1 · · ·MiU)
Ret Y

$← {0, 1}n

On query SA(X):

Y
$← {0, 1}n

Parse X into W || V || U s.t.
|W | = n, |V | = n, |U | = d− n

if W = IV 2 ⊕K0 then
if M1 · · ·Mi ← GetNode2(V ) then

Ret F(M1 · · ·MiU)
else

Ret Y
Parse X into U || V s.t. |U | = d, |V | = n
if V = IV 1 ⊕K0 then NewNode(U)← Y
if M1 · · ·Mi ← GetNode1(V ) then

NewNode(M1 · · ·MiU)← Y
Ret Y

Figure 5: Pseudocode for simulators SB and SA utilized in the proof of Theorem 5.7.

by running M1 · · ·Mi ← GetNode2(V ). The only difference is that the comparison is of the form
N = V ⊕Kµ (i.e., always the same mask is used regardless of the depth). If a matching node is
found, then the simulator queries its VIL random oracle on M1 · · ·MiU and returns that value, thus
programming the g FIL random oracle to match the VIL RO’s output for the message M1 · · ·MiU .

Intuitively, as long as there are no collisions in the choices of chaining variables Y (after accounting
for the masks) and the adversary can not predict any of these choices, then the simulator should
be able to always program its responses to g-queries in order to match up with queries A makes
to the VIL random oracle. The simulator SA is just like SB, except that it distinguishes between
“g-queries” and “f -queries” based on the first n bits of the query: if it’s equal to IV 2 ⊕K0 then
it’s a “g-query” (corresponding to the envelope), otherwise it’s an “f -query” (corresponding to an
internal application of the compression function). Simulator SA runs in time O(q2

2 + q2q3) where
q2 is the number of queries it receives with low n bits not equal to IV 2 ⊕K0 and q3 is the number
of queries it receives with first n bits equal to IV 2 ⊕K0.

The next lemma captures the fact that any adversary attacking fESh can be turned into an adversary
that attacks gfESh, which is the same as fESh but with the envelope using a separate FIL random
oracle g.

Lemma 5.8 Let A be an adversary making at most q1 queries to its first oracle of size at most
ld + d− n bits. Then there exists an adversary B such that

Pr
[
AfESh,f ⇒ 1

]
− Pr

[
AF ,SA ⇒ 1

]
≤ Pr

[
BgfESh,f,g ⇒ 1

]
− Pr

[
BF ,SBf ,SBg ⇒ 1

]
+

lq1 + q2

2n
. �

We can easily adapt the proof of Theorem 5.2 from [5] to get this result. Briefly, the proof shows
that the probability of the simulator choosing a range point for f equal to IV 2 is low. Here we must
account for the mask values, but xor’ing in constants does not change the distributions involved.
We omit the details.

The next lemma bounds an adversary B’s ability to differentiate gfESh from F .
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Lemma 5.9 Let B be an adversary making at most q1, q2, and q3 queries to its first, second, and
third oracles with maximal query length of size at most ld + d− n bits. Then

Pr
[
BgfESh,f,g ⇒ 1

]
− Pr

[
BF ,SBf ,SBg ⇒ 1

]
≤ l2q2

1 + (lq1 + q2)(q2 + q3)
2n

. �

We can straightforwardly modify the proof of the similar Lemma 5.1 from [5] by just accounting
for the mask values. We therefore omit the (lengthy) details. Combining the two lemmas gives the
result.

5.5 Target Collision Resistance Preservation

Universal one-way hash functions (UOWHF) were first introduced by Naor and Reingold [21]; we
use the term target collision resistance (TCR), following [9]. Known transforms that preserve TCR
require a logarithmic (in the maximum message length) amount of key material. Mironov has
given strong evidence that one cannot do better for MD-style transforms [20]. Furthermore, any
CR function is also TCR [26], and so one might simply stop with a dedicated-key transform that
preserves the four properties already considered. Still, target-collision resistant functions are useful
in some settings [9] and achieving it just on the basis of a TCR compression function yields stronger
security guarantees. Thus, we extend our analysis to this property.

In light of Mironov’s result, it is not surprising that Pre, sNI, NI, CS, and sCS are not TCR-Pr,
though we establish these facts directly. On the other hand, we show that ESh is TCR-Pr, using
the approach due to Mironov [20].

