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Abstract. Some families of binary sequences are constructed from elliptic curves. Such se-
quences are shown to be of strong pseudorandom properties with ‘small’ well-distribution mea-
sure and ‘small’ correlation measure of ‘small’ order, both of which were introduced by Mauduit
and Sárközy to analyze the pseudo-randomness of binary sequences.
Keywords. pseudorandom sequences, elliptic curves, exponential sums, well-distribution, cor-
relation.

1 Introduction

Mauduit and Sárközy [15] introduced several measures to evaluate the (local) pseudo-randomness
of a finite binary sequence:

SN = {s1, s2, · · · , sN} ∈ {+1,−1}N .

The most two important measures are the well-distribution measure and the correlation measure
of order k.

The well-distribution measure of SN is defined as

W (SN ) = max
a,b,t

∣∣∣∣∣∣

t−1∑

j=0

sa+jb

∣∣∣∣∣∣
,

where the maximum is taken over all a, b, t such that a, b, t ∈ N and 1 ≤ a ≤ a + (t − 1)b ≤ N ,
while the correlation measure of order k (or order k correlation measure) of SN is defined as

Ck(SN ) = max
M,D

∣∣∣∣∣
M∑

n=1

sn+d1sn+d2 · · · sn+dk

∣∣∣∣∣ ,

where the maximum is taken over all D = (d1, · · · , dk) with non-negative integers 0 ≤ d1 < · · · < dk

and M such that M + dk ≤ N .
SN is considered as a “good” pseudo-random sequence, if both W (SN ) and Ck(SN ) (at least

for small k) are “small” in terms of N (in particular, both are o(N) as N → ∞). It was shown
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in [2] that for a “truely” random sequence SN ∈ {+1,−1}N (i.e., choosing SN ∈ {+1,−1}N with
probability 1/2N ), both W (SN ) and Ck(SN ) (for some fixed k) are around N1/2 with “near 1”
probability.

For the Legendre sequence Sp = {s1, s2, · · · , sp} ∈ {+1,−1}p with

sn =

{ (
n
p

)
, if gcd(n, p) = 1;

1, if p|n,

it was shown by Mauduit and Sárközy in [15] that

W (Sp) = O(p1/2log(p)) and Ck(Sp) = O(kp1/2log(p)),

which indicate that the Legendre sequence forms a “good” pseudo-random sequence. Many other
“good” (but slightly inferior) binary sequences were designed in the literature, see for example
[2, 3, 7, 8, 16, 18, 19] and references therein.

Recent developments point towards an interest in the elliptic curve analogues of pseudo-random
number generators, see [1, 5, 6, 9, 10, 11, 12, 13, 14, 17, 20, 22] and references therein. Such number
generators provide strong potential applications in cryptography for generating pseudo-random
numbers and session keys.

Following the idea of Mauduit and Sárközy, we will apply elliptic curves to construct some
families of binary sequences and analyze their pseudorandomness in the present paper.

We first introduce some notions and basic facts of elliptic curves over finite fields. Let p > 3 be
a prime and Fp the finite field of p elements, which we identify with the set {0, 1, · · · , p− 1}. F∗p is
the set of non-zero elements of Fp. Let E be an elliptic curve over Fp, given by an affine Weierstrass
equation of the standard form

y2 = x3 + ax + b, (1)

with coefficients a, b ∈ Fp and nonzero discriminant, see [4]. It is known that the set E(Fp) of
Fp-rational points of E forms an Abelian group under an appropriate composition rule denoted by
⊕ and with the point at infinity O as the neutral element. We recall that

|#E(Fp)− p− 1| ≤ 2p1/2,

where #E(Fp) is the number of Fp-rational points, including the point at infinity O. Let G ∈ E(Fp)
be a point of order N , that is, N is the size of the cyclic group 〈G〉 generated by G. A multiple of
a point P is taken by nP = ⊕n

i=1P . We write iG = (xi, yi) ∈ Fp × Fp on E for all 1 ≤ i ≤ N − 1.
We build five types of finite binary sequences SN−1 = {s1, · · · , sN−1}:

Construction I : si :=
{

1, yi > p
2 ;

0, otherwise.

Construction II : si :=
{

1, xi > p
2 ;

0, otherwise.

Construction III : si :=
{

1, yi is even;
0, otherwise.

Construction IV : si :=
{

1, xi is even;
0, otherwise.

