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Abstract

We show how the Fiat-Shamir transform can be used to convert three-move identification protocols
into two-tier signature schemes (a primitive we define) with a proof of security that makes a standard
assumption on the hash function rather than modeling it as a random oracle. The result requires
security of the starting protocol against concurrent attacks. We can show that numerous protocols have
the required properties and so obtain numerous efficient two-tier schemes. Our first application is an
efficient transform of any unforgeable signature scheme into a strongly unforgeable one, which uses as a
tool any two-tier scheme. (This extends work of Boneh, Shen and Waters whose transform only applies
to a limited class of schemes.) The second application is new one-time signature schemes that, compared
to one-way function based ones of the same computational cost, have smaller key and signature sizes.

1 Introduction

Recall that the Fiat-Shamir (FS) transform [FS87] is a way to obtain a signature scheme from a three-move
identification protocol by “collapsing” the interaction via a hash function. (Briefly, the signature consists of
the two prover moves corresponding to a verifier challenge set to be the hash of the first prover move and the
message being signed.) There are lots of protocols to which the transform can be applied, and the resulting
signature schemes include some of the most efficient known (eg. [Sch91, GQ90, GQ88]). Furthermore, due
to their algebraic properties, FS-transform-derived signature schemes lend themselves nicely to extensions
such as to blind [PS00], multi [MOR01, BN06] or group [BBS04] signatures to name just a few. For these
reasons, the transform is popular and widely used.

Naturally, one would like that the constructed signature scheme meets the standard notion of unforge-
ability under chosen-message attack (uf-cma) of [GMR88]. Results of [PS00, OO98, AABN02] say this is true
in the random oracle (RO) model (meaning, if the hash function is a random oracle) as long as the starting
protocol is itself secure (we will discuss in what sense later). However, Goldwasser and Tauman-Kalai [GK03]
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show the existence of a protocol that, under the FS transform, yields a signature scheme that is uf-cma secure
when the hash function is a RO but is not uf-cma secure for any standard model implementation of the hash
function. This means that the transform (at least in general) does not yield uf-cma secure schemes in the
standard model.

The question we ask is whether the FS transform can, however, yield weaker-than-uf-cma but still useful
types of signature schemes in the standard model. We answer this in the affirmative. We show how the
FS transform yields two-tier signature schemes which are secure assuming only that the hash function is
collision-resistant and the starting protocol is secure. We exhibit some applications of two-tier signatures in
general and FS-derived ones in particular, namely for an efficient and general transform of uf-cma to strongly
unforgeable (suf-cma) signature schemes and to implement one-time signatures that are much shorter than
conventional ones of the same computational cost. Let us now look at all this in more detail.

Two-tier schemes. In a two-tier scheme, a signer has a primary public key and matching primary secret
key. Each time it wants to sign, it generates a fresh pair of secondary public and secret keys and produces the
signature as a function of these, the primary keys and the message. Verification requires not only the primary
public key but also the secondary one associated to the message. Security requires that it be computationally
infeasible to forge relative to the primary public key and any secondary public key that was generated by
the signer, even under a chosen-message attack.

As the reader might rightfully note, two-tier signatures are not well suited for direct signing in the
standard PKI, because not just the primary but also the secondary public keys would need to be certified.
However, we do not propose to use them in this direct way. Instead what we will see is that they are useful
tools in building other primitives.

Building two-tier signatures via FS. We adapt the FS transform in a natural way to convert a three-
move identification protocol into a two-tier signature scheme. (Briefly, the first prover move, rather than
being in the signature, is now the secondary public key. See Section 5 for details.) We show (cf. Theorem 5.1)
that the constructed two-tier scheme is secure assuming the protocol is secure (we will see exactly what this
means below) and the hash function is collision-resistant. So security of FS-based two-tier signatures is
guaranteed in the standard model unlike security of FS-based regular signatures which is guaranteed only
in the RO model.

Both the security of regular FS-based signatures (in the RO model) and the security of our FS-based two-
tier signatures (in the standard model) are based on some security assumption about the starting protocol.
(Naturally, since otherwise there is no reason for the constructs to be secure.) There is, however, a difference
in the two cases. Recall that security of this class of protocols can be considered under three different types
of attack: passive, where the adversary merely observes interactions between the prover and honest verifier;
active [FS87, FFS88], where the adversary plays a cheating verifier and engages in sequential interactions
with the honest prover; or concurrent [BP02], where, as a cheating verifier, the adversary can interact
concurrently with different prover clones. For (uf-cma) security of FS-based regular signatures in the RO
model, it suffices that the protocol be secure against passive (i.e. eavesdropping) attack [AABN02]. Our
result showing security of FS-based two-tier signatures requires however that the protocol be secure against
concurrent attack. Thus, part of what makes it possible to dispense with random oracles is to start from
protocols with a stronger property. However, we show that the property is in fact possessed by the bulk
of example protocols, so that we lose very little in terms of actual constructions. Specifically it is easy
to show appropriate security under concurrent attack for the Schnorr [Sch91], Okamoto [Oka92], and GQ
[GQ90, GQ88] protocols as well as others, using techniques from the original papers and more recent analyses
[BP02, BNN04]. Thereby we obtain numerous specific and efficient constructions of two-tier signatures via
the FS transform.

We think this is an interesting application of concurrent security of protocols. The latter is usually
motivated as being important for certain communication environments such as the Internet, while we are
saying it is relevant to the security of a protocol-based signature.

From uf-cma to suf-cma. Returning again to regular (rather than two-tier) signatures, recall that strong
unforgeability (suf-cma) is a stronger requirement than the usual uf-cma of [GMR88], requiring not only that
the adversary can’t produce a signature of a new message but also that it can’t produce a new signature of an
old message (i.e. one whose signature it has already obtained via its chosen-message attack). The problem we
are interested in is to efficiently convert a uf-cma scheme into an suf-cma one without using random oracles.
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Our work is motivated by Boneh, Shen and Waters [BSW06] who turn Waters’ uf-cma scheme [Wat05] into
an suf-cma one via a transform that applies to a subclass of signature schemes that they call partitioned.
Unfortunately, there seem to be hardly any schemes in this class besides Waters’, so their transform is of
limited utility. We, instead, provide a general transform that applies to any uf-cma scheme. The transform
uses as a tool any two-tier scheme. Instantiating the latter with an FS-based two-tier scheme we obtain
efficient, standard model transforms. For example, using the Schnorr scheme, our transform confers suf-cma
security while adding just one exponentiation to the signing time and increasing the signature size by only
two group elements. Briefly, the idea of the transform is to have two signatures, one from the original uf-cma
scheme and the other from the two-tier scheme, mutually authenticate each other. This application exploits
the fact that our FS-based two-tier signatures are themselves strongly unforgeable due to properties of the
starting protocols. (That is, if the adversary has seen the signature of m relative to a secondary public
key, it can produce neither a different signature of m nor a signature of some m′ 6= m relative to the same
secondary key.)

New one-time signatures. A two-tier signature scheme yields a one-time signature scheme as a special
case. (Restrict to a single secondary key.) Thus we obtain FS-based strongly unforgeable one-time signatures.
These turn out to be interesting because they have smaller key and signature sizes than conventional one-
way function based one-time schemes of the same computational cost. Specifically, say we are signing
a 160-bit message (which is the hash of the real message). Our Schnorr-instantiated FS-based one-time
scheme implemented over a 160-bit elliptic curve group has key size 480 bits, signature size 160 bits, key-
generation time two exponentiations, signing time one multiplication, and verifying time one exponentiation.
Let us contrast this with what is achieved by the best one-way function based one-time signature schemes,
namely those of [EGM96, BM96]. Unforgeability is proved by [EGM96] under the assumption that the
one-way function is quasi-one-way. We observe that the scheme is strongly unforgeable under the additional
assumption that the function is collision-resistant. So, let us use SHA-1 as the one-way function. The
resulting schemes exhibit the following size to computation tradeoff. For any positive integer t dividing 160,
there is a one time scheme with key and signature size (1 + 160/t) · 160 and key-generation, signing and
verifying time (160/t)×2t hash computations. An implementation with the crypto++ library [Dai] indicates
that an exponentiation in a 160-bit group costs about 3, 300 hashes. To match the key-generation time of
two exponentiations (which is the largest of the computation times in our algebraic scheme) we thus want
to choose t such that (160/t)× 2t ≈ 6, 600. This yields t ≈ 8.44, but this is not a valid value (recall t must
divide 160), so we (generously) set t = 10, yielding the shortest possible signature for key-generation time
costing at least two exponentiations. The key and signature sizes are now each 2, 720 bits, which is much
more than in our scheme. (And at this point, while key-generation time in the one-way function scheme is
about 2.5 as much as in our scheme, signing time is 16368 hashes, much more than the one multiplication
and hash required to sign in the Schnorr scheme.) Note we would get the same efficiency gains using the
standard Schnorr [Sch91] signature scheme instead of our scheme, but the proof of the former uses random
oracles [PS00].