Theorem 5.10 [Negative results: Pre, sNI, NI, CS, sCS] If there exists a function f : {0, 1}k ×
{0, 1}n+d → {0, 1}n−1 that is (t, n + d, ε)-tcr, then there exists a function g: {0, 1}k ×{0, 1}(n+d →
{0, 1}n that is (t − c1, n + d, ε + 2−k+1)-tcr but Pre[g], sNI[g], NI[g], CS[g], and sCS[g] are at most
(c2, 3(d− k)− 1, 1− 2−k)-tcr where c1, c2 are small constants. �

Proof: We utilize the counter-example from Proposition 5.1 in [9]. Let f : {0, 1}k × {0, 1}n+d →
{0, 1}n where m > k be (t, ε) − tcr. Then define g: {0, 1}k × {0, 1}(n+k)+d′ → {0, 1}n+k where
d′ = d− k as follows for any X ∈ {0, 1}n, Y ∈ {0, 1}k, and Z ∈ {0, 1}d′

gK(X || Y || Z) =
{

fK(X || Y || Z) || K if y 6= K
1n || 1k if y = K

.

Bellare and Rogaway proved that g is (t − Θ(k + m), ε + 2−k+1) − tcr, and so we refer the reader
to [9] for the analysis. Now we point out that T[g] is insecure for T ∈ {Pre, sNI,NI,CS, sCS} by
showing adversaries A = (A1,A2) for each.

Let A1 return 0d′−1 || 0d′−2 and A2 return 1d′−1 || 0d′−2. If K 6= IV |k, then

PreH
K(0d′−1 || 0d′−2) = gPre(K, 0d′ || 10d′−11)

= gK(gK(IV || 0d′) || 10d′−11)

= gK(fK(IV || 0d′) || K || 10d′−11)

= 1c || 1k
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and

PreH
K(1d′−1 || 0d′−2) = gPre(K, 01d′−1 || 10d′−11)

= gK(gK(IV || 01d′−1) || 10d′−11)

= gK(fK(IV || 01d′−1) || K || 10d′−11)

= 1c || 1k .

Since K 6= IV |k with probability 1− 2−k, we have that A wins with probability 1− 2−k.

For sNI have A1 return 0d′ || 0d′ || 0d′−65 and A2 return 1d′ || 0d′ || 0d′−65. For NI have A1 return
0d′ || 0d′ || 0d′−1 and A2 return 1d′ || 0d′ || 0d′−1. For CS have A1 return 0d′ || 0d′ || 0d′−(n+k)−1 and
A2 return 1d′ || 0d′ || 0d′−(n+k). For sCS have A1 return 0d′ || 0d′ || 0d′−(n+k)−65 and A2 return
1d′ || 0d′ || 0d′−(n+k). In each case a collision on the internal MD chain occurs before the enveloping
application of g and so collisions are guaranteed with the same probability as for Pre.

Theorem 5.11 [Positive result: ESh] Let f : {0, 1}k × {0, 1}n+d → {0, 1}n be (t, n + d, ε)-tcr.
Then ESh[f ] is (t − cTfτ(L), L, ετ(L))-tcr for a small constant c and where Tf is the time to
compute f . �

Proof: One might attempt a black-box reduction to the TCR security of the Sh transform, however
the proof from [20] is only given for FIL adversaries and so although we utilize Mironov’s techniques
(in particular, his key reconstruction algorithm), we include a full proof here. Let A = (A1,A2)
be a tcr-adversary against EShf . The adversary B = (B1,B2) specified in Figure 6 utilizes A as
a subroutine. In the first stage B1 runs A1, receiving its target message M . Adversary B1 then
chooses a value δ at random, which it uses to “guess” which compression function input will be
involved in a collision against f if A succeeds in finding a collision against EShf . (Note that δ is
chosen so that l− δ is the index of the guessed block.) Then B1 sets its target message to include a
randomly chosen value Y and the message block corresponding to the guess δ (and, if δ = 0, then
IV 2 is included appropriately). The random value Y represents the chaining variable value output
after the (l − δ − 1)th iteration of the compression function xor’d with Kν(l−δ). (This gets around
the fact that B1 can not yet compute Yl−δ−1 because it does not have the key K.)

In the second stage B2 now has the key K and must generate the key masks. If δ = 0 (B’s “guess”
is that a collision will be found against the envelope), then B simply chooses the first µ− 1 masks
at random. The last mask Kµ (used for the chaining variable input of the envelope) is chosen such
that Kµ ⊕ Y ⊕ Yl−1 where Yl−1 is the chaining variable output after applying the internal Shoup
iteration to A’s target message. If δ 6= 0, then we utilize Mironov’s key reconstruction algorithm,
denoted by GenKeys. We discuss this more in a moment. After selecting the key masks, B2 runs
A2 using K and the generated key masks which results in outputing another message M ′. Finally,
adversary B2 determines if it “guessed” correctly (i.e., if there is a collision between the (l − δ)th

compression function application for M and the (l′−δ)th compression function application for M ′).
The subroutine RetColl simply calculates the inputs to the compression function that (potentially)
collide.

The next lemma asserts the correctness of the key mask generation algorithm.

