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Abstract. In this paper, we apply new cryptanalytical techniques to perform the generic multicollision,
2nd-preimage and herding attacks on the Damg̊ard-Merkle hash functions with XOR-linear/additive
checksums. Our results show that Damg̊ard-Merkle hash functions with XOR-linear/additive checksums
of chaining values or message blocks or both do not block the generic multicollision, 2nd preimage and
herding attacks that work on the Damg̊ard-Merkle hash functions. Finally, we perform cryptanalytic
multi-block collision attacks on the hash functions with linear checksums.
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1 Introduction

The Damg̊ard-Merkle construction [5, 24] provides a blueprint for building a cryptographic hash
function, given a fixed-length input compression function; this blueprint is followed for nearly all
widely-used hash functions. However, the past few years have seen two kinds of surprising results
on hash functions, which have led to a flurry of research:

1. Generic attacks apply to the Damg̊ard-Merkle construction directly, and make few or no as-
sumptions about the compression function. These attacks involve attacking a t-bit hash function
with more than 2t/2 work, in order to violate some property other than collision resistance. Ex-
amples of generic attacks are Joux multicollisions [13], long-message 2nd preimage attacks [6,16],
and herding attacks [15].

2. Cryptanalytic attacks apply to the compression function of the hash function. However, turning
an attack on the compression function into an attack on the whole hash function involves
properties of the Damg̊ard-Merkle construction. Examples of cryptanalytic attacks that involve
the construction as well as the compression function include multi-block collisions on MD5 and
SHA-1 [39,40].

These results have stimulated interest in new constructions for hash functions, that might pre-
vent the generic attacks and provide some additional protection against cryptanalytic attacks. The
recent call for submissions for a new hash function standard by NIST [28] has further stimulated
interest in alternatives to Damg̊ard-Merkle. Examples of recently-proposed alternative construc-
tions include the 3C construction [10,11], Haifa framework [2], Rivest’s proposal to use squarefree
sequences to prevent the long-message 2nd preimage attack [33] and a similar scheme by Knudsen
and Thomsen [18] and the RadioGatun hash proposal [4].

In this paper, first we consider a family of variants of Damg̊ard-Merkle, in which a XOR-linear
checksum is computed over the message block, intermediate chaining values of the hash function, or
both. Each bit of the checksum is a XOR-linear function of the bits of the message and intermediate



states; the checksum is processed as a final block after the padded message and length encoding
of the original message have been processed. The 3C construction [10,11] and the structure of the
Maelstrom-0 hash function [9] proposal follow this pattern. The XOR-linear checksum appears at
first to prevent many of the generic attacks against hash functions, by making the intermediate
state of the hash function much larger than the hash function output. Similarly, it appears to make
many cryptanalytic attacks on the compression function difficult or impossible to extend to attacks
on the full hash function.

Unfortunately, all is not as it seems. We provide a general algorithm for attacking XOR-linear
checksums of various kinds. Adding XOR-linear checksums to the Damg̊ard-Merkle construction
turns out to add almost no security against generic attacks. The XOR-linear checksum may some-
times make it more difficult to use a cryptanalytic attack on the compression function to attack the
full hash function, but this depends on fine details of the linear checksum and cryptanalytic attack.
Further, our results can be extended to more complicated checksums including additive checksums;
we give four examples of this. To summarize our results:

1. All known generic attacks on the Damg̊ard-Merkle hash functions can be applied to XOR-linear
checksum variants of Damg̊ard-Merkle at very little additional cost. Thus Joux multicollisions,
long-message 2nd preimage attacks, and herding attacks all work just as well against the XOR-
linear checksum constructions as against Damg̊ard-Merkle.

2. Our techniques can be used for more complicated checksums:

– The GOST hash function [30] computes a checksum using addition modulo 2256, but a
variant of our attack works against it. Variants of this attack can also be applied to the
Damg̊ard-Merkle hashes that compute additive checksums using chaining values or both
the message blocks and chaining values. In addition, we could do this attack on the hash
functions with additive checksums computed using some prime modulus.

– F-Hash [20, 21] proposes a XOR-linear checksum of outputs of the compression function
alongside a normal Damg̊ard-Merkle construction; our techniques can be applied to it as
well.

– Our attacks also work on reasonably short CRCs computed over a message, for example a
512-bit CRC.

3. With the above results, we provide a solution to the open question of Hoch and Shamir [12] on
the security of Damg̊ard-Merkle hash functions with the linear mixing of message blocks.

4. From our techniques, it is possible to derive requirements on a checksum, if it is to improve
security over that of Damg̊ard-Merkle hashes.

5. Many cryptanalytic attacks on the compression function, which the XOR-linear/additive check-
sum appears to block from becoming attacks on the full hash function, can be carried out on
the full hash function at relatively little additional cost.

6. Our techniques can be used to find preimages cheaply for the Damg̊ard-Merkle hash functions
with XOR-linear/additive checksum of the chaining values that output checksum as the final
hash value.

1.1 Related Work

In unpublished work, Mironov and Narayan [25] developed a different technique to defeat XOR-
linear checksums in generic attacks; this technique is less flexible than ours, and does not appear to
work for long-message 2nd preimage attacks. However, it is quite powerful, and can be combined with
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our technique in attacking hash functions with complicated checksums. We compare our technique
with theirs in Section 6.

Multi-block collisions are an example of a cryptanalytic attack on a compression function,
which must deal with the surrounding hash construction. Lucks [23] and Tuma and Joscak [36]
have independently found that if there is a multi-block collision for a hash function with struc-
tured differences, concatenation of such a collision will produce a collision on 3C, a specific hash
construction which computes checksum using XOR operation as the mixing function. In contrary,
our results show that hash functions with XOR-linear/additive checksums computed using message
blocks, chaining values or both contribute no extra security against both the generic attacks and
cryptanalytic collision attacks than that of Damg̊ard-Merkle hashes.

Nandi and Stinson [27] have shown the applicability of multicollision attacks to a variant of
Damg̊ard-Merkle in which each message block is processed multiple times; Hoch and Shamir [12]
extended the results of [27] showing that generalized sequential hash functions with any fixed
repetition of message blocks do not resist multicollision attacks. The MD2 hash function [14] which
uses a checksum computed using a XOR operation and non-linear S-box over the message was
shown to be insecure [17, 26]. Finally, the techniques to solve a system of linear equations used
in the cryptanalysis of hash functions with XOR-linear checksums presented in this paper have
appeared in [1, 3, 37].

1.2 Impact

The main impact of our result is that new hash function constructions that incorporate XOR-
linear/additive checksums as a defense against collision attacks and generic attacks do not provide
much additional security. Designers who wish to block these attacks need to look elsewhere for
techniques to do this. We can apply our techniques to specific hash functions and hashing construc-
tions that have been proposed in the literature or are in practical use. They include 3C, GOST,
Maelstrom-0 and F-Hash 1.

1.3 Guide to the Paper

This paper is organised as follows: First, we provide the descriptions of hash functions analysed in
this paper. Next, we demonstrate cryptanlytical techniques to defeat XOR-linear/additive check-
sums in these designs. We then provide a generic algorithm to perform the 2nd preimage and herding
attacks on the hash functions with linear checksums using the above cryptanalytical techniques with
some illustrations. Finally, we demonstrate cryptanalytic multi-block collision attacks on the hash
functions with linear checksums.

2 The Damg̊ard-Merkle construction and the Damg̊ard-Merkle hash with

checksums

The Damg̊ard-Merkle iterative structure [5, 24] shown in Figure 1 has been a popular framework
used in the design of standard hash functions MD5 [32], SHA-1, SHA-224/256 and SHA-384/512 [8].

The message M , with |M | ≤ 2l−1 bits, to be processed using H is always padded by appending
it with a 1 bit followed by 0 bits until the padded message is l bits short of a full block of b bits. The

1 Because our techniques require the ability to find collisions for the compression function, they do not represent a
practical threat to applications using these systems at this time.
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M1 M2 M3 ML−1

H1 H2 H3 HL−1

ML

H(M) = HL
ffff f

H0

Fig. 1. The Damg̊ard-Merkle construction

last l bits are filled in with the binary encoded representation of the length of the original unpadded
message M to avoid some trivial attacks [19]. This compound message is an integer multiple of b
bits and is represented with b-bit data blocks as M = M1,M2, . . . ML. Each data block Mi is
processed using the compression function f to compute intermediate states Hi = f(Hi−1,Mi)
where i = 1 to L. The final state HL = f(HL−1,ML) is the message digest of M .

2.1 XOR-linear and additive checksum variants of Damg̊ard-Merkle

A number of variant constructions have been proposed, that augment the Damg̊ard-Merkle con-
struction by computing some kind of XOR-linear/additive checksum on the message bits and/or
intermediate hash values, and providing the XOR-linear/additive checksum as a final block for the
hash function as shown in Figure 2.

CHECKSUM

M1 M2 ML−1

ffff f

ML

H0 Hf

Fig. 2. Hash function structure with a XOR-linear/additive checksum

2.2 3C hash function and its XOR-linear checksum variants

The 3C construction shown in Figure 3 maintains twice the amount of the digest size for the
intermediate states using two chains: accumulation and iterative chains. The iterative chain is a
Damg̊ard-Merkle iterative structure. The accumulation chain starts with an initial state of 0 and
computes a XOR-linear checksum Z using all the intermediate states of the iterative chain. At any
intermediate state i, the XOR-linear checksum value is

⊕i
i=1 Hi. The final checksum Z is padded

with 0 bits to obtain the block Z which is processed using f at the end to obtain the digest Hfinal.
A 3-chain variant of 3C called 3CM is used as a chaining scheme in the Maelstrom-0 hash

function [9]. At every iteration of the function f in 3CM, the accumulated result in the third chain
is shifted to the left by a byte followed by a conditional XOR by a small constant of one byte. Then
the modulo 2 addition of this result with the iterative chain data is performed. F-Hash [20, 21] is
another variant of 3C which computes XOR-linear checksum using part of the output of the each
compression function based on a Feistel network in the iterative chain and uses the other part as
the chaining state. See Appendix A for the description of these variants of 3C.
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Fig. 3. The 3C-hash function

2.3 GOST and its additive checksum variants

GOST is a 256-bit hash function specified in the standard GOST R 34.11-94 [30]. Its compression
function f takes two inputs: a message block and chaining state each of 256 bits. The functionality
of f is derived from the block cipher GOST specified in the standard GOST R 34.10-89 [29]. For
our analytical purposes, we assume that GOST and its variants employ Davies-Meyer structure for
the compression function f as in hash functions MD5 and SHA-1 ignoring the details from [29],
have block length of b bits and digest size of t bits. GOST calculates the digest using the checksum
with addition modulo 2b of all the message blocks as shown in Figure 4.

ffff fff

M1 M2 M3 ML−2 ML−1

H0

ML

Hfinal

Z

Fig. 4. GOST hash function

An arbitrary length message M to be processed using GOST is split into b-bit blocks M1, . . . ,ML−1.
If the last block ML−1 is incomplete, it is padded by prepending it with 0 bits to make it a b-bit
block. The binary encoded representation of the length of the true information is processed in a
separate block. At any state i, the chaining values in the iterative and accumulation chains are
Hi = f(Hi−1,Mi) and M1 +M2 . . .+Mi mod 2b respectively where 1 ≤ i ≤ L− 1. The digest of M
is Hfinal = f(Z,HL). An additive checksum variant of GOST called 3CA which computes additive
checksum using the chaining values is discussed in Appendix D.