Our new one-time signature scheme is interesting for applications like the DDN and Lindell constructions
of IND-CCA public-key encryption schemes [DDN00, Lin06], the IBE-based constructions of IND-CCA
schemes of [CHK06], and the composition of encryption schemes [DK05]. All of these make use of strongly
unforgeable one-time signatures, and the reduced key size of the latter results in reduced ciphertext size for
the encryption schemes they build.

Alternative two-tier schemes and their implications. We noted above that two-tier schemes yield
(strongly unforgeable) one-time ones as a special case. Conversely, one can also construct a two-tier scheme
from any strongly unforgeable one-time scheme. (Set the primary keys to empty, and use a new instance of
the one-time scheme for each secondary key. See Section 6 for details on both these transforms.) However, FS-
based two tier schemes have smaller key and signature sizes than two-tier schemes of the same computational
cost built from any known strongly unforgeable one-time schemes.

We could have based our transform (of uf-cma schemes into suf-cma ones) on strongly unforgeable one-
time schemes rather than on two-tier schemes, and we could have built FS-based strongly unforgeable
one-time schemes directly rather than first building two-tier schemes. Two-tier schemes however have the
advantage over using one-time schemes that any key information that is long-lived across multiple instances
of a one-time scheme can be re-used, resulting in shorter keys. This results in shorter signatures for the
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suf-cma schemes built by our transform. Overall it seemed simple and worthwhile enough to make the
optimization (meaning to introduce and use two-tier signatures) and hence we have done so.

Related work. Cramer and Damg̊ard [CD95] present a non-RO transform of protocols with certain
properties into signature schemes. Their transform is not the FS one (it is more complex and less efficient)
but they obtain regular uf-cma signature schemes while we obtain only two-tier schemes.

Independently of our work, others have extended [BSW06] to provide general transforms of unforgeable
signature schemes into strongly unforgeable ones. The transform of Huang, Wong and Zhao [HWZ06] is
similar to the special case of ours with a two-tier signature scheme built from a strongly unforgeable one-
time signature scheme as per Theorem 6.2. However, this yields large signatures. Teranishi, Oyama and
Ogata [TOO06] present a discrete log, chameleon commitment based transform. Steinfeld, Pieprzyk, and
Wang [SPW07] present a general transform which uses two randomized trapdoor hash functions.

We clarify that, above, when we discuss transforms (of uf-cma signature schemes into suf-cma ones), we
mean efficient transforms. A one-way function based, polynomial time but not efficient transform of uf-cma
signature schemes (in fact, one-time uf-cma signature schemes) into suf-cma signature schemes was already
provided by Goldreich [Gol04].

Let us call a signature scheme kr-cma secure if it is computationally infeasible to recover the secret key
under a chosen-message attack. Interestingly, the FS transform can yield signature schemes that are kr-cma
secure in the standard model. Specifically, Paillier and Vergnaud [PV05] show that the Schnorr signature
scheme is kr-cma secure under the one-more discrete logarithm assumption of [BNPS03] assuming only that
the hash function is collision resistant.

An online-offline signature scheme [EGM96, ST01] is a standard signature scheme in which the sign-
ing process is separated into two parts for the sake of efficiency. In the offline phase, before seeing the
message, the signer computes some information ssk and the secret key. Although in general the notion of
online/offline signatures is unrelated to two-tier signatures, the specific schemes of [EGM96, ST01] do bear
some resemblance to our two-tier approach.

2 Definitions

Notation and conventions. We denote by a1‖ · · · ‖an a string encoding of a1, . . . , an from which the
constituent objects are uniquely recoverable. We denote the empty string by ε. Unless otherwise indicated,
an algorithm may be randomized. A collision for a function h is a pair x, y of distinct points in its domain
such that h(x) = h(y). If A is a randomized algorithm then y $← A(x1, . . .) denotes the operation of running
A with fresh coins on inputs x1, . . . and letting y denote the output. If S is a (finite) set then s $← S denotes
the operation of picking s uniformly at random from S. If X = x1‖x2‖ . . . ‖xn, then x1‖x2‖ . . . ‖xn ← X
denotes the operation of parsing X into its constituents. Similarly, if X = (x1, x2, . . . , xn) is an n-tuple,
then (x1, x2, . . . , xn)← X denotes the operation of parsing X into its elements.

For simplicity our security definitions are non-asymptotic, meaning we associate an advantage to an
adversary and formal results simply relate advantages. Having an explicit security parameter is just a
notational extension.

Signatures. A (digital) signature scheme DS = (KG,SGN,VF) is specified as usual by three algorithms. Via
(PK ,SK) $← KG a prospective signer can generate its public and associated secret key. Via σ $← SGN(SK ,M)
the signer can produce a signature σ on a message M ∈ {0, 1}∗. Via d ← VF(PK ,M, σ), a verifier can run
the deterministic verification algorithm to get a decision bit d ∈ {0, 1}. We require perfect consistency,
meaning that

Pr
[

(PK ,SK) $← KG ; σ $← SGN(SK ,M) : VF(PK ,M, σ) = 1
]

= 1

for all messages M . To define security consider the following game involving an adversary A:

(PK ,SK) $← KG ; (M,σ) $← ASGN(SK,·)(PK) .

The adversary is given a signing oracle SGN(SK , ·) and the public key, and outputs a message and can-
didate signature. Let M1, . . . ,Mq denote the messages queried by A to its oracle in its chosen-message
attack, and let σ1, . . . , σq denote the signatures returned by the oracle, respectively. We say that A forges
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Oracle spkO()
i← i+ 1
(spki, sski)

$← skg(ppk,psk)
Return spki

Oracle SignO(j,m)
If j > i OR j ∈ U then return ⊥
U ← U ∪ {j}
s

$← sgn(psk, sskj ,m)
Return s

Figure 1: Oracles for adversary attacking two-tier scheme ds = (pkg, skg, sgn, vf).

if VF(PK ,M, σ) = 1 and M 6∈ {M1, . . . ,Mq}. We say that A strongly forges if VF(PK ,M, σ) = 1 and
(M,σ) 6∈ {(M1, σ1), . . . , (Mq, σq)}. We let Advuf-cma

DS (A) and Advsuf-cma
DS (A) denote, respectively, the prob-

ability that A forges and the probability that it strongly forges. The first measure represents the standard
uf-cma notion of [GMR88], while the second represents strong unforgeability (suf-cma).

Recall that a one-time signature scheme is simply one where security (of whatever type) is required only
with respect to adversaries that make at most one query in their chosen-message attack.

3 Two-tier signatures

Syntax. A two-tier signature scheme ds = (pkg, skg, sgn, vf) is specified by four algorithms. They are called
the primary key-generation, secondary key-generation, signing and verifying algorithms, respectively, and
the last is deterministic. Via (ppk,psk) $← pkg, a prospective signer generates a primary public key ppk
and associated primary secret key psk. Think of these as the keys at the first tier of the two-tier scheme.
The signer may then at any time generate a secondary public key spk and associated secondary secret key
ssk via (spk, ssk) $← skg(ppk,psk). These will be the second tier keys, and there can be many of them.
Via s $← sgn(psk, ssk,m) the signer can generate a signature of a message m. Via d← vf(ppk, spk,m, s), a
verifier can produce a decision bit d ∈ {0, 1} indicating whether or not s is a valid signature of m relative to
ppk, spk. We require perfect consistency, meaning that

Pr
[

(ppk,psk) $← pkg ; (spk, ssk) $← skg(ppk,psk) ; s $← sgn(psk, ssk,m) : vf(ppk, spk,m, s) = 1
]

= 1

for all messages m.
In usage, a signer will have a single primary key pair. It will generate and use a fresh secondary key pair

for each message so that the secondary key pairs are one-time. Since generation of a secondary key pair does
not require knowing the message, this generation can either be done when the message to be signed arrives,
or off-line, in advance.

Security. To define security, consider the following game. We let (ppk,psk) $← pkg, initialize a set U to ∅
and initialize a counter i to 0. We then run an adversary A on input ppk with access to the oracles shown in
Figure 1. A can obtain a fresh secondary public key at any time by calling its secondary public-key oracle
spkO. A can obtain a signature of a message m of its choice under an already generated secondary public
key spkj by calling the signing oracle SignO on inputs j,m, where j ≥ 1. However, A cannot obtain more
than one signature under a particular secondary public key. (This restriction is enforced by the oracle via the
set U .) Finally A outputs a forgery, which must be a triple of the form (l,m, s). Let (j1,m1), . . . , (jq,mq)
denote the queries made by A to its SignO oracle in its chosen-message attack, and let s1, . . . , sq denote the
signatures returned by the oracle, respectively. We say that A wins if vf(ppk, spkl,m, s) = 1 and 1 ≤ l ≤ i
but (l,m, s) 6∈ {(j1,m1, s1), . . . , (jq,mq, sq)}. Here i is the final value of the counter, meaning the number of
queries A made to spkO. The probability that A wins is denoted Advsuf-cma

ds (A).
Notice that this definition is of strong unforgeability, meaning this has been built in as a requirement.

