
‘Good’ Pseudo-Random Binary Sequences from

Elliptic Curves

Zhixiong CHEN1,2∗, Guozhen XIAO1

(1. National Key Lab. of ISN, Xidian Univ., Xi’an 710071, China
2. Depart. of Math., Putian Univ., Putian, Fujian 351100, China)

Abstract. We show that the binary sequences, constructed by L.Goubin
et al from elliptic curves, possess ‘good’ pseudo-randomness. Namely,
such sequences are of ‘small’ well-distribution measure and ‘small’ cor-
relation measure of ‘small’ order, both of which were introduced by
C.Mauduit et al to analyze the pseudo-randomness of binary sequences.
The results give a partial answer to a conjecture proposed by L.Goubin
et al.
Keywords. pseudorandom sequences, elliptic curves, exponential sums,
well-distribution, correlation.

1 Introduction

Mauduit and Sárközy [15] introduced several measures to evaluate the (local)
pseudo-randomness of a finite binary sequence:

SN = {s1, s2, · · · , sN} ∈ {+1,−1}N .

The most two important measures are the well-distribution measure and the
correlation measure of order k.

The well-distribution measure of SN is defined as

W (SN ) = max
a,b,t

∣∣∣∣∣∣

t−1∑

j=0

sa+jb

∣∣∣∣∣∣
,
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where the maximum is taken over all a, b, t such that a, b, t ∈ N and 1 ≤
a ≤ a + (t − 1)b ≤ N , while the correlation measure of order k (or order k
correlation measure) of SN is defined as

Ck(SN ) = max
M,D

∣∣∣∣∣
M∑

n=1

sn+d1sn+d2 · · · sn+dk

∣∣∣∣∣ ,

where the maximum is taken over all D = (d1, · · · , dk) with non-negative
integers 0 ≤ d1 < · · · < dk and M such that M + dk ≤ N .

SN is considered as a “good” pseudo-random sequence, if both W (SN )
and Ck(SN ) (at least for small k) are “small” in terms of N (in particular,
both are o(N) as N →∞). It was shown in [2] that for a “truely” random
sequence SN ∈ {+1,−1}N (i.e., choosing SN ∈ {+1,−1}N with probability
1/2N ), both W (SN ) and Ck(SN ) (for some fixed k) are around N1/2 with
“near 1” probability.

For the Legendre sequence Sp = {s1, s2, · · · , sp} ∈ {+1,−1}p with

sn =

{ (
n
p

)
, if gcd(n, p) = 1;

1, if p|n,

it was shown by Mauduit and Sárközy in [15] that

W (Sp) = O(p1/2log(p)) and Ck(Sp) = O(kp1/2log(p)),

which indicate that the Legendre sequence forms a “good” pseudo-random
sequence. Many other “good” (but slightly inferior) binary sequences were
designed in the literature, see for example [2, 3, 7, 8, 16, 18, 19] and references
therein.

Recent developments point towards an interest in the elliptic curve ana-
logues of pseudo-random number generators, see [1, 5, 6, 9, 10, 11, 12, 13, 14,
17, 20, 22] and references therein. Such number generators provide strong
potential applications in cryptography for generating pseudo-random num-
bers and session keys.

In [7] Goubin et al applied elliptic curves to construct binary sequences,
whose terms were represented by two elements +1 and −1, and analyzed
their pseudo-randomness. In fact, the authors of [7] only listed some ex-
amples there and proposed a conjecture that such binary sequences have
‘small’ well-distribution measure and ‘small’ correlation measure of order k
(for some small value k). We will apply exponential sums on elliptic curves
to show that this conjecture is correct.
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In the present paper, we use 0 and 1 to represent the terms of a binary
sequence as usual. We first introduce some notions and basic facts of elliptic
curves over finite fields. Let p > 3 be a prime and Fp the finite field of p
elements, which we identify with the set {0, 1, · · · , p − 1}. F∗p is the set of
non-zero elements of Fp. Let E be an elliptic curve over Fp, given by an
affine Weierstrass equation of the standard form

y2 = x3 + ax + b, (1)

with coefficients a, b ∈ Fp and nonzero discriminant, see [4]. It is known that
the set E(Fp) of Fp-rational points of E forms an Abelian group under an
appropriate composition rule denoted by ⊕ and with the point at infinity O
as the neutral element. We recall that

|#E(Fp)− p− 1| ≤ 2p1/2,

where #E(Fp) is the number of Fp-rational points, including the point at
infinity O. Let G ∈ E(Fp) be a point of order N , that is, N is the size of
the cyclic group 〈G〉 generated by G. A multiple of a point P is taken by
nP = ⊕n

i=1P . We write iG = (xi, yi) ∈ Fp × Fp on E for all 1 ≤ i ≤ N − 1.
Five types of finite binary sequences SN−1 = {s1, · · · , sN−1}, constructed

in [7], are described in the following with a slight modification:

Construction I : si :=
{

1, yi > p
2 ;

0, otherwise.