3 Techniques to defeat checksums in the designs with XOR-linear checksums

The known techniques [6,16] of performing the generic 2nd preimage attack do not work on the hash
functions with XOR-linear/additive checksums. These designs make it difficult for the attacker to
find an expandable message, an intermediate multicollision of different length messages, for all the
chains simultaneously using the techniques from [6, 16]. Even if the attacker is provided with an
expandable message for free, the attacker must still find a linking message block to produce states
in all the chains that match the corresponding chaining states obtained in the processing of the
long target message. This task requires about 2t computations of f . Similarly, herding attack [15]
is inapplicable on these designs.

3.1 Combining multi-block collisions and multicollisions

Let C(s, n) be a collision finding algorithm for a hash function where s and n denote the state
and number of message blocks on which it is applied respectively. Joux multicollision attack [13]
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uses a single-block collision finder (n = 1). This attack can be applied to multi-block messages
(n ≥ 2) leading to a multicollision attack over n-block messages. C(s, n) can be either a brute
force or a cryptanalytic collision finding algorithm. A brute force algorithm requires about 2t/2

hash function computations to find a collision with 0.5 probability whereas a cryptanalytic collision
finding algorithm requires less effort than that.

3.2 Checksum control sequences

We define checksum control sequences (CCS) as a chunk of data which lets an attacker to control
the checksum value in the hash functions with checksums. For example, for XOR-linear checksums,
we construct CCS using a random choice of message blocks and building a Joux multicollision of
the correct size. We then use the CCS to actually control the checksum using a checksum control
algorithm without changing any intermediate hash values.

For example, a 2k 2-block multicollision on the underlying Damg̊ard-Merkle construction of
3C (ignoring the XOR-linear checksum) using a brute-force collision finding algorithm gives the
attacker k independent choices of parts of the chaining values that form the CCS. When the
attacker wants a particular k-bit checksum value, he can turn the problem of finding which choices
to make from the CCS into the problem of solving a system of k linear equations in k unknowns,
something the attacker can do very efficiently using existing tools such as Gaussian elimination [1,
Appendix A], [3,37]. This is schematically shown in Figure 5 for k = 2 where the attacker performs
a 22 multicollision using 2-block messages and has a choice to choose either H0

1 ⊕ H2 or H1
1 ⊕ H2

and H0
3 ⊕ H4 or H1

3 ⊕ H4 from the CCS to control 2 bits of the checksum without changing the
hash value after the CCS.

Checksum

multi−block multicollision, second preimage, herding
Message blocks where generic attack happens: 

controls 2 bits of xor−linear checksum
Checksum control sequence

(M1, N1) (M2, N2) (M3, N3) (M4, N4) M5 M6 M7

(H0
1 , H1

1 ) H2 (H0
3 , H1

3 ) H4 H5

f fffffff

H6 H7

H0

0

Fig. 5. Using checksum control sequence to control 2 bits of the checksum

3.3 Defeating the XOR-linear checksum in 3C

Case 1: The following algorithm builds a prefix from the CCS constructed using a brute force
collision finding algorithm to defeat the XOR-linear checksum in 3C.

ALGORITHM: Defeat XOR-linear checksum in a 2t 2-block multicollision on 3C

Variables:

1. (e0
i ,e

1
i ) = A pair of independent choices of random values after every 2-block collision in the 2t

2-block multicollision on 3C and e0
i 6= e1

i for i = 1, 2, . . . , t.
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2. a = a[1], a[2], . . . , a[t] = Any t-bit string.
3. D = D[1],D[2], . . . ,D[t] = The desired t-bit checksum to be imposed.
4. i, j = Temporary variables.

Steps:

1. Build a 2t 2-block multicollision on 3C using a brute-force collision finding algorithm C(s, 2).
Now there are t independent choices of parts of the chaining values that form the CCS, where
each choice imposes a random XOR difference on the t-bit XOR-linear checksum at the end of
the multicollision.

2. Each of the parts of the CCS gives one choice e0
i or e1

i for i = 1, 2, . . . , t to determine some
random t-bit value that either is or is not XORed into the final checksum value at the end of
the 2t multicollision. Note that e0

i = H0
2i−1 ⊕ H0

2i and e1
i = H1

2i−1 ⊕ H1
2i for i = 1, 2, . . . , t.

3. For any t-bit string a = a[1], a[2], . . . , a[t], let ea = ea
1, . . . , e

a
t .

4. Find a = a[1], a[2], . . . , a[t] such that e
a[1]
1 ⊕e

a[2]
2 ⊕. . .⊕. . . e

a[t]
t = D. By treating a[1], a[2], . . . , a[t]

as variables, we now solve the equation
⊕t

i=1 e0
i × a[i] ⊕ e1

i × (1 − a[i]) = D.

5. Each bit position of e
a[i]
i gives us one equation and we turn the above into t equations, one for

each bit. Let a[i] = 1 − a[i].
6. The resulting system is:

⊕t
i=1 e0

i [j] × a[i] ⊕ e1
i [j] × a[i] = D[j] (j = 1, . . . , t)

Here there are t linear equations in t unknowns that need to be solved for the solution a[1], a[2], . . . , a[t].
7. The solution a[1], a[2], . . . , a[t] allows us to determine the blocks in the 2t 2-block multicollision

that form the prefix to give the desired checksum D.

Work: It requires about t × 2t/2 computations of the compression function to produce 2t 2-block
multicollision to construct the CCS and at most t3+t2 bit-XOR operations to solve a system of t×t
equations using Gaussian elimination to find a solution with a probability of 0.5 [1, Appendix A], [3,
37].
Case 2: Assume that a cryptanalytic collision finding algorithm C(s, 2) is used to construct the
CCS in 3C. Now, whether the system of linear equations due to this CCS can be solved depends on
the random nature of the chaining states after every 2-block collision in the 2t 2-block multicollision.
We analyse this using all the possible 2-block collision formats.

1. Consider the format of message blocks (M2.i−1,M2.i),(N2.i−1, N2.i) for i = 1, . . . , t producing
2-block collisions. The 2-block collisions due to near-collisions for the first blocks will have XOR
differences after processing the first compression function in every collision. In many cases, these
differences are either fixed or very tightly constrained [39, 40] and it would be difficult to find
a solution for the system of equations as the attacker would not be able to control fixed or
constrained bits of the XORed-together chaining states.

2. Similarly, it is also difficult to solve the system of equations from the CCS due to collisions
of the messages of format (M2.i−1,M2.i),(N2.i−1,M2.i) for i = 1, . . . , t. This type of collision
attack with two different chaining states producing a collision for the compression function by
processing the same message block was previously demonstrated on MD5 [7]2.

2 We note that one may create variants for the known cryptanalytic collision finding algorithms as in [35] that could
be used to construct the CCS; this is an open question now.
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3. It is not possible to control the checksum due to 2-block collisions of the format (M2.i−1,M2.i),
(M2.i−1, N2.i) for i = 1, . . . , t [38]. The reason is every 2-block collision of this format produces
a zero XOR-linear checksum difference. Then the final XOR-linear checksum difference in the
2t multicollision is also zero. Hence, the attacker cannot choose message blocks from either side
of the 2t 2-block multicollision of this format to force the XOR-linear checksum to the desired
checksum.

4. Unlike above, assume that two random and different message blocks are processed initially using
f to obtain two different random chaining states s1 and s2. Then a cryptanalytic collision finding
algorithm C(s1, s2, 1) is called with s1 and s2 as parameters which produces either the same or
different message blocks that collide. In effect, the XORed-together chaining states after every
two blocks in the 2t 2-block multicollision are random. Hence, a prefix can be constructed from
the CCS forcing the checksum at the end of 2t 2-block multicollision to the desired checksum.

3.4 Defeating XOR-linear checksums in other designs

The techniques to defeat XOR-linear checksums in F-Hash and 3CM require first finding a CCS
by performing a 2t 2-block multicollision. Then a system a linear equations need to be solved to
force the checksum in each of these designs to the desired checksum. The attack algorithms on
these designs have been placed in the Appendices B.1 and B.2 respectively. We note that if a XOR-
linear checksum is computed using both the message blocks and chaining values, two sets of linear
equations need to be solved, one due to XOR operation of the chaining values and the other one
due to XOR operation of the message blocks.

4 Techniques to defeat checksums in the designs with additive checksums

Consider an additive checksum mod 2k computed using messages. A 2(k/2)+1 Joux multicollision
does not allow complete control of the checksum, but it does allow an attacker to usually find a pair
of messages within the multicollision whose additive checksum differs by any desired value. This
can be done by generating all 2(k/2)+1 possible checksum values from the multicollision, and doing
a modified collision search for a pair of messages whose additive difference is the desired value.

Given this technique, a sequence of k successive 2(k/2)+1 Joux multicollisions can be used to
completely control an additive checksum mod 2k. The first 2(k/2)+1 multicollision is used to find
a pair of k/2 + 1 1-block messages whose checksum differs by 1, the next multicollision is used to
find a pair of (k/2 + 1) 1-block messages whose checksum differs by 2, and so on through the kth

2(k/2)+1 multicollision, which yields a pair of (k/2 + 1) 1-block messages whose checksum differs
by 2k−1. At this point, the attacker can easily choose a message to get any checksum he chooses,
without affecting the hash chaining value after the CCS.