We do this because it is what the applications need and also what the FS-based constructs naturally provide.

Discussion. Two-tier schemes are hybrids of regular and one-time schemes. If the secondary keys are
empty, we have a regular scheme. If the primary keys are empty, we have multiple instances of a one-time
scheme. See Section 6 for more on relations to one-time schemes.
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Online two-tier signatures. We say that our adversary A is online if, whenever it makes a query j,m to
SignO, it is the case that j = i. Online adversaries are a subclass of the adversaries considered above, and
we say a two-tier scheme has online security if it is secure in the above sense with respect to this subclass of
adversaries.

We remark that while security of our FS-based two-tier schemes requires security of the identification
protocol under concurrent attack, online security of the same two-tier scheme only requires security of the
identification protocol under active attack. Furthermore, online security of the two-tier scheme is sufficient
for both the applications of this paper, namely Theorem 4.1 and Theorem 6.1.

The reason we have nonetheless considered full (rather than online) security is that there may be settings
in which the signer wishes to pre-compute secondary keys offline, in which case our definition guarantees
security even if the secondary public keys become exposed to the adversary. Meanwhile, the identification
protocols we consider are secure under concurrent attack anyway—that is, there is no cost in computation
or assumption to provide security under concurrent as opposed to active attack—so we do not pay a price
for the extra security.

4 From uf-cma to suf-cma

Suppose we are given a uf-cma signature scheme DS and want to transform it into an suf-cma signature
scheme DS, efficiently and without random oracles. This problem was recently considered by [BSW06] who
provided a transform that works under the assumption that the starting uf-cma scheme is what they call
“partitioned.” However, there are few examples of partitioned schemes. In this section, we provide a general
transform, namely one that applies to any starting uf-cma scheme. It uses an arbitrary two-tier scheme as
an auxiliary tool. The transform does not use random oracles, and, when instantiated with our Schnorr
FS-based two-tier schemes, matches that of [BSW06] in computational overhead while providing signatures
that are longer by only one group element.

Idea. The problem is that, given a signature S of a message M under a public key PK of the uf-cma scheme,
it may be possible for an adversary to transform it into a different signature S′ 6= S of M under PK . A
natural idea to prevent this is to have the signer sign not just the message but the signature, namely the
signature of M is a pair (S, s) where s is a signature of S, say under a different public key. Now, if the
adversary wants to use S′ in a forgery, it must also produce a signature s′ of S′ and it is not clear how to
do this if the scheme is uf-cma. The reason this does not immediately work is that the problem has simply
been moved onto the second signature, for the adversary may be able to leave S unchanged and modify s
into a different signature s′ of S. To prevent this, it would suffice that the second signature is produced
under an suf-cma scheme, but this does not help since we do not have such a scheme. (We are trying to
build one.) Instead, we will use a (strongly unforgeable) two-tier scheme. (And then build such schemes
in Section 5.) The difficulty with using this weaker form of signature, however, is that security only holds
relative to a secondary public key that the adversary is presumed not to be able to manipulate, and each
signature needs a new secondary key. What we do is produce a new secondary public key for each signature,
authenticate this key and the message with the uf-cma scheme, and then authenticate the resulting signature
with the two-tier scheme under the same secondary key. In this way, the two signatures essentially mutually
authenticate each other, which is the way out of the cyclicity that came up above.

Details. We now detail the construction and prove its security. We begin by describing the transform.
Let DS = (KG,SGN,VF) be the given uf-cma scheme. Let ds = (pkg, skg, sgn, vf) be a (any) given two-tier
scheme. We associate to these the signature scheme DS = (KG,SGN,VF) defined as follows. The key-
generation algorithm KG runs KG to get (PK ,SK), runs pkg to get (ppk,psk), and returns PK = PK‖ppk
as the public key and SK = SK‖psk as the secret key. The new signing and verifying algorithms appear in
Figure 2.

Putting the figure into words, to sign message M , first generate a fresh key pair (spk, ssk) for the two-tier
signature scheme. View spk‖M as a message M and sign it using the given signature scheme under secret
key SK to get a signature S. Now view S as a message and sign it using the two-tier signature scheme under
secret key ssk. The signature S of M consists of S, spk and s. The following implies that the constructed
scheme DS is strongly unforgeable if DS is unforgeable and the two-tier scheme ds is strongly unforgeable.
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Algorithm SGN(SK ,M)
Parse SK as SK‖psk

(spk, ssk) $← skg(ppk,psk)
M ← spk‖M
S

$← SGN(SK ,M)
s

$← sgn(psk, ssk, S)
S ← S‖spk‖s
Return S

Algorithm VF(PK ,M, S)
Parse PK as PK‖ppk
Parse S as S‖spk‖s
M ← spk‖M
If VF(PK ,M, S) = 0 then return 0
If vf(ppk, spk, S, s) = 0 then return 0
Return 1

Figure 2: Algorithms for the transform from uf-cma to suf-cma.

Theorem 4.1 Let DS be the signature scheme associated to signature scheme DS and two-tier signature
scheme ds as described above. Let F be an adversary attacking the strong unforgeability of DS and making
at most q signing queries. Then there exist adversaries F, f attacking the unforgeability of DS and the strong
unforgeability of ds, respectively, such that

Advsuf-cma
DS

(F ) ≤ Advuf-cma
DS (F ) + Advsuf-cma

ds (f) .

Furthermore F and f make at most q signing queries, and they each run in the time of F plus an overhead
that is linear in q.

Proof of Theorem 4.1: Adversaries F, f are described in Figure 3. Explanations and the analysis follow.

Given public key PK , adversary F generates its own (ppk,psk) pair for the two-tier signature scheme and
provides F with the public key PK , where PK = pk||ppk. It replies to F ’s signing queries as in the description
of the scheme, using its own SGN oracle to produce signatures under the secret key SK associated to PK .
This provides a perfect simulation of the view of F in its game. If F produces a valid forgery (M,S), where
S = S||spk||s, it follows from the VF algorithm that VF(PK , spk||M,S) = 1. Thus (spk||M,S) is a valid
forgery for F if spk||M was never previously queried to the signing oracle. If we let Bad be the event that
spk||M was previously queried to the signing oracle, it follows that

Advuf-cma
DS (F ) ≥ Pr[F strongly forges ∧ Bad].

Given primary public key ppk, adversary f generates its own (PK ,SK) pair for the DS signature scheme
and provides F with the public key PK = PK ||ppk. It replies to F ’s signing queries as in the description
of the scheme, but using its own spkO and SignO oracles to generate signatures under ds. This provides a
perfect simulation of the view of F in its game. If F produces a valid forgery (M,S), where S = S||spk||s,
it follows from the VF algorithm that vf(ppk, spk, S, s) = 1. Adversary f then searches for a j such that
spkj ||M j = spk||M . Such a j exists when the event Bad occurs. In this case, (j, S, s) is a valid forgery for
adversary f if f did not previously query (j, S) to its oracle and receive back s as the signature. But since f
queries SignO at index j at most once, this would mean that (Sj , sj) = (S, s), and thus (M,S) = (M j , Sj).
But then (M,S) could not be a strong forgery for adversary F . Thus it follows that

Advsuf-cma
ds (f) ≥ Pr[F strongly forges ∧ Bad].

Putting all this together we have

Advsuf-cma
DS

(F ) = Pr[F strongly forges]

= Pr[F strongly forges ∧ Bad] + Pr[F strongly forges ∧ Bad]

≤ Advuf-cma
DS (F ) + Advsuf-cma

ds (f) .