Construction V : si :=
{

1, xi < yi;
0, otherwise.
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In fact, Construction I has been proposed in [12] and the period and the linear complexity of this
sequence has also been considered.

We will prove that these constructions indeed produce ‘good’ pseudo-random sequences. Namely,
we show that both the well-distribution measure and the correlation measure of ‘small’ order of
the above five sequences are ‘small’. The proof is based on some bounds of character sums over
subgroups of the point group of elliptic curves [11].

Throughout this paper, the implied constant in the symbol “ ¿ ” may sometimes depends on
the integer deg(f), the degree of a rational function f , and is absolute otherwise.

2 Preparations

Let E be an elliptic curve over Fp defined as Eq.(1). Let f ∈ Fp(E) be a rational function. We
denote by deg(f) the degree of the pole divisor of f . In particular, deg(f) = 2 if f = x and
deg(f) = 3 if f = y. The translation map by W ∈ E(Fp) on E(Fp) is defined as follows:

τW : P 7→ P ⊕W.

It is obvious that (f ◦ τW )(P ) = f(τW (P )) = f(P ⊕W ). We denote by ª the inverse operation of
⊕ in the rational points group of E . From Lemma 3.16, Theorem 3.17 and Lemma 3.14 of [4], we
have the following statement.

Lemma 1 Let f ∈ Fp(E) be a rational function. If f has a pole at H ∈ E(Fp) of multiplicity ρ,
then f ◦ τW has a pole at H ªW of the same multiplicity ρ.

Let ep(z) = exp(2πiz/p) be an additive character of Fp. For any positive m, an additive
character of Zm := {0, 1, · · · ,m−1}, the residue ring modulo m, is defined as em(z) = exp(2πiz/m).
We also need the following upper bound which is a special case of Corollary 1 of [11].

Lemma 2 Let f ∈ Fp(E) be a nonconstant rational function and G ∈ E(Fp) be a rational point of
order N . Then the bound

∣∣∣∣∣∣∣∣

N−1∑
z=0

f(zG) 6=∞

ep(λf(zG))eN (ηz)

∣∣∣∣∣∣∣∣
≤ 2deg(f)p1/2

holds for all λ ∈ F∗p and η ∈ ZN .

Lemma 3 Let p be an odd prime number and λ ∈ Z with 0 ≤ |λ| ≤ p−1
2 . We define

V (λ) :=
(p−1)/2∑

r=0

ep(−λr)−
(p−1)/2∑

r=1

ep(λr), (2)

U(λ) :=
(p−1)/2∑

r=1

ep(2λr)−
(p−1)/2∑

r=0

ep(−2λr) (3)

3



and

W (λ, u) :=
u∑

r=0

ep(−λr)−
p−1∑

r=u+1

ep(−λr), (4)

where 0 ≤ u ≤ p− 1. Then the following bounds hold:
∑

|λ|≤(p−1)/2

|V (λ)| ≤ 2p(1 + logp) ;

∑

|λ|≤(p−1)/2

|U(λ)| ≤ 2p(1 + logp) ;

and ∑

|λ|≤(p−1)/2

|W (λ, u)| ≤ 2p(1 + logp).

Proof. Since |V (λ)| ≤
∣∣∣∑(p−1)/2

r=0 ep(−λr)
∣∣∣ +

∣∣∣∑(p−1)/2
r=1 ep(λr)

∣∣∣, the first desired result follows from
Inequality (3.4) of [21]. The other two cases are similar. ¤

Lemma 4 Let N be a positive integer, 1 ≤ b ≤ N − 1 and t ∈ N with (t− 1)b ≤ N − 1. Then the
following bound holds:

N−1∑

λ=0

∣∣∣∣∣
t−1∑

x=0

eN (λbx)

∣∣∣∣∣ ¿ N logN.

Proof. Let d = gcd(b,N), M = N/d and b1 = b/d. Since (t − 1)b ≤ N − 1, we have d(t − 1) ≤
(t− 1)b < N , and hence t− 1 < M . We derive

N−1∑

λ=0

∣∣∣∣∣
t−1∑

x=0

eN (λbx)

∣∣∣∣∣ = d

M−1∑

λ=0

∣∣∣∣∣
t−1∑

x=0

eN (λbx)

∣∣∣∣∣ = d

M−1∑

λ=0

∣∣∣∣∣
t−1∑

x=0

eM (λb1x)

∣∣∣∣∣ ¿ dM logM.