Construction II : si :=
{

1, xi > p
2 ;

0, otherwise.

Construction III : si :=
{

1, yi is even;
0, otherwise.

Construction IV : si :=
{

1, xi is even;
0, otherwise.

Construction V : si :=
{

1, xi < yi;
0, otherwise.

In fact, Construction I has been proposed in [12] and the period and the
linear complexity of this sequence has also been considered.

In the present paper, we want to prove that these constructions indeed
produce ‘good’ pseudo-random sequences. Namely, we show that both the
well-distribution measure and the correlation measure of ‘small’ order of the
above five sequences are ‘small’. The proof is based on some bounds of
character sums over subgroups of the point group of elliptic curves [11].
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Throughout this paper, the implied constant in the symbol “ ¿ ” may
sometimes depends on the integer deg(f), the degree of a rational function
f , and is absolute otherwise.

2 Preparations

Let E be an elliptic curve over Fp defined as Eq.(1). Let f ∈ Fp(E) be a
rational function. We denote by deg(f) the degree of the pole divisor of f .
In particular, deg(f) = 2 if f = x and deg(f) = 3 if f = y. The translation
map by W ∈ E(Fp) on E(Fp) is defined as follows:

τW : P 7→ P ⊕W.

It is obvious that (f ◦ τW )(P ) = f(τW (P )) = f(P ⊕W ). We denote by ª
the inverse operation of ⊕ in the rational points group of E . From Lemma
3.16, Theorem 3.17 and Lemma 3.14 of [4], we have the following statement.

Lemma 1 Let f ∈ Fp(E) be a rational function. If f has a pole at H ∈
E(Fp) of multiplicity ρ, then f ◦ τW has a pole at H ªW of the same mul-
tiplicity ρ.

Let ep(z) = exp(2πiz/p) be an additive character of Fp. For any positive
m, an additive character of Zm := {0, 1, · · · ,m−1}, the residue ring modulo
m, is defined as em(z) = exp(2πiz/m). We also need the following upper
bound which is a special case of Corollary 1 of [11].

Lemma 2 Let f ∈ Fp(E) be a nonconstant rational function and G ∈ E(Fp)
be a rational point of order N . Then the bound

∣∣∣∣∣∣∣∣

N−1∑
z=0

f(zG) 6=∞

ep(λf(zG))eN (ηz)

∣∣∣∣∣∣∣∣
≤ 2deg(f)p1/2

holds for all λ ∈ F∗p and η ∈ ZN .

Lemma 3 Let p be an odd prime number and λ ∈ Z with 0 ≤ |λ| ≤ p−1
2 .

We define

V (λ) :=
(p−1)/2∑

r=0

ep(−λr)−
(p−1)/2∑

r=1

ep(λr), (2)
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U(λ) :=
(p−1)/2∑

r=1

ep(2λr)−
(p−1)/2∑

r=0

ep(−2λr) (3)

and

W (λ, u) :=
u∑

r=0

ep(−λr)−
p−1∑

r=u+1

ep(−λr), (4)

where 0 ≤ u ≤ p− 1. Then the following bounds hold:
∑

|λ|≤(p−1)/2

|V (λ)| ≤ 2p(1 + logp) ;

∑

|λ|≤(p−1)/2

|U(λ)| ≤ 2p(1 + logp) ;

and ∑

|λ|≤(p−1)/2

|W (λ, u)| ≤ 2p(1 + logp).

Proof. Since |V (λ)| ≤
∣∣∣∑(p−1)/2

r=0 ep(−λr)
∣∣∣ +

∣∣∣∑(p−1)/2
r=1 ep(λr)

∣∣∣, the first de-
sired result follows from Inequality (3.4) of [21]. The other two cases are
similar. ¤

Lemma 4 Let N be a positive integer, 1 ≤ b ≤ N − 1 and t ∈ N with
(t− 1)b ≤ N − 1. Then the following bound holds:

N−1∑

λ=0

∣∣∣∣∣
t−1∑

x=0

eN (λbx)

∣∣∣∣∣ ¿ N logN.

Proof. Let d = gcd(b,N), M = N/d and b1 = b/d. Since (t− 1)b ≤ N − 1,
we have d(t− 1) ≤ (t− 1)b < N , and hence t− 1 < M . We derive

N−1∑

λ=0

∣∣∣∣∣
t−1∑

x=0

eN (λbx)

∣∣∣∣∣ = d
M−1∑

λ=0

∣∣∣∣∣
t−1∑

x=0

eN (λbx)

∣∣∣∣∣ = d
M−1∑

λ=0

∣∣∣∣∣
t−1∑

x=0

eM (λb1x)

∣∣∣∣∣ ¿ dM logM.