Furthermore F and f make at most q signing queries, where q is the number of signing queries that F makes.
The overhead is the time to determine if there is a j such that spkj ||M j = spk||M , which can be done in
O(q) time with appropriate data structures.
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Adversary F SGN(SK,·)(PK)
(ppk,psk) $← pkg
PK ← PK ||mpk; i← 0
Run F on input PK ,
responding to oracle queries as follows:

On sign query M :
i← i+ 1; M i ←M

(spki, sski)
$← skg(ppk,psk)

Mi ← spki||M i

Si
$← SGN(SK ,Mi) // using oracle

si
$← sgn(psk, sski, Si)

Si ← Si||spki||si
When F halts with forgery (M,S)
Parse S as S||spk||s; M ← spk||M
If ∃ j (1 ≤ j ≤ i) s.t. Mj = M

then abort
Else return (M,S)

Adversary f spkO(),SignO(·,·)(ppk)
(PK ,SK) $← KG
PK ← PK ||mpk; i← 0
Run F on input PK ,
responding to oracle queries as follows:

On sign query M :
i← i+ 1; M i ←M

spk
$← spkO() // using oracle

Mi ← spki||M i

Si
$← SGN(SK ,Mi)

si
$← SignO(i, Si) // using oracle

Si ← Si||spki||si
When F halts with forgery (M,S)
Parse S as S||spk||s; M ← spk||M
If ∃ j (1 ≤ j ≤ i) s.t. Mj = M

then return (j, S, s)
Else abort

Figure 3: Adversaries for proof of Theorem 4.1. Adversary F is attacking uf-cma scheme DS and
adversary f is attacking two-tier scheme ds.

5 FS-based constructions of two-tier schemes

Canonical identification protocols. The FS transform applies to a class of protocols we call canonical
identification protocols [AABN02]. We need to have a general syntax for these protocols since the transform
and its proof will refer to this. The protocol can be described as a tuple ID = (K, P,ChSet, V ). Via
(pk, sk) $← K, the (honest) prover generates its public and secret keys. Now the public key pk is viewed
as an input for the verifier, while sk is a private input to the honest prover. The prover can now convince
the verifier of its identity via a three move interaction as depicted in Figure 4. We refer to the moves as
commitment, challenge, and response. The (honest) prover maintains a state St whose initial value is its
secret key sk. In its first move, it applies P to the current conversation (which is ε) and current state
(St = sk) to get a commitment Cm and an updated state St. The former is sent to the verifier, who now
draws its challenge Ch at random from ChSet and sends this to the prover. The (honest) prover now lets
Rp

$← P (Cm‖Ch,St) and sends Rp back to the verifier. The latter applies the deterministic function V to
pk and the transcript Cm‖Ch‖Rp to output the decision Dec ∈ {0, 1}. We require perfect completeness,
meaning that for all (pk, sk) that can be output by K we have

Pr
[

(Cm,St) $← P (ε, sk) ; Ch
$← ChSet ; Rp

$← P (Cm‖Ch,St) : V (pk,Cm‖Ch‖Rp) = 1
]

= 1 . (1)

Examples of canonical identification protocols include the Schnorr protocol [Sch91] illustrated in Figure 5
and the Okamoto protocol [Oka92] illustrated in Figure 6.

Security notions. The “master” property of protocols in this domain is special soundness. We will
consider it under different forms of attack, namely passive, active and concurrent. (We only use the last
in our results but for discussions it is useful to see them all.) To define these consider the following game
involving an attacker I. The game begins by picking keys via (pk, sk) $← K. Then there are two phases. In
the first phase, adversary I gets to mount its attack on the honest prover. In a passive attack, it gets an
oracle that upon being invoked (with no arguments) returns a random transcript of an interaction between
the honest prover (given input sk) and the verifier (given input pk). In an active or concurrent attack, I
gets to play the role of verifier and interact with “clones” of the honest prover. We can imagine a sequence
Pj (j ≥ 1) of potential clones. Each clone maintains a state Stj and has its own random coins. The game
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Prover
Input: sk

(Cm,St) $← P (ε, sk)

Rp
$← P (Cm‖Ch,St)

Cm -
Ch�
Rp -

Verifier
Input: pk

Ch
$← ChSet

Dec← V (pk,Cm‖Ch‖Rp)

Figure 4: Canonical Protocol. Keys pk and sk are produced using key generation algorithm K.

maintains a counter a, initially 0, and a set A of clones that are activated, initially empty. Adversary I can
ask for a new clone to be activated, in which case the game increments a, computes (Cma,Sta) $← P (ε, sk),
and returns Cma to I. If the attack is concurrent, it adds a to A, but if the attack is active, it replaces A by
{a}, meaning that only one clone can be activated at any time. If j ∈ A then I can send clone Pj a message
Chj representing the verifier move. Adversary I can pick this value any way it wishes, in particular not
necessarily at random like the honest verifier. The game computes Rpj

$← P (Cmj‖Chj ,Stj), returns Rpj to
I, and removes j from A. (Which means no further interaction with Pj is possible.) Note that the difference
between an active and concurrent attack is that in the former, the adversary is allowed to have only one
clone (namely Pa) activated at any time, corresponding to sequential interactions with the honest prover,
while in a concurrent attack, any number of clones may simultaneously be activated, and I can choose a
challenge sent to one of them as a function of all communications it has received from all clones so far. Note
that in either case, the adversary does not see or control the internal state of a prover clone. In no case
can it reset or backup a clone. After it has completed its attack (of whatever form), we enter the second
phase. The adversary outputs a pair (Cm,Ch1,Rp1), (Cm,Ch2,Rp2) of transcripts where the commitment
is the same. It wins if these transcripts are accepting but (Ch1,Rp1) 6= (Ch2,Rp2). The probability that
it wins is denoted Advss-atk

ID (I), where atk = pa if the attack is passive; atk = aa if the attack is active; and
atk = ca if the attack is concurrent.

Discussion. The typical formulation of special soundness is that given a pair (Cm,Ch1,Rp1), (Cm,Ch2,
Rp2) of accepting transcripts where the commitment is the same but Ch1 6= Ch2, one can easily find a
matching secret key sk. This implies in particular that the protocol is a proof of knowledge of the secret
key which in turn is crucial to proving security against impersonation under passive, active or concurrent
attack. (Impersonation means that after its attack, meaning in the second phase, rather than outputting a
pair of transcripts, the adversary plays the role of prover in an interaction with the honest verifier and wins
if it can convice the latter to accept.) For our purposes, however, we work directly with special soundness
rather than any of its derivative properties. We directly require that the probability of finding transcripts
of the appropriate type is negligible rather than relating this to finding the secret key. This is similar to the
security requirement used in [CD95], though they apply it to a different protocol-based transform. Note we
weaken the condition under which the adversary wins from Ch1 6= Ch2 to (Ch1,Rp1) 6= (Ch2,Rp2). We
will have to prove that the resulting stronger security requirement is met by the constructs.

A Σ protocol [Cra96] is one that has special soundness and honest-verifier zero-knowledge. We do
not explicitly require the latter as part of special soundness, although in establishing special soundness of
particular protocols we might use it. Note none of the example protocols in this domain are full (i.e. even
against cheating verifiers) zero-knowledge. Indeed, this is ruled out under blackbox simulation [GK96].

Special soundness is usually considered as a stand-alone property, but it is natural to consider it under
the three forms of attack that exist for identification protocols as we have done.

The transform. We now describe how to turn a canonical identification protocol ID = (K, P,ChSet, V )
into a two-tier signature scheme ds = (pkg, skg, sgn, vf) via the Fiat-Shamir transform. We do not use a
random oracle but instead a family H : {0, 1}k × {0, 1}∗ → ChSet of collision-resistant (CR) hash functions
where each k-bit key K specifies a particular hash function H(K, ·) with domain {0, 1}∗ and range the
challenge set ChSet. (The keys will be random but public.) The primary key generation algorithm pkg lets
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K
$← {0, 1}k and (pk, sk) $← K, and returns (ppk,psk) ← (K‖pk,K‖sk). The skg, sgn, and vf algorithms

are as follows:

Algorithm skg(ppk,psk)
Parse ppk as K‖pk
Parse psk as K‖sk
(Cm,St) $← P (ε, sk)
spk ← Cm
ssk ← Cm‖St
Return (spk, ssk)

Algorithm sgn(psk, ssk,m)
Parse psk as K‖sk
Parse ssk as Cm‖St
Ch← H(K,Cm‖m)
Rp

$← P (Cm‖Ch,St)
s← Rp
Return s

Algorithm vf(ppk, spk,m, s)
Parse ppk as K‖pk
Cm← spk
Ch← H(K,Cm‖m)
Rp← s
Dec← V (pk,Cm‖Ch‖Rp)
Return Dec

Note that in generating s, algorithm P will be executed with a challenge that, unlike the one the honest
prover expects to receive, is not random but is the output of H(K, ·). The implications for security are dealt
with by the theorem that follows, but at this point we need to first check that it does not lead to a violation
of the perfect consistency requirement of two-tier schemes. This is true because the protocol has perfect
completeness as per Equation (1), which means for all values of the verifier challenge, the prover returns a
response that leads the verifier to accept.

Security of the transform. Recall that the cr-advantage of an adversary F attacking H is

Advcr
H(F ) = Pr

[
K

$← {0, 1}k ; (x1, x2) $← F (K) : H(K,x1) = H(K,x2) ∧ x1 6= x2

]
.