This technique is schematically represented in Figure 6. In the first 2(k/2)+1 1-block multicolli-
sion, f(H1

i−1,M
1
i ) = f(H1

i−1,M
1
i∗) = H1

i where i = 1 to k/2 + 1, H1
0 = H0 is the initial state, H1

i

are the intermediate chaining states and M1
i ,M1

i∗ are the colliding blocks. The chaining value at
the end of the first multicollision is H1

z where z = k/2 + 1. We then find a pair of collision paths
from the 2k/2+1 different collision paths in this multicollision, such that their respective additive
checksums x1 and y1 satisfy the condition x1 ≡ y1 + 1 mod 2b. In the second 2(k/2)+1 1-block
multicollision, f(H2

i−1,M
2
i ) = f(H2

i−1,M
2
i∗) = H2

i where i = 1 to k/2 + 1 and the chaining value

at the end of second multicollision is H2
z . We then find a pair of collision paths from the 2k/2+1

different collision paths in this multicollision, such that their respective additive checksums x2 and
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Fig. 6. Defeating additive checksum mod 2k computed using messages

y2 satisfy the condition x2 ≡ y2 +2 mod 2b. This process is repeated for k times. In the kth 2(k/2)+1

1-block multicollision, f(Hk
i−1,M

k
i ) = f(Hk

i−1,M
k
i∗) = Hk

i for i = 1 to k/2 + 1 and the chaining

value at the end of kth multicollision is Hk
z . We then find a pair of collision paths from the 2k/2+1

different collision paths in this multicollision, such that their respective additive checksums xk and
yk satisfy the condition xk ≡ yk + 2k−1 mod 2b. We now obtain the CCS by concatenating all these
individual collision paths and then we force the additive checksum to the desired one by choosing
either of the two available paths in each of the k 2k/2+1-collision paths. By now the attacker has
found a message that forces the checksum to the desired value, without affecting the chaining value
after the CCS.

Below, we provide an algorithm to defeat the additive checksum in the GOST hash function.

ALGORITHM: Defeating checksum in GOST

Variables:

1. i, j, k = integers.

2. chunk[i] = a pair of (b/2) + 1-message block sequences denoted by (e0
i , e1

i ).

3. H0 = initial state.

4. H i
j = the intermediate iterative chaining state.

5. (M i
j , N

i
j) = a pair of message blocks each of b bits.

6. T = Table with three columns: a (b/2) + 1-multicollision path, addition modulo 2b of message
blocks in that path and a value of 0 or 1.

Steps:

1. For i = 1 to b:

– For j = 1 to (b/2) + 1:

• Find M i
j and N i

j such that f(H i
j−1,M

i
j) = f(H i

j−1, N
i
j) = H i

j where H1
0 = H0. That is,

build a (b/2) + 1-block multicollision where each block yields a collision on the iterative
chain and there are 2(b/2)+1 different (b/2) + 1-block sequences of blocks all hashing to
the same iterative chaining state H i

(b/2)+1.

– Find a pair of choices from the different (b/2) + 1-block sequences whose additive checksum
differs by 2i−1. This is performed as follows:
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• T = empty table.
• for j = 1 to 2(b/2)+1

∗ Ci
j ≡

∑(b/2)+1
k=1 Xi

k mod 2b where Xi
k can be either M i

k or N i
k.

∗ Add to T : (Ci
j , 0, Xi

1||X
i
2|| . . . X

i
(b/2)+1)

∗ Add to T : (Ci
j + 2i−1, 1, Xi

1||X
i
2|| . . . X

i
(b/2)+1).

• Search T to find a match between Ci
j and Ci

j + 2i−1. Let these choices of (b/2) + 1

sequence of blocks be e1
i and e0

i where e1
i ≡ e0

i + 2i−1 mod 2b.

– chunk[i] = (e0
i , e

1
i ).

2. Construct CCS by concatenating individual chunks each containing a pair of (b/2) + 1 blocks
that hash to the same iterative chaining state. The CCS is chunk[1] || chunk[2] . . . || chunk[b].

3. The checksum at the end of 2b (b/2) + 1-block multicollision can be forced to the desired
checksum D by choosing either of the sequences e0

i or e1
i from the CCS which is practically free

to use and adding blocks in each sequence over modulo 2b.

Work: The work to defeat the checksum equals the work to construct b 2(b/2)+1 1-block multi-
collisions plus the work to find a chunk in each 2(b/2)+1 1-block multicollision. It requires about
b× ((b/2) + 1)× 2t/2 computations of the compression function and a time and space of b× 2b/2 to
find b chunks. For GOST, it requires about 28 × 129× 2128 ≈ 2143 computations of the compression
function and a time and space of about 256 × 2129 = 2137.

Remark 1. A more efficient attack is available if the attacker can exert direct control over the
message blocks, rather than simply using a large Joux multicollision. In this case, the attacker
constructs a Joux multicollision in such a way that each pair of colliding messages has a fixed
power of two difference in its low k bits, and a random difference in its high b− k bits. This allows
direct control over the low k bits of the checksum, while leaving the high b − k bits uncontrolled.
A second Joux multicollision is then constructed, in which each pair of messages differs only in the
high b − k bits. The second multicollision may then be used to control the high b − k bits of the
checksum by brute force.

Using this technique on GOST with k = 128 leads to a CCS of only 256 message blocks.
However, each attempt to control the checksum requires a 2128 brute force search in this case.
Alternatively, with k = 32 (and using multi-block collisions to construct the Joux multicollision),
the CCS is 1024 message blocks, and an attempt to control the checksum requires only a 232 brute
force search.

4.1 Defeating additive checksums in other designs

Similarly, we can defeat additive checksums for the variants of GOST that compute additive check-
sum mod 2k using chaining values by building a 2k Joux multicollision where each collision in it
consists of 2(k/2)+1 multicollisions constructed using a sequence of (k/2 + 1) 2-block collisions as
shown for the 3CA design in Appendix E. We note that this trick can also be used to defeat the
additive checksum computed for a design using both the message blocks and chaining values. In this
case, a 2(k/2)+1 Joux multicollision using 2-block messages is performed to allow an attacker to find
a pair of messages (resp. chaining values) within the multicollision whose additive checksum differs
by any desired value. This can be done by generating all 2(k/2)+1 possible checksum values due to
messages (resp. chaining values) from the multicollision, and doing a modified collision search for
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a pair of messages (resp. chaining values) whose additive difference is the desired value. We note
that the efficient attack discussed in Remark 1 does not work on the hash functions that compute
additive checksum using chaining values as the attacker cannot exert control over the input to the
checksum formed using chaining values.

5 Generic attacks on hash functions with linear checksums

The fundamental approach used to perform the generic attacks on all the hash functions with linear
checksums is similar. Broadly, it consists of the following steps:

1. Construct a CCS.
2. Combine the CCS with whatever other structure (expandable message, multicollision over single

block or multiple blocks, diamond structure) is needed for the generic attack to work.
3. Carry out the generic attack, ignoring its impact on the linear checksum.
4. Use the CCS to control the linear checksum, forcing it to a value that permits the generic attack

to work on the full hash function.

Because the approach is similar, we discuss it here only for 3C. Appendices C and E discuss
these generic attacks for other kinds of XOR-linear/additive checksums respectively. Note that
constructing and using the CCS does not imply random gibberish in the messages produced; using
Yuval’s trick [41], a brute-force search for the multicollision used in the CCS can produce collision
pairs in which each possible message is a plausible-looking one. Here, the attacker can create two
documents where one is genuine and the other one a forgery and can vary their meaning in such
a way that at some point of variation they collide when processed using the same hash function.
For example, the attacker can use this trick to construct CCS for the hash functions that maintain
checksums using meaningful colliding messages based on the brute force collision finding techniques.
This is possible when the CCSs to defeat the checksums are constructed from individual collisions
that span over multiple message blocks as in (Dear Fred/Freddie, )(Enclosed please find/I have sent
you) (a check for $100.00/a little something) and so on, where the attacker can choose either side
of the slash for the next part of the sentence. In that case, any choice for the CCS used to defeat
the checksum will be a meaningful message. The impact of this attack is that one can construct not
only meaningful collisions but also second preimages and herded messages with genuine meaning
for these hash functions.

5.1 Long-message 2nd-preimage attack on 3C

An algorithm to perform the long message 2nd-preimage attack on a t-bit 3C hash function H is
outlined below:
ALGORITHM: LongMessageAttack(Mtarget) on 3C
Find the 2nd preimage for a message of 2d + d + 2t + 1 blocks.

Variables:

1. Mtarget = the target long message for which a 2nd preimage is to be found.
2. Mlink = linking message block used to connect the iterative chaining value at the end of the

expandable message to some point in the sequence of the iterative chaining values of the target
message.

3. Hexp = the intermediate iterative chaining value at the end of the expandable message.
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4. Ht = the result of the 2t 2-block multicollision on H starting from the initial state.
5. Mfinal = the 2nd preimage of the same length as Mtarget such that H(Mfinal) = H(Mtarget).
6. Mpref = the checksum control prefix obtained from the CCS.

Steps:

1. Compute the intermediate hash values for Mtarget using H:
– H0 and h0 are the initial states on the iterative and accumulation chains respectively.
– Mi is the ith message block of Mtarget.
– Hi = f(Hi−1,Mi) and hi = Hi ⊕ hi−1 are the ith intermediate hash values on the iterative

and accumulation chains respectively.
– The iterative and accumulation chaining states are organised in some searchable structure

for the attack, such as hash table. The hash values H1, . . . ,Hd and those obtained in the
processing of t 2-block messages are excluded from the hash table as the expandable message

cannot be made short enough to accommodate them in the attack.

2. Build a CCS by constructing a 2t 2-block multicollision on H following Section 3.3 starting from
the state H0. Now Ht is the multicollision chaining value. The corresponding checksum value
ht is random.

3. Construct a (d, d+2d−1)-expandable message Mexp with Ht as the starting chaining state using
either of the expandable message construction methods from [16]. Append Mexp to the CCS.
Let Hexp be the iterative chaining value at the end of the expandable message.

4. Process message blocks from the end of Hexp to find Mlink such that f(Hexp,Mlink) matches
one of the iterative chaining values stored in the hash table while processing Mtarget. Let this
matching value of the target message be Hu and the corresponding accumulation chaining value
be hu where d + 2t + 1 ≤ u ≤ 2d + d + 2t + 1.