Since gcd(M, b1) = 1, the last inequality holds by Inequality (3.4) of [21]. ¤

Lemma 5 Let G ∈ E(Fp) be of order N and f ∈ Fp(E) a nonconstant rational function. Then for
any fixed a, b, t ∈ N with 1 ≤ a ≤ a + (t− 1)b ≤ N − 1, the following bound holds:

∣∣∣∣∣
t−1∑

x=0

ep(f((a + bx)G))

∣∣∣∣∣ ¿ p1/2logN.

Proof. ∣∣∣∣
t−1∑
x=0

ep(f((a + bx)G))
∣∣∣∣ =

∣∣∣∣ 1
N

N−1∑
n=0

t−1∑
x=0

ep(f(nG))
N−1∑
λ=0

eN (λ(n− (a + bx)))
∣∣∣∣

= 1
N

∣∣∣∣
N−1∑
λ=0

t−1∑
x=0

eN (−λ(a + bx))
N−1∑
n=0

ep(f(nG))eN (λn))
∣∣∣∣

≤ 1
N

N−1∑
λ=0

∣∣∣∣
t−1∑
x=0

eN (−λ(a + bx))
∣∣∣∣ ·

∣∣∣∣
N−1∑
n=0

ep(f(nG))eN (λn))
∣∣∣∣

= 1
N

N−1∑
λ=0

∣∣∣∣
t−1∑
x=0

eN (−λbx)
∣∣∣∣ ·

∣∣∣∣
N−1∑
n=0

ep(f(nG))eN (λn))
∣∣∣∣ .

Now by Lemmas 2 and 4, we derive the desired result. We note that in the above formulae the
poles of f must be ruled out. ¤
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3 Pseudorandomness of Elliptic Curve Sequences

In this section we will present an upper bound respectively for the well-distribution measure W (SN )
and the correlation measure Ck(SN ) for binary sequences defined in Construction I-V.

Assume that f is a rational function and f = x or f = y in the following context. We remark
that x(iG) = xi and y(iG) = yi for iG = (xi, yi) ∈ E(Fp). For Construction I and II, for any
1 ≤ i ≤ N − 1, we have

1
p

(p−1)/2∑

r=1

∑

|λ|≤(p−1)/2

ep(λ(f(iG) + r)) =
{

1, p > f(iG) ≥ (p + 1)/2,
0, otherwise.

(5)

1
p

(p−1)/2∑

r=0

∑

|λ|≤(p−1)/2

ep(λ(f(iG)− r)) =
{

0, p > f(iG) ≥ (p + 1)/2,
1, otherwise.

(6)

Subtracting (5) from (6) yields

1
p

∑

|λ|≤(p−1)/2

ep(λf(iG))V (λ) =
{ −1, p > f(iG) ≥ (p + 1)/2,

1, otherwise.

where V (λ) is defined as (2) in Lemma 3. It is easy to see that

(−1)si =
1
p

∑

|λ|≤(p−1)/2

ep(λf(iG))V (λ), (7)

where f = y for Construction I and f = x for Construction II.
While for Construction III and IV, for any 1 ≤ i ≤ N − 1, we have

1
p

(p−1)/2∑

r=0

∑

|λ|≤(p−1)/2

ep(λ(f(iG)− 2r)) =
{

1, f(iG) is even,
0, otherwise.

(8)

1
p

(p−1)/2∑

r=1

∑

|λ|≤(p−1)/2

ep(λ(f(iG) + 2r)) =
{

0, f(iG) is even,
1, otherwise.

(9)

(9)−(8), we get
1
p

∑

|λ|≤(p−1)/2

ep(λf(iG))U(λ) =
{ −1, f(iG) is even,

1, otherwise.

where U(λ) is defined as (3) in Lemma 3. Similar to (7), we obtain

(−1)si =
1
p

∑

|λ|≤(p−1)/2

ep(λf(iG))U(λ), (10)

where f = y for Construction III and f = x for Construction IV.
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For Construction V, the following two formulae hold for all xi with 0 ≤ xi ≤ p− 1:

1
p

p−1∑

r=xi+1

∑

|λ|≤(p−1)/2

ep(λ(yi − r)) =
{

1, xi < yi,
0, otherwise.

(11)

1
p

xi∑

r=0

∑

|λ|≤(p−1)/2

ep(λ(yi − r)) =
{

0, xi < yi,
1, otherwise.