Lemma 5.12 Let P1 · · ·Pl−1 ∈ D+ and j ∈ [1 .. l − 1] and K ∈ {0, 1}k. Then the process

Y
$← {0, 1}n; {Ki}µ−1

1
$← GenKeys(P1 · · ·Pl−1, C0,K, j, Y )
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Adversary B1

Run A1

A1 outputs (M,SA)
P1, . . . , Pl

d← padCSs(M)
δ

$← [0 .. l − 1]; Y
$← {0, 1}n

S ← (SA, P1 · · ·Pl, δ, Y )
If δ = 0 then Ret (IV 2 || Y || Pl, S)
Ret (Y || Pl−δ, S)

procedure GenKeys(P1 · · ·Pl−1,K, j, Y )
00 For i = 1 to µ− 1 do Ki ← ⊥
01 While j > 0 do
02 D

$← {0, 1}n; i← j − 2ν(j)

03 For z = i + 1 to j − 1 do
04 If Kν(z) = ⊥ then Kν(z)

$← {0, 1}n
05 If i = 0 then Ci ← IV 1

06 Else Ci ← fK(D || Pi−1)
07 For z = i + 1 to j − 1 do
08 Cz ← fK((Cz−1 ⊕Kν(z)) || Xz)
09 Kν(j) ← Cj−1 ⊕ Y

10 Y ← D; j ← i
11 For i = 0 to µ− 1 do
12 If Ki = ⊥ then Ki

$← {0, 1}n
13 Ret {Ki}µ1

Adversary B2(K, S)

(SA, P1 · · ·Pl, δ, Y )← S
If δ 6= 0 then
{Ki}µ−1

1
$← GenKeys(P1 · · ·Pl−1,K, l − δ, Y )

Kµ
$← {0, 1}n

Else
{Ki}µ−1

1
$← ({0, 1}n)µ−1

Kµ ← Y ⊕ fESh((K, {Ki}µ−1
1 ), P1 · · ·Pl−1)

Run A2((K, {Ki}µ1 ), SA)
A2 outputs M ′; P ′

1, . . . , P
′
l′

d← padCSs(M ′)
If l′ < δ then Ret ⊥
(X, X ′)← RetColl(K, {Ki}µ1 , P1 . . . Pl, P

′
1 · · ·P ′

l′ , δ)
If X 6= X ′ and fK(X) = fK(X ′) then Ret X ′

Ret ⊥

procedure RetColl(K, {Ki}µ1 , P1 · · ·Pl, P
′
1 · · ·P ′

l′ , δ)

Yl−δ−1 ← fESh((K, {Ki}µ−1
1 ), P1 · · ·Pl−δ−1)

Y ′
l′−δ−1 ← fESh((K, {Ki}µ−1

1 ), P ′
1 · · ·P ′

l′−δ−1)
If δ = 0 then

X ← (IV 2 ⊕K0) || (Yl−1 ⊕Kµ) || Pl

X ′ ← (IV 2 ⊕K0) || (Y ′
l′−1 ⊕Kµ) || P ′

l′

Else
X ← (Yl−δ−1 ⊕Kν(l−δ)) || Pl−δ

X ′ ← (Y ′
l′−δ−1 ⊕Kν(l′−δ)) || P ′

l′−δ

Ret (X, X ′)

Figure 6: Adversary used in proof of Theorem 5.11.

has output distributed identically to {Ki}µ−1
1

$← ({0, 1}n)µ. Moreover, the key masks generated are
such that Y = fESh((K, {Ki}µ−1

1 ), P1 · · ·Pj−1)⊕Kν(j).

A proof of this lemma can be derived from the proof of Theorem 5 in [20]. For completeness we
give a proof in Appendix A. Lemma 5.12 implies that B2 simulates for A2 exactly the environment
it expects and that the target message B1 committed to is consistent with A1’s target message M
and keys K, {Ki}µ1 .

We now show thatA succeeding with probability ε′ means B succeeds with probability ε′/τ(L) where
τ(L) ≥ l is the number of blocks used for the maximal message length output by A. This will imply
the theorem statement. It suffices to argue that any pair of messages M 6= M ′ output byA for which
EShf ((K, {Ki}µ1 ),M) = EShf ((K, {Ki}µ1 ),M ′) implies a collision against the compression function.
More specifically, letting P1 · · ·Pl

d← padCSs(M) and P ′
1 · · ·P ′

l′
d← padCSs(M ′) then there exists a

δ ∈ [0 .. min{l, l′} − 1] such that fK(Yl−δ−1 || Pl−δ) = fK(Y ′
l′−δ−1 || P ′

l′−δ) but Yl−δ−1 || Pl−δ 6=
Y ′

l′−δ−1 || P ′
l′−δ. Here the values Yl−δ−1 and Y ′

l′−δ−1 are as computed in RetColl. We consider
several cases. If |M | 6= |M ′| and d ≥ n + 64, then necessarily Pl 6= P ′