5. Use the CCS built in step 2 to find the checksum control prefix Mpref to adjust the accumu-
lation chaining value at that point to match the desired accumulation value hu in the target
message Mtarget. This is equivalent to adjusting the checksum value at the end of the 2t 2-block
multicollision. Mpref is obtained by solving a system of t × t linear equations as outlined in
Section 3.3.

6. Expand the expandable message to produce a message M∗ which is u − 1 blocks long.
7. Return the 2nd preimage Mfinal = Mpref ||M

∗||Mlink||Mu+1 . . . M2d+d+1+2t of the same length
as Mtarget such that H(Mfinal) = H(Mtarget).

Work: The effort required for the 2nd preimage attack on 3C involves the effort in finding a 2t

2-block multicollision plus the effort in solving a system of t × t linear equations plus the effort
in finding the expandable message plus the effort to find the linking message block. So, the only

additional effort in performing the 2nd preimage attack on 3C over Damg̊ard-Merkle hash function
is the effort required to solve a system of t× t equations and producing a 2t 2-block multicollision.

1. Using the generic expandable-message finding algorithm, this effort equals about t× 2t/2 + d×
2t/2+1 + 2t−d+1 compression function computations and t3 + t2 bit-XOR operations.

2. Using the fixed-point expandable-message finding algorithm, this effort equals about t× 2t/2 +
3 × 2t/2+1 + 2t−d+1 compression function computations and t3 + t2 bit-XOR operations.

Illustration:
Using generic-expandable message algorithm, the work to find a 2nd preimage for 3C-SHA-256

for a target message of 254 + 54 + 512 + 1 blocks is 2136 + 54 × 2129 + 2203 compression function
computations and 224 + 216 bit-XOR operations assuming abundant memory.
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5.2 Herding attack on 3C

The following steps account for the herding attack on a t-bit 3C hash function H:

1. Construct a 2d hash value wide diamond structure for H and output the final hash value Hf as
the chosen target. The final hash value Hf is computed using any of the possible 2d−1 checksum
values or some value chosen arbitrarily. Let hc be that checksum value.

2. Build the CCS using a 2t multicollision over 2-block messages. Let Ht be the chaining value on
the iterative chain after the 2t 2-block multicollision on H.

3. When challenged with the prefix message P , process P using Ht as the starting chaining value.
Let H(Ht, P ) = Hp.

4. Find the linking message block Mlink such that the state H(Hp,Mlink) matches one of the
2d outermost chaining values on the iterative chain in the diamond structure. If the match is
compared against all of the 2d+1 − 2 intermediate chaining values then a (1, d + 1)-expandable

message must be produced at the end of the diamond structure ensuring that the final herded
message is always a fixed length.

5. Use the CCS computed in step 2 to force the checksum of the herded message P to hc using the
techniques to defeat the checksum in the 2t multicollision described in Section 3.3. Let Mpref

be the checksum control prefix obtained after solving the system of equations due to the CCS.
6. Finally, output the message M = Mpref ||P ||Mlink||Md where Md are the message blocks con-

tributed to the construction of the diamond structure3. The value H(M) will be the same as
the chosen target Hf .

Work: The total work to perform the herding attack on 3C is the work required to build the
CCS plus the work to solve the system of equations due to the CCS plus the work required to
perform the herding attack from [15]. This equals about t× 2t/2 + 2t/2+d/2+2 + d× 2t/2+1 + 2t−d−1

computations of the compression function and t3 + t2 bit-XOR operations assuming that all the
2d+1 − 2 intermediate chaining values are used for searching in the diamond structure.
Illustration:
The work to perform the herding attack on 3C-SHA-256 with d = 84 is 2136 + 2172 + 84× 2129 +
2171 ≈ 2172 computations of SHA-256 compression function and 224 + 216 bit-XOR operations.

Remark 2. We note that [10,11] shows only the application of Joux multicollision attack on 3C over
1-block messages. However, using our attack technique from Section 3.3, one can find multicollsions
for 3C over multiple blocks by defeating the XOR-linear checksum.

5.3 Extending the generic attacks on to CRCs

The techniques used to defeat the checksums described in Sections 3.3 and 3.4 can be extended to
any linear checksum which is reasonably short. Consider a 512-bit CRC computed over a message
and used as the final checksum block. Now we construct the CCS using a 2512 Joux multicollision and
then append whatever message at the end of the multicollision to perform the generic 2nd-preimage
and herding attacks. Each bit of the 512-bit CRC is a linear function of 512 binary variables
a[1], a[2], . . . , a[512] where a[i] selects a message block from one of the sides of the collision in the
CCS. One can perform the generic 2nd-preimage and herding attacks ignoring the checksum value,

3 Note that when P is processed using the initial state H0 of H followed by 2t 2-block multicollision from the state
H(H0, P ), we can output message M with the format P ||Mpref ||Mlink||Md.
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then solve the resultant system of 512×512 equations to force the checksum to the value necessary
to make the attack work.

Remark 3. We note that for a hash function with XOR-linear/additive checksum of chaining values
producing checksum as the hash value, one can find preimages for a given target hash value cheaply
by forcing the checksum to the target hash value. For example, assume that checksum value is used
as the final hash value in the 3C construction. The attacker performs the 2t 2-block multicollision
and then processes the block with the encoding of the length (2t blocks) of the message used in the
multicollision. Using the target hash value and output of the length encoded block, the attacker
finds the desired checksum he needs at the end of the 2t 2-block multicollision so that he can force
the final checksum to the target hash value.

However, for hash functions that output checksum as the hash result using a combination of
linear XOR and some random one-way function as the mixing functions, length encoding of the
information in the last block and non-invertibility property of the random function thwart these
preimage attacks on the full hash function. We show this in Appendix G for a recently proposed
triple-function compression function [34] iterated in the Damg̊ard-Merkle mode of operation.

6 Comparison with the technique of Mironov-Narayanan

Independent to our work, Mironov and Narayanan [25] have found an alternative technique to
defeat XOR-linear checksum computed using addition modulo 2 of message blocks. We call this
design GOST-L and is shown in Figure 7.

ffff fff

M1 M2 M3 ML−2 ML−1

H0

ML

Hfinal

Z

Fig. 7. GOST-L hash function

While our approach to defeat the checksum in GOST-L requires b 1-block collisions to find pairs
(Mi, Ni) for i = 1 to b, their technique considers repetition of the same message block twice for
a collision. In contrast to the methods presented in this paper for solving system of equations for
the whole message, their approach solves the system of equations once after processing every few
message blocks.

We note that this constrained choice of messages would result in a zero checksum at the end
of the 2b multicollision on this structure and thwarts the attempts to perform the 2nd preimage
attack on it. The reason is that the attacker loses the ability to control the checksum after finding
the linking message block from the end of the 2b multicollision which gives a collision with some
intermediate chaining value in the target message.

However, this technique with a twist can be used to perform the herding attack on GOST-
L. The attacker chooses the messages for the diamond structure that all have the same effect on
the XOR-linear checksum. These messages would result in a zero checksum at every stage in the
diamond structure. Once the attacker is forced with a prefix, processing the prefix gives a zero
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checksum to start with and then solving a system of equations will find a set of possible linking
messages that will all combine with the prefix to give a zero checksum value.

When the approach of [25] to defeat the checksums is applied to 3C, 3CM and F-Hash, the
2-block collision finding algorithm must output the same pair of message blocks on either side of
the collision whenever it is called. The technique of [25] imposes constraints not present in our
technique, and is not quite as powerful. Because it is so different from our technique, some variant
of this technique might be useful in cryptanalytic attacks for which our technique does not work.

7 Cryptanalytic attacks on hash functions with linear checksums

Though we cannot perform generic attacks on the hash functions with linear checksums using
structured collisions, we can still perform multi-block collision attacks on these designs. Here we
demonstrate the multi-block collision attack on GOST.

Consider a collision finding algorithm C(s, 1) with the state s = H0 for the GOST hash function
H. A call to C(s, 1) results in a pair of b-bit message blocks (M1, N1) such that M1 ≡ N1+∆ mod 2b

and f(H0,M1) = f(H0, N1) = H1. Now call C(s, 1) with the state s = H1 which results in a pair
of blocks (M2, N2) such that N2 ≡ M2 + ∆ mod 2b and f(H1,M2) = f(H1, N2) = H2. That is,
H(H0,M1||M2) = H(H0, N1||N2). Consider M1 + M2 mod 2b = ∆ + N1 + N2 − ∆ mod 2b = N1 +
N2 mod 2b, a collision in the chain which computes additive checksum. Hence, by just appending
two structured collisions end to end we get a collision for hash functions with linear checksums.
Similarly, structured collisions on Damg̊ard-Merkle hash functions can be converted to multi-block
collisions on other linear checksums as shown in Appendix F.

8 Concluding remarks

Our results demonstrate that maintaining large internal state sizes using XOR-linear/additive
checksums is not good enough for the security of the hash function. In addition, widening the
compression functions [22] along with the XOR-linear/additive checksums provide very little ad-
ditional security against generic attacks compared to the wide-pipe hash. One question left open
by our research is what properties would ensure that a checksum would block generic attacks. It’s
clear that it must be impossible for the attacker to build and use a CCS, but not clear that this is
a sufficient condition.
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A Other proposals of hash functions with linear checksums

A.1 F-Hash hash function

The initial state of a t-bit F-Hash hash function shown in Figure 8 is H0 and the compression
function f is a Feistel structure based on a round function F of r rounds [20,21]. The message M
to be processed using F-Hash is split into equal size blocks Mi for i = 1 to L including padding which
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Fig. 8. The F-Hash hash function

is similar to the padding of Damg̊ard-Merkle hash functions. The two chaining output states (hi,Hi)
each of t bits for every iteration of the compression function f are given by Hi = fr(Mi,Hi−1) and
hi = fr−1(Mi,Hi−1) where i = 1, 2, . . . , L; fr is the r-round iteration of F and fr−1 is the r-1-round
iteration of F . The accumulation value at any state i is given by h′

i =
⊕i

j=1 hj . The chaining
values (Hi, hi) together at any state i are considered as iterative chaining values. F-Hash computes
checksum Z0 =

⊕L
i=1(hi) using part hi of the iterative chaining values. The final message digest is

Hfinal = g(HL, Z0) where g is the iteration of F for r rounds.