Since gcd(M, b1) = 1, the last inequality holds by Inequality (3.4) of [21]. ¤

Lemma 5 Let G ∈ E(Fp) be of order N and f ∈ Fp(E) a nonconstant
rational function. Then for any fixed a, b, t ∈ N with 1 ≤ a ≤ a + (t− 1)b ≤
N − 1, the following bound holds:

∣∣∣∣∣
t−1∑

x=0

ep(f((a + bx)G))

∣∣∣∣∣ ¿ p1/2logN.
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Proof.
∣∣∣∣
t−1∑
x=0

ep(f((a + bx)G))
∣∣∣∣ =

∣∣∣∣ 1
N

N−1∑
n=0

t−1∑
x=0

ep(f(nG))
N−1∑
λ=0

eN (λ(n− (a + bx)))
∣∣∣∣

= 1
N

∣∣∣∣
N−1∑
λ=0

t−1∑
x=0

eN (−λ(a + bx))
N−1∑
n=0

ep(f(nG))eN (λn))
∣∣∣∣

≤ 1
N

N−1∑
λ=0

∣∣∣∣
t−1∑
x=0

eN (−λ(a + bx))
∣∣∣∣ ·

∣∣∣∣
N−1∑
n=0

ep(f(nG))eN (λn))
∣∣∣∣

= 1
N

N−1∑
λ=0

∣∣∣∣
t−1∑
x=0

eN (−λbx)
∣∣∣∣ ·

∣∣∣∣
N−1∑
n=0

ep(f(nG))eN (λn))
∣∣∣∣ .

Now by Lemmas 2 and 4, we derive the desired result. We note that in the
above formulae the poles of f must be ruled out. ¤

3 Pseudorandomness of Elliptic Curve Sequences

In this section we will present an upper bound respectively for the well-
distribution measure W (SN ) and the correlation measure Ck(SN ) for binary
sequences defined in Construction I-V.

Assume that f is a rational function and f = x or f = y in the following
context. We remark that x(iG) = xi and y(iG) = yi for iG = (xi, yi) ∈
E(Fp). For Construction I and II, for any 1 ≤ i ≤ N − 1, we have

1
p

(p−1)/2∑

r=1

∑

|λ|≤(p−1)/2

ep(λ(f(iG) + r)) =
{

1, p > f(iG) ≥ (p + 1)/2,
0, otherwise.

(5)

1
p

(p−1)/2∑

r=0

∑

|λ|≤(p−1)/2

ep(λ(f(iG)− r)) =
{

0, p > f(iG) ≥ (p + 1)/2,
1, otherwise.

(6)

Subtracting (5) from (6) yields

1
p

∑

|λ|≤(p−1)/2

ep(λf(iG))V (λ) =
{ −1, p > f(iG) ≥ (p + 1)/2,

1, otherwise.

where V (λ) is defined as (2) in Lemma 3. It is easy to see that

(−1)si =
1
p

∑

|λ|≤(p−1)/2

ep(λf(iG))V (λ), (7)
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where f = y for Construction I and f = x for Construction II.
While for Construction III and IV, for any 1 ≤ i ≤ N − 1, we have

1
p

(p−1)/2∑

r=0

∑

|λ|≤(p−1)/2

ep(λ(f(iG)− 2r)) =
{

1, f(iG) is even,
0, otherwise.

(8)

1
p

(p−1)/2∑

r=1

∑

|λ|≤(p−1)/2

ep(λ(f(iG) + 2r)) =
{

0, f(iG) is even,
1, otherwise.

(9)

(9)−(8), we get

1
p

∑

|λ|≤(p−1)/2

ep(λf(iG))U(λ) =
{ −1, f(iG) is even,

1, otherwise.

where U(λ) is defined as (3) in Lemma 3. Similar to (7), we obtain

(−1)si =
1
p

∑

|λ|≤(p−1)/2

ep(λf(iG))U(λ), (10)

where f = y for Construction III and f = x for Construction IV.
For Construction V, the following two formulae hold for all xi with 0 ≤

xi ≤ p− 1:

1
p

p−1∑

r=xi+1

∑

|λ|≤(p−1)/2

ep(λ(yi − r)) =
{

1, xi < yi,
0, otherwise.

(11)

1
p

xi∑

r=0

∑

|λ|≤(p−1)/2

ep(λ(yi − r)) =
{

0, xi < yi,
1, otherwise.