(12)

(12)−(11), we get
1
p

∑

|λ|≤(p−1)/2

ep(λyi)W (λ, xi) =
{ −1, xi < yi,

1, otherwise.

where W (λ, xi) is defined as (4) in Lemma 3. Hence we obtain

(−1)si =
1
p

∑

|λ|≤(p−1)/2

ep(λyi)W (λ, xi). (13)

Theorem 1 Assume that G ∈ E(Fp) is a point of order N and SN−1 is one of binary sequences
obtained from Construction I−V. Then the well-distribution measure of SN−1 holds:

W (SN−1) ¿ p1/2logplogN.

Proof. We only prove the statement for SN−1 obtained from Construction I and II. Combining with
(10), (13) and Lemma 3, one can prove the other three cases in a similar way. For any a, b, t ∈ N
with 1 ≤ a ≤ a + (t− 1)b ≤ N − 1, from (7) we have

∣∣∣∣∣
t−1∑
j=0

(−1)sa+jb

∣∣∣∣∣ = 1
p

∣∣∣∣∣
t−1∑
j=0

∑
|λ|≤(p−1)/2

V (λ)ep(λf((a + jb)G))

∣∣∣∣∣

= 1
p

∣∣∣∣∣
∑

|λ|≤(p−1)/2

V (λ)
t−1∑
j=0

ep(λf((a + jb)G))

∣∣∣∣∣

≤ 1
p

∑
|λ|≤(p−1)/2

|V (λ)| ·
∣∣∣∣∣
t−1∑
j=0

ep(λf((a + jb)G))

∣∣∣∣∣

≤ 1
p

(
(p−1)/2∑
|λ|=1

|V (λ)| ·
∣∣∣∣∣
t−1∑
j=0

ep(λf((a + jb)G))

∣∣∣∣∣ + t

)
.

Now by Lemmas 3 and 5, we obtain the desired result. ¤

Theorem 2 Assume that G ∈ E(Fp) is a point of order N and SN−1 is one of binary sequences
obtained from Construction I−V. Then the correlation measure of order k (k < p) holds:

Ck(SN−1) ¿ k2kp1/2(logp)klogN.
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Proof. Similar to Theorem 1, we only prove the statement for SN−1 obtained from Construction I
and II. For D = (d1, · · · , dk) and M with 0 ≤ d1 < · · · < dk ≤ N − 1−M , we have

∣∣∣∣
M∑

n=1
(−1)sn+d1

+···+sn+dk

∣∣∣∣

=

∣∣∣∣∣
M∑

n=1

k∏
i=1

(
1
p

∑
|λi|≤(p−1)/2

V (λi)ep(λif((n + di)G))

)∣∣∣∣∣

= 1
pk

∣∣∣∣∣
∑

|λ1|≤(p−1)/2

· · · ∑
|λk|≤(p−1)/2

V (λ1) · · ·V (λk)
M∑

n=1
ep(

k∑
i=1

λif((n + di)G))

∣∣∣∣∣

≤ 1
pk


2kdeg(f)p1/2logN

(
∑

|λ|≤(p−1)/2

|V (λ)|
)k

+ M


 .

The last inequality holds since the degree of the rational function
k∑

i=1
f ◦ τdiG is at most kdeg(f)

by Lemma 1. The desired result follows from Lemmas 3 and 5. ¤

Theorems 1 and 2 indicate that the five types binary sequences are “good” sequences. But it
seems that they are slightly inferior to Legendre sequences.

There are a large family of elliptic curves over Fp with a rational point of large order N . In
particular, if E(Fp) is a cyclic group, then N ∼ p. As indicated in [10], from Corollary 6.2 of [23],
about 75% of the majority of (isomorphism classes of) elliptic curves have a cyclic point group. By
Theorem 2.1 of [23], every cyclic group of order N satisfying p − 1 − 2p1/2 ≤ N ≤ p − 1 + 2p1/2

can be realized as the point group of an elliptic curve over Fp (p > 5). An elliptic curve with a
rational point of large prime order is necessary for elliptic curve cryptosystems. More information
on elliptic curves with cyclic groups can be found in [23, 24].

4 Final Remarks

Indeed, Goubin et al. presented these constructions in an original version of their paper [7]. They
only listed some examples there and proposed a conjecture that such binary sequences have ‘small’
well-distribution measure and ‘small’ correlation measure of order k (for some small value k). But
in the version available these contents were dropped.
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