A.2 3CM used in Maelstrom-0

Inspired by 3C and its variants, Filho et al. [9] have proposed a variant of 3C called 3CM as a
replacement for the Merkle-Damg̊ard construction in the Whirlpool hash function [31] for better
protection against the multi-block collision attacks. In the 3CM construction, for every iteration
of f , the t-bit accumulation value in the third chain is updated using a linear feedback shift register
(LFSR) denoted by ζ in Figure A.2. The LFSR ζ is an implementation of one-byte left shift of the
t-bit accumulation chaining value and a conditional one byte XOR applied to that by a constant.
Then modulo 2 addition of this result with the iterative chain data is performed. At every iteration i
of the compression function in 3CM, the iterative chaining values are denoted by Hi, the checksum
values in the second chain by h′

i and the checksum values in the third chain by h′′

i . At any state i,
the checksum value of the second chain is h′

i = h′

i−1 ⊕Hi or
⊕i

i=1 Hi. At any state i, the checksum
value in the third chain is h′′

i = ζ(h′′

i−1)⊕Hi. After processing all the message blocks including the
last block containing the Merkle-Damg̊ard strengthening, the checksum values of the second and
third chains are concatenated and padded with 0’s if necessary to obtain a b-bit data block. This
block is processed using the final compression function denoted by g in Figure A.2. For example, if
the compression function f is SHA-1, then the concatenated checksum values from both the chains
are padded with 192 0 bits to obtain a 512-bit block. For example, if the compression function is
SHA-256 then no padding is performed for the concatenated checksum block as it is already 512
bits.
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0
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fffff g
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Fig. 9. The 3CM construction used in Maelstrom-0
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B Techniques to defeat linear checksums in F-Hash and 3CM

B.1 Defeating the checksum in 2t multicollision on F-Hash

Case 1:
Consider a t-bit digest F-Hash with the initial state H0 and compression functions f and g.

Similar to 3C, a 2t 2-block multicollision is constructed by calling C(s, 2) t times. Assume that
C(s, 2) is a brute-force collision finding algorithm. Now there are t independent choices of chaining
values in the accumulation chain after every 2-block collision for f where each choice imposes a
random XOR difference on the t-bit checksum at the end of multicollision. These t choices form the
CCS and let us control the checksum value at the end of the 2t 2-block multicollision on F-Hash
or checksum value obtained after processing any additional message blocks after the multicollision.
The CCS contains t different choices and the checksum value has t bits and this produces a system
of t linear equations in t unknowns to find the prefix that give us the desired checksum.

The following algorithm is used to defeat the checksum in the 2t 2-block multicollision on
F-Hash.
ALGORITHM: Defeat checksum in the 2t multicollision on F-Hash
Variables:

1. (e0
i ,e

1
i ) = A pair of independent choices of random values after every 2-block collision in the 2t

2-block collision on F-Hash and e0
i 6= e1

i for i = 1, 2, . . . , t.
2. a = a[1], a[2], . . . , a[t] = Any t-bit string.
3. D = D[1],D[2], . . . ,D[t] = The desired t-bit checksum to be imposed.
4. i, j = Temporary variables.

Steps:

1. Each of the parts of the CCS gives us one choice (e0
i or e1

i ) for i = 1, 2, . . . , t to determine some
random t-bit value that either is or is not XORed into the final checksum value at the end of 2t

multicollision. Note that e0
i = h0

2i−1 ⊕ h0
2i and e1

i = h1
2i−1 ⊕ h1

2i for i = 1, 2, . . . , t where e0
0 = 0

and e1
0 = 0.

2. For any t-bit string a = a[1], a[2], . . . , a[t], let ea = ea
1, . . . , e

a
t .

3. D is the desired checksum to be imposed at the end of 2t 2-block multicollision.

4. Find a = a[1], a[2], . . . , a[t] such that e
a[1]
1 ⊕e

a[2]
2 ⊕. . .⊕. . . e

a[t]
t = D. By treating a[1], a[2], . . . , a[t]

as variables, solve the equation

⊕t
i=1 e0

i × a[i] ⊕ e1
i × (1 − a[i]) = D

5. Each bit position of e
a[i]
i gives us one equation and turn the above into t equations, one for each

bit. Let a[i] = 1 − a[i].
6. The resulting system is:

⊕t
i=1 e0

i [j] × a[i] ⊕ e1
i [j] × a[i] = D[j] (j = 1, . . . , t)

Here there are t equations in t unknowns over modulo 2 addition which can be solved for the
solution a[1], a[2], . . . , a[t].

7. The solution a[1], a[2], . . . , a[t] lets us determine the blocks in the 2t 2-block multicollision that
give the desired checksum D.
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Work: It requires about t × 2t/2 computations of the compression function to find a 2t 2-block
multicollision to construct the CCS and at most t3 + t2 bit-XOR operations to solve the system of
t × t equations using Gaussian elimination to find a solution with a significant probability.
Case 2: Assume that a cryptanalytic collision finding algorithm C(s, 2) is used to perform a 2t

2-block multicollision on F-Hash. Now, whether the system of linear equations due to the CCS
obtained from this C(s, 2) can be solved depends on the type of the 2-block collision. The analysis
of this case is similar to the analysis of the corresponding case given for 3C in Section 3.3 and
hence it is omitted from discussion here. Whether the checksum can be bypassed or not using a
cryptanalytic collision finding algorithm depends on the type of the 2-block collision as in 3C.

B.2 Defeating the linear checksum in 3CM

Case 1:
The following algorithm is used to defeat the checksum due to a multicollision in both the chains

of 3CM.
ALGORITHM: Defeat checksum in the 2t 2-block multicollision on 3CM
Variables:

1. (e0
i ,e

1
i ) = A pair of independent choices of random values on the second chain after every 2-block

collision in the 2t 2-block multicollision on 3CM and e0
i 6= e1

i for i = 1, 2, . . . , t.
2. (s0

i ,s
1
i ) = A pair of independent choices of random values on the third chain after every 2-block

collision in the 2t 2-block multicollision on 3CM and s0
i 6= s1

i for i = 1, 2, . . . , t.
3. a = a[1], a[2], . . . , a[t] and c = c[1], c[2], . . . , c[t] are any two t-bit strings.
4. D1 = D1[1],D1[2], . . . ,D1[t] = The desired t-bit checksum to be imposed on the second chain.
5. D2 = D2[1],D2[2], . . . ,D2[t] = The desired t-bit checksum to be imposed on the third chain.
6. i, j = Temporary variables.

Steps:

1. Each of the parts of the CCS gives one choice (e0
i or e1

i ) (resp. (s0
i or s1

i )) for i = 1, 2, . . . , t on
the second chain (resp. third chain) to determine some random t-bit value that either is or is
not XORed into the final checksum value in the second chain (resp. third chain) at the end of
the 2t 2-block multicollision. Note that ej

i = Hj
2i−1 ⊕ Hj

2i for i = 1, 2, . . . , t where j is either 0

or 1 and ej
0 = 0. In addition, sj

i = Hj
2i ⊕ (h′′)j2i−1 for i = 1, 2, . . . , t where j is either 0 or 1 and

(h′′)0 = H0. At any state i, the checksum value in the third chain is h′′

i = ζ(h′′

i−1) ⊕ Hi.
2. For any t-bit string a = a[1], a[2], . . . , a[t], let ea = ea

1, . . . , e
a
t .

3. Now D1 (resp. D2) is the desired checksum to be imposed on the second chain (resp. third
chain) at the end of 2t 2-block multicollision.

4. Find a = a[1], a[2], . . . , a[t] such that e
a[1]
1 ⊕ e

a[2]
2 ⊕ . . . ⊕ . . . e

a[t]
t = D1. Similarly, find c =

c[1], c[2], . . . , c[t] such that s
c[1]
1 ⊕ s

c[2]
2 ⊕ . . . ⊕ . . . s

c[t]
t = D2.

By treating a[1], a[2], . . . , a[t] as variables, we solve the equation

⊕t
i=1 e0

i × a[i] ⊕ e1
i × (1 − a[i]) = D1.

Similarly, by treating c[1], c[2], . . . , c[t] as variables, we solve the equation

⊕t
i=1 s0

i × c[i] ⊕ s1
i × (1 − c[i]) = D2.
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5. Force a[i] = 1 − a[i] and c[i] = 1 − c[i].

6. Now turn the above into two systems of t equations in t unknowns as below:

The resulting two system of equations are:

⊕t
i=1 e0

i [j] × a[i] ⊕ e1
i [j] × a[i] = D1[j] (j = 1, . . . , t)

⊕t
i=1 s0

i [j] × c[i] ⊕ s1
i [j] × c[i] = D2[j] (j = 1, . . . , t)

Here there are two sets of t equations in t unknowns which can be solved for two solutions
a[1], a[2], . . . , a[t] and c[1], c[2], . . . , c[t].

7. The solution a[1], a[2], . . . , a[t] (resp. c[1], c[2], . . . , c[t]) lets us determine the chaining values
of the second chain (resp. third chain) in the 2t 2-block multicollision that gives the desired
checksum D1 (resp. D2). Using these chaining values, the data blocks that give the desired
checksums can be found.

Work: It requires about t × 2t/2 computations of the compression function to produce 2t 2-block
multicollision to construct the CCS and at most 2×(t3+t2) work to solve the above two systems of t×
t equations using Gaussian elimination to find a solution with a probability of 0.5 [1, Appendix A] [3,
37].

Case 2: The analysis on defeating the linear checksums in the two chains using a cryptanalytic
collision finding algorithm C(s, 2) to perform a 2t 2-block multicollision on 3CM is similar to the
one on 3C. Hence, it is omitted from discussion here.

C Generic attacks on F-Hash, 3CM and Maelstrom-0

C.1 Long message 2nd-preimage attack on F-Hash

Perform a long message 2nd preimage attack on the F-Hash hash function H using the generic
technique to find expandable messages [16]. The attacker starts with a long target message for
which she aims to find the 2nd preimage. Then she builds the CCS by constructing a 2t 2-block
multicollision to control the checksum, builds an expandable message and appends it to the CCS
and then carries out the long message 2nd preimage attack from the end of the expandable message.
The attacker then uses the CCS to adjust the accumulation chaining value at that point to match
the desired value which is equivalent to adjusting the checksum of the 2t 2-block multicollision.
Finally, she expands the expandable message to make up for all the message blocks skipped in the
long message 2nd preimage attack resulting in a new message which hashes to the same digest as
the long target message.