The following says that if H is CR and ID is secure against concurrent attack then the two-tier scheme
derived via the FS transform is secure.

Theorem 5.1 Let ds = (pkg, skg, sgn, vf) be the two-tier signature scheme associated to canonical identifi-
cation protocol ID = (K, P,ChSet, V ) and hash function H: {0, 1}k × {0, 1}∗ → ChSet via the Fiat-Shamir
transform as described above. Let f be an adversary attacking the strong unforgeability of ds and making
at most q signing queries. Then there exists an adversary I attacking the special soundness of ID under
concurrent attack, and an adversary F attacking the collision-resistance of H, such that

Advsuf-cma
ds (f) ≤ Advss−ca

ID (I) + Advcr
H(F ) .

Furthermore I initiates at most q + 1 prover clones, and the running time of each of I and F is that of f
plus a constant amount of overhead.

Proof of Theorem 5.1: We assume for simplicity that if f outputs forgery (l,m, s), it has previously
issued a signing query of the form (l,ml) for some ml 6= m. If not, we simply transform f into an adversary
f ′ with this property, without altering its advantage. To do so, let f behave as f ′ except before it outputs
its forgery (l,m, s), it queries the sign oracle with (l,m′) for some m′ 6= m. This increases q by at most 1.

On input public key pk, adversary I initializes a counter v to 0, a set V to empty, generates its own key
K

$← {0, 1}k and runs f on input ppk ← K‖pk.

On an spkO query from f , I increments v and asks its game to activate a new clone. It receives Cmv in
response, sets spkv ← Cmv, and returns this value to f . Because Cmv is generated by I’s game by running
P (ε, sk), this provides a perfect simulation for this oracle.

On a query SignO(j,m) from f , I returns ⊥ to f if j > v or j ∈ V . Else it puts j in V , sets mj ← m, and
lets Chj ← H(K,Cmj‖mj). It sends Chj to (activated) clone Pj and receives back a response Rpj . The
value sj ← Rpj is returned to f . Because Rpj is generated by running P (Cmj‖Chj ,Stj), where Stj is the
state of clone Pj as maintained by I’s game, this is also a perfect simulation.

Eventually f halts with forgery (l,m, s). Let Rp← s and Ch← H(K,Cml‖m). If this is a valid forgery, then
V (pk,Cml‖Ch‖Rp) = 1, (m, s) 6= (ml, sl), and l ≤ v. Adversary I outputs the transcripts (Cml,Ch,Rp)
and (Cml,Chl,Rpl). Both transcripts are accepting, but I won’t win if (Ch,Rp) = (Chl,Rpl). We denote
this last event as Bad, and it follows that:

Advss−ca
ID (I) ≥ Pr

[
f strongly forges ∧ Bad

]
.
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On input key K, CR adversary F generates its own pk and sk via (pk, sk) $← K. It sets (ppk,psk) ←
(K‖pk,K‖sk) and runs f on input ppk. Since F has psk, it can act as the honest prover and respond to
all of f ’s queries in a straightforward way. Like I, it keeps its own counter and keeps track of all internal
variables created during each query.

Eventually f halts with forgery (l,m, s). Let Ch ← H(K,Cml‖m) and Rp ← s. Adversary F will output
(Cml‖m,Cml‖ml) as its collision and win whenever H(K,Cml‖m) = H(K,Cml‖ml) and m 6= ml. This is
always true when the event Bad happens and (l,m, s) is a strong forgery. Otherwise, it would hold that
(l,m, s) = (l,ml, sl), and thus f would not win. It follows that:

Advcr
H(f) ≥ Pr [ f strongly forges ∧ Bad ] .

Putting the above together we have

Advsuf-cma
ds (f) = Pr [ f strongly forges ]

= Pr [ f strongly forges ∧ Bad ] + Pr
[
f strongly forges ∧ Bad

]
≤ Advss−ca

ID (I) + Advcr
H(F ) ,

and the theorem follows.

Note that our proof would have been correct if we had used H(K,m) in place of H(K,Cm||m) in the
transform, as we are always dealing with pairs of transcripts with identical Cm values. Though hashing the
commitment with the message is not necessary, we have included it for consistency with the Fiat-Shamir
transform.

The reason we needed ID to be secure under concurrent (rather than active) attack above is that the
two-tier adversary is not required to sign on a secondary key immediately after acquiring it. (This models
that secondary key generation may be done off-line, in advance.) So in the reduction it is necessary to have
multiple clones (one per secondary key) active at once.

To instantiate the above we now seek efficient protocols for which we can prove special soundness under
concurrent attack. There are actually several such protocols. We illustrate by looking at a pair of examples
that are representative due to the proof techniques.

Definitions. In what follows, G denotes a group whose order p is a prime. (For example an appropriate
elliptic curve group, or a subgroup of the group of integers modulo some prime q such that p divides q − 1.)
Let G∗ = G − {1} be the set of generators of G, where 1 is the identity element of G. We let DLogg(h)
denote the discrete logarithm of h ∈ G to base a generator g ∈ G∗. We assume G, p are fixed and known to
all parties. Let

Advdl
G(A) = Pr

[
g

$← G∗ ; x $← Zp ; x′ $← A(g, gx) : gx
′

= gx
]

denote the advantage of an adversary A in attacking the discrete logarithm (dl) problem. An adversary
A for the one more dl (omdl) problem [BNPS03] is given input a generator g ∈ G∗ and has access to two
oracles. The first is a challenge oracle chO() that takes no inputs and, every time it is invoked, returns a
random element of G. The second is a dl oracle DLogg(·) that, given any W ∈ G, returns DLogg(W ). Let
W1, . . . ,Wq denote the responses to A’s queries to its challenge oracle. A’s goal is to compute the discrete
logarithms of all challenges, meaning output w1, . . . , wq ∈ Zp satisfying gwi = Wi for all 1 ≤ i ≤ q. Of
course this is easy because it has a DLogg(·) oracle. To make the task non-trivial, however, we restrict A to
make strictly fewer queries to its DLogG(·) oracle than it does to its challenge oracle. Let Advomdl

G (A) be
the probability that A wins.

Schnorr identification protocol. The Schnorr identification protocol [Sch91] shown in Figure 5 is
probably the most “canonical” example of a canonical identification protocol. It is secure against imperson-
ation under passive attack under the dl assumption [Sch91]. Security against impersonation under active
(and concurrent) attack, however, remained an open question for a while. Indeed, it does not seem possible
to prove this under the dl assumption. Eventually, however, security against impersonation under active
and concurrent attack was proved by [BP02] under the one more dl (omdl) assumption. However, we need
special soundness rather than security under impersonation. Also, we need to show that our strong form
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Algorithm K
g

$← G∗

x
$← Zp

X ← gx

pk ← (g,X)
sk ← (g, x)
Return (pk, sk)

Prover
Input: sk = (g, x)
y

$← Zp
Y ← gy

z ← y + cx mod p

Y -
c�
z -

Verifier
Input: pk = (g,X)

c
$← Zp

If gz = Y Xc then Dec← 1 else Dec← 0
Return Dec

Alg. pkg

K
$← {0, 1}k

g
$← G∗

x
$← Zp

X ← gx

ppk ← (K, g,X)
psk ← (K, g, x)
Return (ppk,psk)

Alg. skg(ppk,psk)
(K, g,X)← ppk
(K, g, x)← psk

y
$← Zp

Y ← gy

spk ← Y
ssk ← Y ‖y
Return (spk, ssk)

Alg. sgn(psk, ssk,m)
(K, g, x)← psk
Y ‖y ← ssk
c← H(K,Y ‖m)
z ← y + cx mod p
s← z
Return s

Alg. vf(ppk, spk,m, s)
(K, g,X)← ppk
Y ← spk
c← H(K,Y ‖m)
z ← s
If gz = Y Xc then

Return 1
Else Return 0

Figure 5: Schnorr Protocol. Above, G is a group of prime order p, and ChSet = Zp. The top figure
shows the Schnorr identification protocol, while the bottom figure shows the Schnorr-based two-tier scheme
obtained by applying our transform to the Schnorr ID protocol.

of special soundness holds, namely that the adversary not only cannot find a pair of accepting transcripts
(Cm,Ch1,Rp1), (Cm,Ch2,Rp2) with Ch1 6= Ch2 but cannot even find such transcripts with Ch1 = Ch2

as long as Rp1 6= Rp2. We revisit the proof to establish these things. We make use of the fact that the
protocol has a “unique answer” property.

Proposition 5.2 Let ID = (K, P,ChSet, V ) be the Schnorr identification protocol described in Figure 5.
Let I be an adversary against the special soundness of ID under concurrent attack. Then there exists an
omdl adversary A such that

Advss−ca
ID (I) ≤ Advomdl

G (A) .