(12)

(12)−(11), we get

1
p

∑

|λ|≤(p−1)/2

ep(λyi)W (λ, xi) =
{ −1, xi < yi,

1, otherwise.

where W (λ, xi) is defined as (4) in Lemma 3. Hence we obtain

(−1)si =
1
p

∑

|λ|≤(p−1)/2

ep(λyi)W (λ, xi). (13)
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Theorem 1 Assume that G ∈ E(Fp) is a point of order N and SN−1 is
one of binary sequences obtained from Construction I−V. Then the well-
distribution measure of SN−1 holds:

W (SN−1) ¿ p1/2logplogN.

Proof. We only prove the statement for SN−1 obtained from Construction
I and II. Combining with (10), (13) and Lemma 3, one can prove the other
three cases in a similar way. For any a, b, t ∈ N with 1 ≤ a ≤ a + (t− 1)b ≤
N − 1, from (7) we have

∣∣∣∣∣
t−1∑
j=0

(−1)sa+jb

∣∣∣∣∣ = 1
p

∣∣∣∣∣
t−1∑
j=0

∑
|λ|≤(p−1)/2

V (λ)ep(λf((a + jb)G))

∣∣∣∣∣

= 1
p

∣∣∣∣∣
∑

|λ|≤(p−1)/2

V (λ)
t−1∑
j=0

ep(λf((a + jb)G))

∣∣∣∣∣

≤ 1
p

∑
|λ|≤(p−1)/2

|V (λ)| ·
∣∣∣∣∣
t−1∑
j=0

ep(λf((a + jb)G))

∣∣∣∣∣

≤ 1
p

(
(p−1)/2∑
|λ|=1

|V (λ)| ·
∣∣∣∣∣
t−1∑
j=0

ep(λf((a + jb)G))

∣∣∣∣∣ + t

)
.

Now by Lemmas 3 and 5, we obtain the desired result. ¤

Theorem 2 Assume that G ∈ E(Fp) is a point of order N and SN−1 is one
of binary sequences obtained from Construction I−V. Then the correlation
measure of order k (k < p) holds:

Ck(SN−1) ¿ k2kp1/2(logp)klogN.

Proof. Similar to Theorem 1, we only prove the statement for SN−1 obtained
from Construction I and II. For D = (d1, · · · , dk) and M with 0 ≤ d1 < · · · <
dk ≤ N − 1−M , we have

∣∣∣∣
M∑

n=1
(−1)sn+d1

+···+sn+dk

∣∣∣∣

=

∣∣∣∣∣
M∑

n=1

k∏
i=1

(
1
p

∑
|λi|≤(p−1)/2

V (λi)ep(λif((n + di)G))

)∣∣∣∣∣

= 1
pk

∣∣∣∣∣
∑

|λ1|≤(p−1)/2

· · · ∑
|λk|≤(p−1)/2

V (λ1) · · ·V (λk)
M∑

n=1
ep(

k∑
i=1

λif((n + di)G))

∣∣∣∣∣

≤ 1
pk


2kdeg(f)p1/2logN

(
∑

|λ|≤(p−1)/2

|V (λ)|
)k

+ M


 .
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The last inequality holds since the degree of the rational function
k∑

i=1
f ◦τdiG

is at most kdeg(f) by Lemma 1. The desired result follows from Lemmas 3
and 5. ¤

Theorems 1 and 2 indicate that the five types binary sequences are
“good” sequences. But it seems that they are slightly inferior to Legen-
dre sequences.

There are a large family of elliptic curves over Fp with a rational point
of large order N . In particular, if E(Fp) is a cyclic group, then N ∼ p. As
indicated in [10], from Corollary 6.2 of [23], about 75% of the majority of
(isomorphism classes of) elliptic curves have a cyclic point group. By The-
orem 2.1 of [23], every cyclic group of order N satisfying p − 1 − 2p1/2 ≤
N ≤ p − 1 + 2p1/2 can be realized as the point group of an elliptic curve
over Fp (p > 5). An elliptic curve with a rational point of large prime order
is necessary for elliptic curve cryptosystems. More information on elliptic
curves with cyclic groups can be found in [23, 24].

4 Conclusion

For the binary sequences produced by Construction I-V from a large fam-
ily of elliptic curves, both the well-distributed measure and the correlation
measure of ‘small’ order are ‘small’. The results give a (partially) positive
answer to the conjecture proposed by L.Goubin et al in [7] on the random-
ness of the corresponding sequences. These constructions provide a very
attractive alternative to traditional methods.
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[24] S. G. Vlăduţ. On the cyclicity of elliptic curves over finite field exten-
sions. Finite Fields and Their Applications, 5 (1999) 354-363.

11