ALGORITHM: LongMessageAttack(Mtarget) on F-Hash
Find the 2nd preimage for a message of 2d + d + 2t + 1 blocks.

Variables:

1. Mtarget = The target long message for which a 2nd preimage is to be found.

2. Mlink = Linking message block used to connect the iterative chaining value at the end of the
expandable message to some point in the sequence of the iterative chaining values of the target
message.

3. Hexp = The intermediate iterative chaining value at the end of the expandable message.

21



4. Ht = The result of the 2t 2-block multicollision on the iterative chain of H starting from the
initial state H0.

5. Mfinal = The 2nd preimage of the same length as Mtarget such that H(Mfinal) = H(Mtarget).
6. Mpref = The checksum control prefix obtained from the CCS to force the linear checksum to

the desired checksum.

Steps:

1. Compute the intermediate hash values for Mtarget using H:

– H0 and h0 are the initial states on the iterative and accumulation chains of H respectively.
– Mi is the ith message block of Mtarget.
– (Hi, hi) = f(Hi−1,Mi) and h′

i =
⊕i−1

j=1 hj are the ith intermediate chaining values on the
iterative and accumulation chains respectively.

– The iterative and accumulation chaining states are organised in some searchable structure
for the attack, such as hash table. The elements H1, . . . ,Hd and the elements obtained in
the processing of t 2-block messages are excluded from the hash table as the expandable

messages cannot be made short enough to accommodate them in the attack.

2. Build a CCS by constructing a 2t 2-block multicollision on H as described in Section B.1
starting from the initial state H0. Let Ht be the multicollision chaining value. The corresponding
checksum value h′

t due to the 2t 2-block multicollision on H is random and its value depends
on the choice of the t 2-block messages from the CCS that give the collision Ht.

3. Construct a (d, d + 2d − 1) expandable message Mexp with Ht as the starting chaining state
using the generic technique to find the expandable messages. Append the expandable message

Mexp to the CCS. Let Hexp be the iterative chaining value at the end of the expandable message

Mexp.
4. Try different message blocks from the end of Hexp to find a linking message block Mlink such

that f(Hexp,Mlink) matches some iterative chaining value Hu stored in the hash table while
processing Mtarget. Let this matching value of the target message be Hu and the corresponding
accumulation chaining value be h′

u where d + 2t + 1 ≤ u ≤ 2d + d + 2t + 1.
5. Use the CCS built in step 2 to find the checksum control prefix Mpref to adjust the accumulation

chaining value at that point to match the desired accumulation value h′

u in the target message
Mtarget. Using h′

u, the desired checksum value at the end of the 2t 2-block multicollision is
calculated and this value is adjusted in such a way that the desired checksum h′

u is obtained.
The prefix Mpref is obtained by solving a system of t× t linear equations following Section 3.3.

6. Expand the expandable message to produce a message M∗ which is u − 1 blocks long.
7. Return the 2nd preimage Mfinal = Mpref ||M

∗||Mlink||Mu+1 . . . M2d+d+1+2t of the same length
as Mtarget such that H(Mfinal) = H(Mtarget).

Work: The computational effort required to perform the 2nd preimage attack on F-Hash is the
same as the effort to find 2nd preimages for 3C. Using the generic expandable-message finding
algorithm, this effort equals t×2t/2 +d×2t/2+1 +2t−d+1 computations of the compression function
and t3 + t2 bit XOR-operations.

C.2 Long message 2nd-preimage attack on 3CM and Maelstrom-0

Here we perform a long message 2nd preimage attack on the Maelstrom-0 hash function H using
either of the methods to find expandable messages [6, 16]. The attacker starts with a long target
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message for which she aims to find the 2nd preimage. Then she builds the CCS by constructing a
2t 2-block multicollision to control the checksum in the second and third chains of 3CM, builds an
expandable message and appends it to the CCS and then carries out the long message 2nd preimage
attack from the end of the expandable message. The attacker then uses the CCS to adjust the
chaining values in the second and third chains at that point to match the desired checksum values
in the second and third chains. This is equivalent to adjusting the checksum values of these two
chains at the end of the 2t 2-block multicollision. Finally, she expands the expandable message to
make up for all the message blocks skipped in the long message 2nd preimage attack producing a
new message which hashes to the same digest as the long target message. Since Maelstrom-0 uses
3CM as the underlying module with a Davies-Meyer compression function, the long message 2nd

preimage attack on 3CM is also applicable to Maelstrom-0.
ALGORITHM: LongMessageAttack(Mtarget) on 3CM
Find the 2nd preimage for a message of 2d + d + 2t + 1 blocks.

Variables:

1. Mtarget = The target long message for which a 2nd preimage is to be found.
2. Mlink = Linking message block used to connect the iterative chaining value at the end of the

expandable message to some point in the sequence of the iterative chaining values of the target
message.

3. Hexp = The intermediate iterative chaining value at the end of the expandable message.
4. Ht = The result of the 2t 2-block multicollision on the iterative chain of H starting from the

initial state H0.
5. Mfinal = The 2nd preimage of the same length as Mtarget such that H(Mfinal) = H(Mtarget).
6. Mpref = The checksum control prefix obtained from the CCS to force the linear checksum to

the desired checksum.

Steps:

1. Compute the intermediate hash values for Mtarget using H:

– H0, h′

0 and h′′

0 are the initial states on the iterative, second and third chains of H respectively.
– Mi is the ith message block of Mtarget.
– Hi = f(Hi−1,Mi), h′

i = h′

i−1 ⊕ Hi and h′′

i = ζ(h′′

i−1) ⊕ Hi are the intermediate chaining
values at any state i in the iterative, second and third chains of 3CM respectively.

– The iterative, second and third chaining states are organised in some searchable structure for
the attack, such as hash table. The elements H1, . . . ,Hd and the iterative chaining elements
obtained in the processing of t 2-block messages are excluded from the hash table as the
expandable messages cannot be made short enough to accommodate them in the attack.

2. Build a CCS by constructing a 2t 2-block multicollision on H as described in Section B.2
starting from the initial state H0. Let Ht be the multicollision chaining value. The corresponding
checksum values in the second and third chains denoted by h′

t and h′′

t respectively due to the
2t 2-block multicollision on H are random. Their values depend on the choices of the t 2-block
messages from the CCS that produce the collision Ht.

3. Construct a (d, d + 2d − 1) expandable message Mexp with Ht as the starting chaining state
using either of the methods to find the expandable messages from [6,16]. Append the expandable

message Mexp to the CCS. Let Hexp be the iterative chaining value at the end of the expandable

message Mexp.
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4. Try different message blocks from the end of Hexp to find a linking message block Mlink such
that f(Hexp,Mlink) matches some iterative chaining value Hu stored in the hash table while
processing Mtarget. Let this matching value of the target message be Hu and the corresponding
chaining values in the second and third chains be h′

u and h′′

u where d+2t+1 ≤ u ≤ 2d+d+2t+1.

5. Use the CCS built in step 2 to find the checksum control prefix Mpref to adjust the chaining
values in second and third chains at that point to match the desired checksum values h′

u and
h′′

u in the target message Mtarget. Using h′

u and h′′

u, the desired checksum values in the second
and third chains at the end of the 2t 2-block multicollision are calculated and these values are
adjusted in such a way that the desired checksums h′

u and h′′

u are obtained. The prefix Mpref is
obtained by solving a system of t × t linear equations as described in Section B.2.

6. Expand the expandable message to produce a message M∗ which is u − 1 blocks long.

7. Return the 2nd preimage Mfinal = Mpref ||M
∗||Mlink||Mu+1 . . . M2d+d+1+2t of the same length

as Mtarget such that H(Mfinal) = H(Mtarget).

Work: The effort required for the 2nd preimage attack on 3CM involves the effort in finding a 2t

2-block multicollision plus the effort in solving two sets of t× t system of linear equations plus the
effort in finding the expandable message plus the effort to find the linking message block. So, the
only additional effort in performing the 2nd preimage attack on 3CM over Damg̊ard-Merkle hash
function is the effort required to solve two systems of t × t equations and producing a 2t 2-block
multicollision.

1. Using the generic expandable-message finding algorithm, this effort equals t×2t/2 +d×2t/2+1 +
2t−d+1 computations of the compression function and at most 2× (t3 + t2 bit-XOR operations.

2. Using the fixed-point expandable-message finding algorithm, this effort equals t × 2t/2 + 3 ×
2t/2+1 + 2t−d+1 computations of the compression function and at most 2 × (t3 + t2 bit-XOR
operations. .

C.3 Herding attack on F-Hash

The following steps outline the herding attack on a t-bit F-Hash hash function H:

1. A 2d hash value wide diamond structure is constructed for H with 2d different arbitrary states
H1,H2, . . . ,H2d as the starting iterative chain hash values. It is constructed by finding 1-block
collisions similar to the construction of the diamond structure for the Damg̊ard-Merkle hash
functions. The final hash value Hf , which is the output of the compression function g, is com-
puted using any of the possible 2d−1 checksum values or some value chosen arbitrarily. Let h′

c

be that checksum value.

2. Build the CCS for H using a 2t multicollision over 2-block messages as described in Section B.1.
Let Ht be the 2t 2-block multicollision value on the iterative chain of H.

3. When challenged with the prefix message P , process P using Ht as the starting chaining value
on the iterative chain. Let H(Ht, P ) = Hp.

4. Find the linking message Mlink such that the state H(Hp,Mlink) matches one of the 2d outermost
intermediate chaining values on the iterative chain in the diamond structure. If the match is
compared to all the 2d+1 − 2 intermediate chaining values in the diamond structure then a
(1, d + 1)-expandable message must be produced at the end of the diamond structure ensuring
that the final herded message is always a fixed length.
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5. Use the CCS computed in step 2 to force the checksum of the herded message P to h′

c using
the techniques as described in Section B.1 to defeat the checksum in the 2t multicollision. Let
Mpref be the checksum control prefix obtained after solving the system of equations due to the
CCS.

6. Finally, output the message M = Mpref ||P ||Mlink||Md where Md are the message blocks which
contributes in the construction of the diamond structure. The value H(M) will be the same as
the chosen target Hf .