Furthermore the running time of A is that of I plus some overhead to compute an inverse and product
modulo p, and if I activates q clones, then A makes q + 1 challenge queries.

We remark that the reduction is tight. In contrast, in the reductions showing security against impersonation
[BP02], Advomdl

G (A) is proportional to the square of the probability that I succeeds in impersonation. This
is an advantage to working directly with special soundness rather than with impersonation. We now sketch
a proof based on the ideas of [BP02].

Proof of Proposition 5.2: The omdl adversary A gets input g ∈ G∗, makes an initial request to the
challenge oracle to receive a reply W0, and sets pk ← (g,W0). It then initializes a counter a to 0 and runs I
on input pk. When I asks to activate a new clone, A increments a, queries its challenge oracle to receive Wa

and returns this response to I. When I sends a challenge ci to an activated clone Pi, adversary A queries
zi ← DLogg(WiW

ci
0 ) and returns zi to I. This provides a perfect simulation for I, and A makes strictly fewer

discrete log queries than challenge queries. Eventually I will halt with output a pair (Y, c1, z1), (Y, c2, z2) of
accepting transcripts. If this output is accepted in I’s game, then it must be that (c1, z1) 6= (c2, z2).

We now observe that the Schnorr protocol has a special property not needed in [BP02], namely, the unique
answer property: for any fixed public key X, commitment Y , and challenge c, there is exactly one response
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Algorithm K
g1, g2

$← G∗

s1, s2
$← Zp

v ← g−s11 g−s22

pk ← (g1, g2, v)
sk ← (g1, g2, s1, s2)
Return (pk, sk)

Prover
Input: sk = (g1, g2, s1, s2)
r1, r2

$← Zp
R← gr11 g

r2
2

y1 ← r1 + es1 mod p
y2 ← r2 + es2 mod p

R -
e�

(y1, y2)-

Verifier
Input: pk = (g1, g2, v)

e
$← Zp

If R = gy11 gy22 ve

then Dec← 1 else Dec← 0
Return Dec

Alg. pkg

K
$← {0, 1}k

g1, g2
$← G∗

s1, s2
$← Zp

v ← g−s11 g−s22

ppk ← (K, g1, g2, v)
psk ← (K, g1, g2, s1, s2)
Return (pk, sk)

Alg. skg(ppk,psk)
(K, g1, g2, v)← ppk
(K, g1, g2, s1, s2)← psk

r1, r2
$← Zp

R← gr11 g
r2
2

spk ← R
ssk ← R‖r1‖r2
Return (spk, ssk)

Alg. sgn(psk, ssk,m)
(K, g1, g2, s1, s2)← psk
R‖r1‖r2 ← ssk
e← H(K,R‖m)
y1 ← r1 + es1 mod p
y2 ← r2 + es2 mod p
s← y1||y2
Return s

Alg. vf(ppk, spk,m, s)
(K, g1, g2, v)← ppk
R← spk
e← H(K,R‖m)
y1‖y2 ← s
If R = gy11 gy22 ve then

Return 1
Else Return 0

Figure 6: Okamoto Protocol. Above, G is a group of prime order p, and ChSet = Zp. The top figure
shows the Okamoto identification protocol, while the bottom figure shows the Okamoto-based two-tier scheme
obtained by applying our transform to the Okamoto ID protocol.

z ∈ Zp which is accepted by the verifier, namely for which gz = Y Xc. (Specifically, z = DLogg(Y Xc).)
Since the two transcripts are accepting we have gz1 = YW c1

0 and gz2 = YW c2
0 . It follows from the unique

answer property that c1 6= c2, for otherwise the pair of transcripts would be identical.

Using the fact that c1 6= c2, A may recover w0 ← (z1 − z2)(c1 − c2)−1 mod p and compute wi ← zi − ciw0

mod p for 1 ≤ i ≤ q. If ci, zi weren’t previously defined, we may generate our own ci and then compute
zi ← DLogg(WiW

ci
0 ) as before, while still making fewer discrete log queries than challenge queries.) It is

easy to verify that if I’s output is accepted in its game, then gwi = Wi for 0 ≤ i ≤ q, and thus A will win
the omdl game whenever I wins the ss-ca game.

The unique answer property was required to ensure that c1 6= c2 in our proof, as A has no control of I’s
response. In contrast, the omdl adversary in [BP02] selected its own c1 and c2 values uniformly at random
to ensure c1 6= c2 with high probability.

The two-tier scheme resulting from our FS-based transform instantiated with the Schnorr protocol is very
efficient (shown in Figure 5). Generating a secondary key pair takes just one group exponentiation, while
signing only requires a multiplication modulo p. In the context of our uf-cma to suf-cma transform of
Section 4, this means that the computational overhead for signing (added cost of signing in the suf-cma
scheme compared to that in the uf-cma scheme) is just one group exponentiation and the bandwidth overhead
(added length of a signature in the suf-cma scheme compared to that in the uf-cma scheme) is one group
element and one integer modulo p.

Okamoto Identification Protocol. Okamoto’s protocol [Oka92] is illustrated in Figure 6. Its advantage
over the Schnorr protocol is that security can be proved under the standard dl assumption rather than the
omdl assumption. (Yet in fact the efficiency is not much different from that of the Schnorr protocol as
we will see below.) The idea is that there are many secret keys corresponding to a single public key and
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witness-indistinguishability [FS90] can be used in the simulation. The protocol was proved in [Oka92] to be
secure against impersonation under active attack assuming hardness of the dl problem, and the proof extends
to concurrent attacks. However, again, we need special soundness rather than security under impersonation,
and in our new, strong form. The Okamoto protocol, however, does not have the unique answer property.
But we can still prove the security we need. We now state the result.

Proposition 5.3 Let ID = (K, P,ChSet, V ) be the Okamoto identification protocol described in Figure 6.
Let I be an adversary against the special soundness of ID under concurrent attack. Then there exists a dl
adversary A such that

Advss−ca
ID (I) ≤ 1

p
+ Advdl

G(A) .

Furthermore the running time of A is that of I plus the time to compute three inverses and three products
modulo p.

Again, the reduction is essentially tight due to working with special soundness, whereas the reduction of
[Oka92] to establish security against impersonation incurs the square loss we discussed in the context of
Schnorr.

Proof of Proposition 5.3: Adversary A is given input a generator we denote g1 and a group element
g2 = gα1 . Its goal is to find α. If g2 = 1 then it outputs 0 and halts, having found α. Otherwise, g1
and g2 are generators. Now it chooses its own s1, s2

$← Zp and sets v ← g−s11 g−s22 . Then pk ← (g1, g2, v)
is given to I. But secret key sk ← (g1, g2, s1, s2) is known to A. So adversary A can respond to I’s
oracle queries in a straightfoward manner, providing a perfect simulation. Eventually I halts with output
(R, e, (y1, y2)), (R, e′, (y′1, y

′
2)). As before, we consider the case when I wins.

In proving the Schnorr protocol, we made use of the fact that it had the unique answer property. However,
the Okamoto protocol does not have this property, as there are p possible valid responses for each fixed R
and e. Thus we cannot assume that e 6= e′. Instead, we consider two separate cases.

If e 6= e′, then A may solve for α as described in [Oka92] with high probability. To determine α, A
first calculates s∗1 = (y1 − y′1)(e − e′)−1 mod p and s∗2 = (y2 − y′2)(e − e′)−1 mod p, which can be done
since e 6= e′. It then calculates β = (s∗1 − s1)(s2 − s∗2)−1 mod p, which can be done whenever s2 6= s∗2.
The witness-indistinguishability of the protocol says that it is impossible for I to have distinguished which
(s1, s2) was chosen by A during its interaction. Then since s2 is chosen uniformly random, the probability
that s2 = s∗2 = (y2 − y′2)(e − e′)−1 mod p is 1/p. This yields the additive term in our bound. To show
that gβ1 = g2, we first observe that v = g−s11 g−s22 = g

−s∗1
1 g

−s∗2
2 , which is easy to verify with simple algebraic

manipulation. We may rearrange the equality to yield gs
∗
1−s1

1 = g
s2−s∗2
2 and thus g2 = g

(s∗1−s1)(s2−s
∗
2)−1

1 = gβ1 .
Then A may output β as its answer.

If, on the other hand, e = e′, we have gy11 gy22 = g
y′1
1 g

y′2
2 . Assuming I wins, we know that (e, (y1, y2)) 6=

(e′, (y′1, y
′
2)). But since e = e′ it must be that (y1, y2) 6= (y′1, y

′
2). But then since gy11 gy22 = g

y′1
1 g

y′2
2 and g1, g2

are generators, it must be that y1 6= y′1 and also y2 6= y′2. Now A computes β = (y1− y′1)(y′2− y2)−1 mod p.
Then we have gβ1 = g2 and thus A can output β.