l′ due to strengthening. Thus
δ = 0 specifies a collision against the compression function. If |M | 6= |M ′| and d < n + 64, then
padCSs ensures that Pl = P ′

l′ = 0d−n. If Yl−1 6= Y ′
l′−1 then we are done with δ = 0. Otherwise this

implies that Yl−1 ⊕ Kµ = Y ′
l′−1 ⊕ Kµ which means the output of the internal Shoup iteration is
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equal for both messages. Since the strengthening in this case guarantees that Pl−1 6= P ′
l′−1 we have

that δ = 1 suffices.

If |M | = |M ′|, then starting from the end of both messages, one can track backwards until finding
the first value δ for which the inputs to the compression function differ. We are guaranteed to
find such a δ, because otherwise it would imply that all message blocks for M and M ′ are equal,
contradicting the fact that A found a collision. Thus, B has at least a 1/l probability of guessing
δ correctly, and replacing l with τ(L) gives that B has advantage ε′/τ(L).

Adversary B runs A and must additionally compute the compression function a number of times
proportional to the number of blocks of the largest message output by A. (Note that the while
loop in GenKeys at line 01 never iterates more than l times, because i is always less than j.)
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A Proof of Lemma 5.12

The proof of the lemma follows from results in [20], but for completeness we provide a detailed
proof here. We first describe the algorithm (refer back to Figure 6) at a high level. It takes as
input a target message, a compression function key, a target index, and a target chaining variable.
The algorithm initially marks all the key masks as undefined (line 00). The main loop begins by
choosing a new target chaining variable D on line 02. It then calculates an index i. This is the
least index less than j for which there does not exist a c ∈ [i + 1 .. j − 1] such that ν(c) = ν(i) or
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ν(c) = ν(j − 1). This ensures that the algorithm is free to set the masks used between blocks i
and j − 1 to be uniformly chosen values, which the algorithm does next (lines 03 and 04). Then it
computes the value Cj−1 (lines 07–08) using the just specified masks, the target message, and an
initial Ci value that is either IV 1 (line 05) or the output of the compression function applied to
the new target chaining variable and the appropriate message block (line 06). It uses Cj−1 and the
target chaining variable Y to set mask Kν(j−1) (line 09). At this point the algorithm has ensured
consistency starting from location i, but if i > 0 then it now must recurse and ensure consistency
with the new target chaining variable.

We justify the first part of Lemma 5.12: the output distribution of GenKeys(P1 · · ·Pl−1,K, j, Y )
for Y

$← {0, 1}n is identical to choosing Ki uniformly for each i ∈ [1 .. t]. Values assigned to vari-
ables Ki due to lines 04 and 12 clearly sample uniformly from {0, 1}n. Assignments to variables Ki

due to line 08 inherit the distribution of Y , which is always distributed uniformly.
To prove the second part of the lemma, we note that as long as no key mask is ever defined

more than once, then lines 05–09 of the algorithm ensure that Y = fESh((K, {Ki}µ−1
1 ), P1 · · ·Pj−1)⊕

Kν(j). Thus all that remains is to show that GenKeys never redefines key masks. We first establish
two invariants of the algorithm.

Invariant 1: ν(i) > ν(j)
We have that j = (2b + 1)2ν(j) for a number b ≥ 0 (note that the coefficient of 2ν(j) can-
not be even, since otherwise ν(j) would not be the maximum power of 2 dividing j). Then
i = j − 2ν(j) = (2b + 1)2ν(j) − 2ν(j) = (2b)2ν(j) = b2ν(j)+1. This implies that ν(i) > ν(j).

Invariant 2: ν(j) > ν(l) for i < l < j
We have that i = (2b)2ν(j) (as shown above) and that j = (2b + 1)2ν(j). Assume for contradiction
that there exists an l with ν(l) ≥ ν(j) and i < l < j. Then l = k2ν(j)+d = 2dk2ν(j) for some k ≥ 1
and d ≥ 0. But by our restriction on l and substituting in the just established equivalences for i,
l, and j we have that

(2b)2ν(j) < 2dk2ν(j) < (2b + 1)2ν(j) ⇒ 2b < 2dk < 2b + 1

but this is not possible, and so we have a contradiction.

Now we argue that masks are never redefined. Key mask assignments on lines 04 or 11 are
guarded by if statements and thus cannot redefine a key mask. Invariant 1 implies that ν(j) is
always increasing, and invariant 2 implies that ν(j) is always larger than any key mask assigned in
line 04. Together this implies that line 09 will never redefine a key mask, completing the proof.
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