Work: The effort to perform the herding attack on F-Hash is the effort required to build the
CCS plus the effort to solve the system of equations due to the CCS plus the effort required to
perform the herding attack on the Damg̊ard-Merkle hash functions from [15]. This equals t×2t/2 +
2t/2+d/2+2+2t−d computations of the compression function and t3+t2 bit-XOR operations assuming
that only the outermost 2d chaining values are used for searching in the diamond structure. If all
the 2d+1 − 2 intermediate chaining values are used for searching in the diamond structure then the
effort required equals t × 2t/2 + 2t/2+d/2+2 + d × 2t/2+1 + 2t−d−1 computations of the compression
function and t3 + t2 bit-XOR operations.

C.4 Herding attack on 3CM and Maelstrom-0

The following steps outline the herding attack on a t-bit 3CM hash function H. Since Maelstrom-0
uses 3CM as the underlying module, this herding attack applies to Maelstrom-0 as well.

1. A 2d hash value wide diamond structure is constructed for H with 2d different arbitrary states
H1,H2, . . . ,H2d as the starting iterative chain hash values. The final hash value Hf , which is
the output of the compression function g, is computed using any of the possible 2d−1 checksum
values from the second and third chains or some values chosen arbitrarily. Let h′

c and h′′

c be
those checksum values in the second and third chains respectively.

2. Build the CCS for H using a 2t multicollision over 2-block messages as described in Section B.2.
Let Ht be the 2t 2-block multicollision value on the iterative chain of H.

3. When challenged with the prefix message P , process P using Ht as the starting chaining value
on the iterative chain. Let H(Ht, P ) = Hp.

4. Find the linking message Mlink such that the state H(Hp,Mlink) matches one of the 2d outermost
intermediate chaining values on the iterative chain in the diamond structure. If the match is
compared to all the 2d+1 − 2 intermediate chaining values in the diamond structure then a
(1, d + 1)-expandable message must be produced at the end of the diamond structure ensuring
that the final herded message is always a fixed length.

5. Use the CCS computed in step 2 to force the checksums of the herded message P in the second
and third chains to h′

c and h′′

c using the techniques described in Section B.1 to defeat the
checksum in the 2t multicollision. Let Mpref be the checksum control prefix obtained after
solving the system of equations due to the CCS.

6. Finally, output the message M = Mpref ||P ||Mlink||Md where Md are the message blocks that
contributed to the construction of the diamond structure. The value H(M) will be the same as
the chosen target Hf .

Work: The effort to perform the herding attack on 3CM is the effort required to build the CCS plus
the effort to solve the system of equations due to the CCS plus the effort required to perform the
herding attack on the Damg̊ard-Merkle hash functions from [15]. This equals t×2t/2 +2t/2+d/2+2 +
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2t−d computations of the compression function and 2× (t3 + t2) bit-XOR operations assuming that
only the outermost 2d chaining values are used for searching in the diamond structure. If all the
2d+1 − 2 intermediate chaining values are used for searching in the diamond structure then the
effort required equals t × 2t/2 + 2t/2+d/2+2 + d × 2t/2+1 + 2t−d−1 computations of the compression
function and 2 × (t3 + t2) bit-XOR operations.

D Additive checksum variant of GOST

D.1 3CA: A Variant of GOST hash function

We propose a variant for GOST called 3CA which computes additive checksum using modular
addition of chaining values over 2t as shown in Figure 10.
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Fig. 10. 3CA-hash function

E Generic attacks on the hash functions with additive checksums

E.1 Long message 2nd-preimage attack on GOST

An algorithm to perform the long message 2nd preimage attack on a b-bit block and t-bit digest
GOST structure H is outlined below.
ALGORITHM: LongMessageAttack(Mtarget) on GOST
Find the 2nd preimage for a message of 2d + d + b × (b/2 + 1) + 1 blocks.

Variables:

1. Mtarget = the target long message for which a 2nd preimage is to be found.
2. Mlink = linking message block used to connect the chaining value at the end of the expandable

message to some point in the sequence of chaining values of the target message.
3. Hexp = the intermediate chaining value at the end of the expandable message.
4. Ht = the chaining state at the end of the CCS.
5. Mfinal = the 2nd preimage of the same length as Mtarget such that H(Mfinal) = H(Mtarget).
6. Mc = the desired checksum block.
7. Mpref = the checksum control prefix obtained to force the checksum to the desired checksum.

Steps:

1. Compute the intermediate hash values for Mtarget using H:

– H0 is the initial state of H.
– Mi is the ith message block of Mtarget.
– Hi = f(Hi−1,Mi) is the intermediate iterative chaining state of H.
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– The iterative and accumulation chaining states are organised in some searchable structure
for the attack, such as hash table. The elements H1, . . . ,Hd and those obtained in the
processing of b× ((b/2)+ 1) 1-block messages are excluded from the table as the expandable

messages cannot be made short enough to accommodate them in the attack.

2. Construct CCS for GOST following the method from Section 4 producing Ht as the multicol-
lision value on the iterative chain and let Mt be the corresponding checksum block which is
random.

3. Construct a (d, d+2d−1) expandable message Mexp from the end of Ht and Hexp is the chaining
value at the end of Mexp.

4. Try message blocks from the end of Hexp to find a linking message block Mlink such that
f(Hexp,Mlink) matches one of the chaining values stored in the hash table while processing
Mtarget. Let this matching chaining value of the target message be Hu and the checksum of data
blocks of Mtarget until that point be Mu where d+b×((b/2)+1)+1 ≤ u ≤ 2d+d+b×((b/2)+1)+1.

5. Using Mu, find the desired checksum Mc at the end of CCS by working backwards from the
point of match with the chaining value of the target message.

6. Find the checksum control prefix Mpref which produces the desired checksum Mc at the end of
the CCS while still maintaining collisions on the iterative chain using the technique to defeat
the checksum from Section 4.

7. Expand the expandable message to produce a message M∗ which is u − 1 blocks long.

8. Return the 2nd preimage Mfinal = Mpref ||M
∗||Mlink||Mu+1 . . .

M2d+d+b×(b/2)+1))+1 of the same length as Mtarget such that H(Mfinal) = H(Mtarget).

Work: The computational work to find a 2nd preimage on GOST is the work to bypass the checksum
to the target checksum following Section 4 plus the work to find the expandable message Mexp plus
the work to find the linking message block Mlink. So, the only additional work in performing the
2nd preimage attack on GOST over DM hash function is the work to construct CCS following
Section 4.

1. Using the generic expandable-message finding algorithm, this work equals (b/2+ 1)× b× 2t/2 +
d× 2t/2+1 + 2t−d+1 computations of the compression function and a time and space of b× 2b/2.

2. Using the fixed-point expandable-message finding algorithm, this effort equals (b/2 + 1) × b ×
2t/2 + 3 × 2t/2+1 + 2t−d+1 computations of the compression function and a time and space of
b × 2b/2.

Illustration:

The work to find a 2nd preimage for GOST using the generic expandable message algorithm for
a message of 254 +54+256(129)+1 blocks is 2143 +54×2129 +2203 computations of the compression
function and a time and space of 256 × 2128 = 2136.

E.2 Herding attack on GOST

The following steps outline the herding attack on a t-bit GOST hash function H:

1. Construct a 2d hash value wide diamond structure and output the final hash value Hf computed
using either any of the possible 2d−1 checksum values or some value chosen arbitrarily. Let Mc

be that checksum value.
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2. Construct CCS and let Ht be the iterative chaining value at the end of CCS.
3. When challenged with the prefix message P , process P using Ht as the starting chaining value

on the iterative chain 4. Let H(Ht, P ) = Hp.
4. Find the linking message Mlink such that the state H(Hp,Mlink) matches one of the 2d outermost

intermediate chaining values on the iterative chain in the diamond structure. If the match is
compared to all the 2d+1 − 2 intermediate chaining values then a (1, d + 1)-expandable message

must be produced at the end of the diamond structure to make sure that the final herded
message is always a fixed length.

5. Use the techniques from Section 4 to force the checksum of the herded message P to Mc. Let
Mpref be the checksum control prefix which produces the desired checksum Mc.

6. Finally, output the message Mpref ||P ||Mlink||Md where Md are the message blocks that con-
tribute to the construction of the diamond structure. The value H(M) will be same as the
chosen target Hf .

Work: The work to perform the herding attack on GOST is the work to construct CCS plus the
work to perform the herding attack from [15]. This equals b× ((b/2) + 1)× 2t/2 + 2t/2+d/2+2 + 2t−d

computations of the compression function and a time and space of b× 2b/2 assuming that only the
outermost 2d chaining values are used for searching in the diamond structure. If all the 2d+1 − 2
intermediate chaining values are used for searching in the diamond structure then the effort required
equals b × ((b/2) + 1) × 2t/2 + 2t/2+d/2+2 + d × 2t/2+1 + 2t−d−1 computations of the compression
function and a time and space of b × 2b/2.
Illustration:

The work to perform the herding attack on GOST with d = 84 is 2143 +2172+2172 computations
of the compression function assuming that only the outermost 284 chaining values are used for
searching in the diamond structure and time and space of 256 × 2128 = 2136.

E.3 Defeating the additive checksum in 3CA

We follow the steps below in order to defeat the additive checksum in 3CA shown in Figure 10:

1. We perform a 2t multicollision starting from the initial state H0 of the hash function where
each collision contains a 2(t/2)+1 multicollision performed over 2-block messages.

2. In every 2t/2+1 multicollision in the 2t multicollision from i = 1 to t, we then search for a pair
of 2 × ((t/2) + 1)-chaining sequences, which we call as chunk, giving the same hash chaining
output but checksum values that differ by 2i−1. We perform this task as follows:

– We initialize an empty table.
– For every collision path in the 2t/2+1 2-block multicollision:

• We add to the table: the additive checksum of chaining values of that path, the collision
path and an index of 0.

• We add to the table: 2i−1 added to the additive checksum of the chaining values computed
above, the collision path and an index of 1.

– We then search for a match between the entries with index 0 and the entries with index 1.

3. We then obtain a workable CCS by concatenating such individual chunks all hashing to the
same chaining state at the end of 2t 2(t/2)+1 2-block multicollision.

4 We note that when the forced prefix message P is processed using the initial state H0 of H followed by constructing
CCS using the state H(H0, P ), we can output message M with the format P ||Mpref ||Mlink ||Md.
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4. We then use this workable CCS to find the collision path which produces the checksum to the
desired checksum at the end of the 2t multicollision. The message blocks of this collision path
would form the checksum control prefix.