In the two-tier scheme resulting from our FS-transform instantiated with the Okamoto protocol (shown
in Figure 6), generating a secondary key pair takes about one group exponentiation (it is a 2-fold multi-
exponentiation, which has about the same cost as a single one [MvV97]). Signing requires a couple of
multiplications modulo p. So the computational cost is the same as for Schnorr although security relies only
on dl rather than omdl. In the context of our uf-cma to suf-cma transform of Section 4, this means that the
computational overhead for signing is again just one group exponentiation. But the bandwidth overhead is
one group element and two integers modulo p, slightly more than when we used the Schnorr scheme.

Additional Protocols. Above we have discussed two protocols that meet our ss-ca security requirement.
We have however identified several more with the property in question. We omit proofs since they are similar
to the ones given here, and instead provide a brief discussion. Figure 8 gives a summary of these protocols
and the efficiency of the corresponding two-tier scheme for each. The Fiat-Shamir protocol [FS87], shown in
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Algorithm K
N

$← Kfact

For i = 1, . . . , t do
xi

$← Z∗N
Xi ← x2

i mod N
pk ← (N,X1, . . . , Xt)
sk ← (N, x1, . . . , xn)
Return (pk, sk)

Prover
Input: sk = (N, x1, . . . , xn)
y

$← Z∗N
Y ← y2 mod N

z ← y ·
∏t
i=1 x

ci
i mod N

Y -
c�
z -

Verifier
Input: pk = (N,X1, . . . , Xt)

c = (c1, . . . , ct)
$← {0, 1}t

If Y = z2 ·
∏t
i=1Xi

ci mod N
then Dec← 1 else Dec← 0

Return Dec

Figure 7: Fiat-Shamir Protocol. Above, N is the product of two distinct primes, generated by some
randomized algorithm Kfact.

Figure 7, does not meet our strong form of the special soundness requirement. The protocol can be attacked
given one honest transcript (Y, c, z) by outputting the transcripts (Y, c, z), (Y, c,−z mod N).

The GQ protocol [GQ90] was proved secure against impersonation under concurrent attack in [BP02]
under the assumption that RSA is secure against one more RSA inversion (omri). (This is an RSA analogue
of the omdl assumption. Both assumptions were introduced in [BNPS03]. Security of GQ under active or
concurrent attack under the one-wayness of RSA remains open.) We can extend this proof to show it is
ss-ca under the same assumption in the same way that we extended the proof of the Schnorr scheme. This
protocol has efficiency similar to Fiat-Shamir yet has small key sizes.

Shamir presented an identity-based identification scheme in [Sha85]. A corresponding standard (i.e. not
identity-based) version was presented in [BNN04], along with a variant they called Sh∗ and proved secure
against impersonation under concurrent attack assuming security of RSA under one more inversion. This
too can be proved ss-ca secure under the same assumption. The protocol is however a mirror image of GQ
and has the same efficiency attributes as the latter.

Then there are pairings-based schemes. Both Hs-SI [BNN04] and ChCh-SI [BNN04] are ss-ca secure
under the one more computational Diffie-Hellman assumption (om-cdh). These identification schemes were
presented in [BNN04] and are based upon existing IBS (identity-based signature) schemes, namely those of
Hess [Hes03] and Cha and Cheon [CC03]. Again, the proof of ss-ca security extends the proofs of security
against impersonation of [BNN04].

6 Relations between two-tier and one-time schemes

In this section, we explore the relations between two-tier schemes and one-time schemes and discuss the
implications of these relations. In particular, we show that we can convert any two-tier scheme into a one-
time scheme, and, similarly, we can convert any one-time scheme into a two-tier scheme. We will compare
our Fiat-Shamir derived one-time schemes to existing schemes to show the advantages of our newly derived
schemes.

One-time schemes from two-tier schemes. A two-tier signature scheme yields a one-time signature
scheme as a special case (by restricting to a single secondary key). We are interested in this transform
because we then obtain FS-based strongly unforgeable one-time signature schemes (using our FS-based con-
structions of two-tier schemes from Section 5), which have some advantages over existing one-time schemes.
We now formally describe how to convert any two-tier signature scheme ds = (pkg, skg, sgn, vf) into a one-time
signature scheme DS = (KG,SGN,VF). The KG algorithm runs pkg to get (ppk,psk), runs skg(ppk,psk)
to get (spk, ssk), and returns ppk‖spk as the public key and psk‖ssk as the secret key. The remaining
algorithms simply use the respective algorithms from the two-tier signature scheme. That is, sign algo-
rithm SGN(psk‖ssk,M) returns S $← sgn(psk, ssk,M), and verification algorithm VF(ppk‖spk,M, S) returns
vf(ppk, spk,M, S). The following theorem says that if ds is strongly unforgeable then so is DS.

15



Base Assumption Secondary Key Signing Verification Size of Signature
Protocol Generation Cost Cost Cost Secondary Size

Public Key
Schnorr omdl 1 exp. 1 mult., 1 exp. 1 group elt. 1 elt. ∈ Zp
[Sch91] 1 add.
Okamoto dl 2 exp. 2 mult., 1 exp. 1 group elt. 2 elt. ∈ Zp
[Oka92] 2 add.
GQ omri 1 exp. 1 exp., 1 exp. 1 group elt. 1 elt. ∈ ZN
[GQ90] 1 mult.
Sh*-SI omri 1 exp. 1 exp., 1 exp. 1 group elt. 1 elt. ∈ ZN
[BNN04] 1 mult.
Hs-SI om-cdh 1 pairing; 1 exp. 2 mult., 2 pairings, 1 group elt. 1 group elt.
[BNN04] 2 add. 1 exp.
ChCh-SI om-cdh 1 mult. 1 add., 2 pairings 1 group elt. 1 group elt.
[BNN04] 1 mult.

Figure 8: Summary of FS-based two-tier schemes. Column 1 is the name of the base identification
protocol used to construct the two-tier scheme produced by applying the FS transform. Column 2 is the
assumption under which the protocol is ss-ca secure. Column 3 gives the cost of generating secondary keys
in the two-tier scheme, column 4 gives the cost of signing, and column 5 gives the verification cost. Columns
6 and 7 give the size of the secondary public key and signature, respectively. All schemes have an additional
cost of one hash operation for signing and verification.

Theorem 6.1 Let DS = (KG,SGN,VF) be the one-time signature scheme associated to two-tier signature
scheme ds as described above. Let F be an adversary attacking the strong unforgeability of DS which makes
exactly one sign query. Then there exists an adversary f attacking the strong unforgeability of ds and making
one secondary key query and one sign query, such that

Advsuf-cma
DS (F ) ≤ Advsuf-cma

ds (f) .

Furthermore the running time of f is the time to run F .

Proof of Theorem 6.1: Adversary f receives as input ppk and makes an spkO query to receive spk1. It
provides the public key PK ← ppk‖spk1 to F . When F makes its sign query on message M ′, adversary f

returns S′ $← SignO(1,M ′). Finally, when F halts with forgery (M,S), adversary f returns (1,M, S) as its
forgery. This is a valid forgery for f whenever (M,S) 6= (M ′, S′) and vf(ppk, spk1,M, S) = 1, which is true
whenever F strongly forges.

As an example, applying the above transform to the Schnorr-based two-tier scheme of Figure 5 yields the
one-time scheme shown in Figure 11. Note that we have made an optimization in the figure by removing g
from the secret key SK , as it turns out to be unnecessary in signing a message. To highlight the advantages
of this scheme versus existing ones, we revisit the iterated hash one-time scheme of [EGM96], which is the
most efficient one-time scheme known.

Iterated hash one-time signature scheme. We now describe the iterated hash one-time signature
scheme of [EGM96]. We will use a family of functions, namely H: {0, 1}k ×{0, 1}d → {0, 1}d. Let Hi(K,x)
mean iterating the hash function H(K, ·) on x for i total iterations, or in other words, let H0(K,x) = x and
Hi(K,x) = H(K,Hi−1(K,x)) for i ≥ 1. Associated to the scheme are parameters L, t, n, and T , where L is
the message length (e.g. L = 160), t is an integer dividing L, n = L/t, and T = 2t. A message is a sequence
m1, . . . ,mn where each mi is an integer in the range {0, . . . , T − 1}. Figure 9 shows the algorithms of the
one-time signature scheme DS = (KG,SGN,VF) associated to these parameters.

This one-time scheme was shown by [EGM96] to be uf-cma secure under the assumption that H is quasi
one-way (briefly, given an image y for a hash function H, an adversary attacking quasi one-wayness must find
an x′ and r such that Hr+1(K,x′) = Hr(K, y)). We observe that it is suf-cma secure under the additional
assumption that the underlying hash function is collision resistant.
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Algorithm KG

K
$← {0, 1}k

x0
$← {0, 1}d

y0 ← Hn(T−1)(K,x0)
For i = 1, . . . , n do
xi

$← {0, 1}d
yi ← HT−1(K,xi)

SK ← K‖x0‖ · · · ‖xn
PK ← K‖y0‖ · · · ‖yn
Return (PK ,SK)

Algorithm SGN(SK ,M)
Parse M as m1‖ · · · ‖mn

Parse SK as K‖x0‖ · · · ‖xn
s0 ← Hm1+···+mn(K,x0)
For i = 1, . . . , n do
si ← HT−1−mi(K,xi)

S ← s0‖ · · · ‖sn
Return S

Algorithm VF(PK ,M, S)
Parse M as m1‖ · · · ‖mn

Parse S as s0‖ · · · ‖sn
Parse PK as K‖y0‖ · · · ‖yn
b← 1
If Hn(T−1)−m1−···−mn(K, s0) 6= y0

then b← 0
For i = 1, . . . , n do

If Hmi(K, si) 6= yi
then b← 0

Return b

Figure 9: Iterated hash one-time signatures scheme. Associated to the scheme are parameters L, t,
n, and T , where L is the message length (e.g. L = 160), t is an integer dividing L, n = L/t, and T = 2t. A
message is a sequence m1, . . . ,mn where each mi is an integer in the range {0, . . . , T − 1}.

Comparison to Schnorr-based one-time scheme. The point of presenting this scheme is to compare
to our own Fiat-Shamir derived schemes (specifically, using Schnorr as the base identification protocol). The
iterated hash one-time signature scheme has several adjustable parameters, namely the length of the message
to be signed and the number of blocks within each message (each block is an input to the hash function).
There is a tradeoff between key and signature sizes versus computational cost depending upon the choice of
these parameters. (For a fixed message size, a smaller block size will mean larger key and signature sizes but
cheaper computational cost.) Thus, to compare this scheme to our two-tier based Schnorr one-time scheme,
we will consider an instance of the scheme with d = L = 160 (i.e. the hash function takes 160-bit input and
produces 160-bit output, and the message input length is 160 bits). In practice, we will use a hash function
such as SHA-1 in place of H so that there is no key K. Figure 10 shows the public key, private key, and
signature bit lengths, along with the cost of signing, verification, and key generation for all possible values
of t with a fixed d = L = 160.

In comparison to the iterated-hash one-time scheme, consider the Schnorr-based one-time scheme con-
structed by applying the FS-based transform to create a two-tier signature scheme and then applying the
above transform to create the one-time scheme. The resulting scheme is shown in Figure 11. Let G be a
160-bit elliptic curve group, with |p| ≈ 160. Key generation in our Schnorr-based one-time scheme requires
two group exponentiations, or about 6600 hash computations (recall that a group exponentiation with the
crypto++ library is about 3300 hashes for an unoptimized implementation [Dai]). Signing requires only
one hash computation and an operation modulo p. Verification requires one group exponentiation and one
group multiplication. The public and secret key lengths for these parameters are both 160 · 3 = 480 bits,
and signature size is 160 bits.

From Figure 10 one may see that it is unreasonable to achieve similar lengths in the iterated hash
scheme, as the cost of computation is infeasible for such short keys. Alternatively, choosing t = 10 so that
key generation costs at least as much in this scheme as in the Schnorr scheme yields 2720-bit keys and
signatures. This is significantly larger than the 480 bits required by Schnorr. Furthermore, at this point the
cost of signing is also significantly cheaper for Schnorr (16368 hashes in the iterated hash scheme versus one
hash and one operation modulo p in the Schnorr scheme). Thus, our Schnorr one-time scheme has efficiency
gains in both space (in the size of the keys and signature) and time (in signing) over the conventional scheme
of [EGM96]. Note that we would get the same efficiency gains using the standard Schnorr signature scheme
instead of our scheme, but the proof of the former uses random oracles.

Recall that our Schnorr one-time scheme relies only upon the difficulty of the one-more-discrete-log (omdl)
problem and the collision resistance of the underlying hash function. We also observe that we would obtain
similar efficiency gains (with slightly longer key and signature lengths) over the scheme of [EGM96] if we were
to compare to our FS-derived Okamoto-based one-time signature scheme, and the security of this scheme
relies only upon the hardness of the discrete log problem and the collision resistance of the underlying hash
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t Public Key, Private Key, Number of Hash Computations
and Signature bit-length for Signing, Verification, and

Key Generation
((160/t+ 1) · 160) (≈ 160/t · (2t − 1))

1 25760 160
2 12960 240
4 6560 600
5 5280 992
8 3360 5100
10 2720 16368
16 1760 655,350
20 1440 8,388,600
32 960 8× (232 − 1)
40 800 4× (240 − 1)
80 480 2× (280 − 1)
160 320 2160 − 1

Figure 10: Efficiency of Iterated Hash Scheme. We fix the following parameters of the iterated hash one-
time signature scheme: d = 160 and L = 160. This chart considers all possible values for t and displays the
corresponding public and private key bit-lengths, signature bit-length, and the number of hash computations
required for signing and verification.

Algorithm KG

K
$← {0, 1}k ; g ← G∗

x
$← Zp ; X ← gx

y
$← Zp ; Y ← gy

PK ← (K, g,X, Y )
SK ← (K,x, y, Y )
Return (PK ,SK)

Algorithm SGN(SK ,M)
Parse SK as (K,x, y, Y )
c← H(K,Y ‖M)
z ← y + cx mod p
Return z

Algorithm VF(PK ,M, S)
Parse PK as (K, g,X, Y )
c← H(K,Y ‖M)
z ← S
If gz = Y Xc then return 1
Return 0

Figure 11: Our Schnorr-based one-time signature scheme.

function.

Two-tier schemes from one-time schemes. A one-time signature scheme yields a two-tier signature
scheme by keeping the primary keys empty and using the one-time scheme to generate secondary keys. More
formally, we now describe how to convert any one-time signature scheme DS = (KG,SGN,VF) into a two-tier
signature scheme ds = (pkg, skg, sgn, vf). The pkg algorithm returns (ε, ε). The remaining algorithms simply
use the respective algorithms from the one-time signature scheme. That is, the secondary key algorithm
returns (spk, ssk) $← KG, sign algorithm sgn(ε, ssk,m) returns s $← SGN(ssk,m), and verification algorithm
vf(ε, spk,m, s) returns VF(spk,m, s). The following theorem says that if DS is strongly unforgeable then so
is ds.

Theorem 6.2 Let ds = (pkg, skg, sgn, vf) be the two-tier signature scheme associated to one-time signature
scheme DS as above. Let f be an adversary attacking the strong unforgeability of ds and making q spkO
key queries, where q ≥ 1. Then there exists an adversary F attacking the strong unforgeability of DS, such
that

Advsuf-cma
ds (f) ≤ q ·Advsuf-cma

DS (F ) .

Furthermore the running time of F is the time to run f plus a constant amount of overhead.

18



Proof of Theorem 6.2: Adversary F receives as input PK and chooses a random key query q′ from
{1, . . . , q}. It provides to f the primary public key ε. It responds to f ’s spkO queries by running KG for
each request and returning the corresponding public key, except on the q′-th query, on which it returns PK .
It responds to f ’s sign queries according to the algorithm, using the secret keys it has generated, except on
a query for key q′. Here it uses its own signing oracle to produce the signature s. Since f may make a sign
query for each key at most once, then F also makes at most one query to its sign oracle. We denote by mi

the i-th message queried by f and si the corresponding signatures provided during the simulation.

When f halts with forgery (l,m, s), F checks that l = q′ and aborts if this condition is false. Otherwise,
F outputs (m, s). If f ’s forgery is valid, then vf(ε,PK ,m, s) = 1 and (m, s) 6= (ml, sl). It follows that
VF(PK ,m, s) = 1 and thus (m, s) is a forgery for F .

Since the choice of q′ has no affect on f ’s behavior, it follows that

Advsuf-cma
DS (F ) ≥ 1

q
·Advsuf-cma

ds (f) .

Furthermore, the running time of F is that of f plus a constant amount of overhead.

From known constructions of strongly unforgeable one-time schemes, and in particular from the above-
mentioned iterated hash one-time scheme, we now obtain new constructions of two-tier schemes. The relative
merits compared to our FS-based two-tier schemes are analogous to what was discussed in the one-time case.
Namely, for parameters where the computational costs are the same, the FS-based schemes have smaller
key sizes. However, if key sizes are not a concern, there are parameters for which the computational costs
of these one-time based two-tier schemes are lower than the computational costs of our FS-based two-tier
schemes.
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