Work: The work required to defeat the additive checksum in 3CA is the work to construct the CCS
plus the work required to use the CCS to force the additive checksum to the required checksum.
This equals the work to find the 2t 2(t/2)+1 2-block multicollision plus the work to find the individual
chunks in every 2(t/2)+1 2-block multicollision. This equals about t×((t/2)+1))×2t/2 computations
of the compression function plus a time and space of t × 2t/2.

Illustration: On 3CA instantiated with the compression function of SHA-256, it requires about
28 × 129 × 2128 ≈ 2143 computations of SHA-256 compression function and a time and space of
28 × 2129 = 2137.

E.4 Generic attacks on 3CA

The generic algorithm given in Section 5 can be used to perform the 2nd preimage and herding
attacks on the 3CA hash function. These attacks are similar to those on GOST and hence are
left out from the discussion here. To find the 2nd preimage of a long target message of 254 + 54 +
2(256)(129) + 1 blocks processed using 3CA based on the compression function of SHA-256, it
requires 2143 + 54 × 2129 + 2203 computations of the compression function and a time and space of
256 × 2129 = 2137.

Similarly, the work to perform the herding attack on 3CA instantiated with the compression
function of SHA-256 using a 284 hash value wide diamond structure (i.e width of the diamond is
d = 84) is 2143 + 2172 + 2172 computations of the compression function assuming that only the
outermost 284 chaining values are used for searching in the diamond structure and time and space
of 256 × 2129 = 2137.

F Multi-block collision attacks on F-Hash and 3CA

F.1 Multi-block collision attack on F-Hash

Consider a collision finding algorithm C(s, n) with the state s = H0 for the F-Hash hash function
H. For F-Hash, we define a collision for the compression function f at iteration i as finding two
message blocks Mi and Ni such that Mi 6= Ni, f(Hi−1,Mi) = f(H ′

i−1, Ni) = (Hi, hi) where either
Hi−1 = H ′

i−1 or Hi−1 6= H ′

i−1.

Let n = 2 and a call to C(s, 2) results in a pair of messages (M,N) where M = M1||M2 and
N = N1||N2 such that H(H0,M1) = (H1, h1), H(H0, N1) = (H∗

1 , h∗

1), H1⊕H∗

1 = ∆H , h1⊕h∗

1 = ∆h

and H(M) = H(N) = (H2, h2). Now a second call to C(s, 2) with s = H2 results in two pairs of
blocks (M3,M4) and (N3, N4) such that H(H2,M3) = (H3, h3), H(H2, N3) = (H∗

3 , h∗

3), H3 ⊕H∗

3 =
∆H , h3 ⊕ h∗

3 = ∆h and H(H3,M4) = H(H∗

3 , N4) = (H4, h4). This is depicted in Figure 11.

Since, H1 ⊕ H∗

1 = ∆H and H3 ⊕ H∗

3 = ∆H , H1 ⊕ H2 ⊕ H3 ⊕ H4 = H∗

1 ⊕ H2 ⊕ H3 ⊕ H∗

4 , a
collision on the iterative chain of F-Hash. In addition, since, h1 ⊕ h∗

1 = ∆h and h3 ⊕ h∗

3 = ∆h,
h1 ⊕ h2 ⊕ h3 ⊕ h4 = h∗

1 ⊕ h2 ⊕ h3 ⊕ h∗

4, a collision on the accumulation chain of F-Hash.
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Fig. 11. Multi-block collision attack on F-Hash
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Fig. 12. Multi-block collision attack on the 3CA-hash function

F.2 Multi-block collision attack on 3CA

Consider a collision finding algorithm C(s, 2) which finds a collision on the iterative chain of 3CA
after processing every two blocks starting from s = H0. Let f(H0,M1) = H1, f(H0, N1) = H∗

1 ,
f(H1,M2) = f(H∗

1 , N2) = H2 be the chaining values after processing single blocks from the state
H0. Let f(H2,M3) = H3, f(H2, N3) = H∗

3 , f(H3,M4) = f(H∗

3 , N4) = H4 be the chaining values
after processing single blocks from the state H2. Assume the additive differences of the intermediate
chaining states as H∗

1 − H1 ≡ ∆ mod 2t and −H∗

3 + H3 ≡ ∆ mod 2t. Now consider the checksum
value H1 +H2 +H3 +H4 mod 2t = H∗

1 −∆+H2 +H∗

3 +∆+H4 mod 2t = H∗

1 +H2 +H∗

3 +H4. This
is a collision for the checksum. Hence, concatenation of two structured 2-block collisions with the
additive differences as described above would produce a multi-block collision for the 3CA structure.

G Analysis of the triple-function compression function iterated in the

Damg̊ard-Merkle mode

Shrimpton and Stam [34] proposed an efficient compression function f which uses three random
functions f1, f2 and f3, the inputs to f are: message block M and the chaining state V and its
output is f(V,M) as shown in Figure 13. This compression function iterated using Damg̊ard-Merkle
mode of operation is shown in Figure [34] where H0 is the initial state of the hash function. Unlike
hash functions with XOR-linear checksums such as 3C, this scheme uses the checksum obtained at
the end as the hash output.

An attacker can find collisions for f , either by finding collisions for f1 or collisions for f2 or
collisions directly for f which are called terminal collisions. The following observations can be made
with respect to the security of this compression function [34]:
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Fig. 13. The triple-function compression function f

– A collision for f1 i.e, finding M1 and M2 such that M1 6= M2 and f1(M1) = f1(M2) can be
converted to collisions for f for any arbitrary chaining state V .

– A single collision for f using a collision on f1, can be converted to multicollisions for no additional
cost when f is iterated using the Damg̊ard-Merkle mode. This can be done by repeatedly
concatenating single collisions for f1.

– No exact security bound against preimage attacks was made for the compression function.
However, for some parameter values used in the proof of security of the scheme against collision
attacks, it is not as preimage resistant as one might wish for.

M1 M2 ML

H0

f1f1f1

f2f2f2 f3f3f3 Hfinal

Fig. 14. The triple-function compression function iterated in the Damg̊ard-Merkle mode

G.1 Pseudo-preimage and preimage attacks

We note that an attacker who is given a t-bit target hash value D can find a pseudo-preimage for
this hash function quite cheaply. We define a pseudo-preimage as the preimage for a hash function
with any initial state other than the state in the specification of the hash function. In this attack,
the attacker starts with two random and distinct states and aims to find a preimage with either of
theses states as the initial values. Our attack assumes no length-encoding of the information in the
last block. The attack algorithm is discussed below:

1. Find a collision for f1 i.e, find M1 and N1 such that M1 6= N1 and f1(M1) = f1(N1).
2. Run the compression function f with M1 and N1 as inputs for f1 along with two random and

distinct t-bit states H0
0 and H1

0 to obtain two random outputs H0
1 and H1

1 respectively. Now
H0

1 = f3(f1(M1) ⊕ f2(H
0
0 )) ⊕ f1(M1) and H1

1 = f3(f1(N1) ⊕ f2(H
1
0 )) ⊕ f1(N1).

3. Iterate the compression function for additional t−1 times from the random and different states
H0

1 and H1
1 using either the colliding message blocks M1 and N1 or different but the same blocks

as inputs to f1.
4. Let (H0

i ,H1
i ) be a pair of independent and random choices of outputs of f after every iteration

and H0
i 6= H1

i for i = 1 to t.
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5. For any t-bit string a = a[1], a[2], . . . , a[t], let Ha = Ha
1 , . . . ,Ha

t .

6. Find a = a[1], a[2], . . . , a[t] such that H
a[1]
1 ⊕H

a[2]
2 ⊕. . .⊕. . . H

a[t]
t = D. By treating a[1], a[2], . . . , a[t]

as variables, we now solve the equation:

⊕t
i=1 H0

i × a[i] ⊕ H1
i × (1 − a[i]) = D.

7. Each bit position of H
a[i]
i gives us one equation and we turn the above into t equations, one for

each bit. Let a[i] = 1 − a[i].
8. The resulting system is:

⊕t
i=1 H0

i [j] × a[i] ⊕ H1
i [j] × a[i] = D[j] (j = 1, . . . , t)

Here there are t linear equations in t unknowns that need to be solved for the solution a[1], a[2], . . . , a[t].
9. The solution a[1], a[2], . . . , a[t] allows us to determine the blocks that constitute the preimage

for a given target hash value D with either H0
0 or H1

0 as the initial states.
10. The preimage would be in one of the forms: M1||Xi, N1||Xi, M1||Yi or N1||Yi where Xi is the

concatenation of M1 or N1 for the additional t−1 times depending on the solution of the system
of equations and Yi are the message blocks for i = 2 to t. The size of the preimage is t× t bits.

Work:
The total computational cost to find a t× t-bit preimage for this hash function is the work required
to find a single collision for f1 plus the work required to run the compression function for t times
plus the work to solve the system of t × t linear equations. This equals 2t/2 + t computations
of f1, t computations of f2 and f3 each and t3 + t2 bit-XOR operations to solve the system of
linear equations. For a 256-bit hash function, a pseudo-preimage can be found with about 2128

computations of f1 and 256 computations of f and 224 + 216 bit-XOR operations to solve the
system of equations.

Remark 4. It is easy to see that with 50% probability, the above attack will produce a preimage
for the hash function when one of the initial states is the same as the one in the specification of
the hash function. The above attack can be converted to a preimage attack at no additional cost
by first processing f using the initial state H0 and two random and distinct message blocks M and
N as inputs to f1 producing two random and distinct chaining states H0

0 and H1
0 . Then the above

pseudo-preimage attack is implemented with H0
0 and H1

0 as the starting initial values to obtain a
(t × t) + t-bit preimage of either of the formats M ||X or N ||X where X is the t × t-bit pseudo
preimage found using the above attack.

G.2 Second preimage and herding attacks

It is easy to see that herding and long message second preimage attacks can be performed on
the above scheme quite cheaply without finding the linking messages. In the long message second
preimage attack, the attacker chooses a chaining value at some step after processing t message
blocks in the long message. Then the attacker in his second preimage attack tries to force the
chaining value to this one using the above preimage attack algorithm. Then the attacker appends
all the remaining blocks including the length encoding block in the long message that come after
that point to his second preimage. Thus he produces the second preimage of the same length as
the target long message. The work is same as the work to find the preimages.
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In the herding attack, the attacker first processes the challenged prefix P and then carries out
the preimage attack to force the chaining value to one of the wider most chaining values in the
pre-computed diamond structure. Finally, the attacker outputs the message of format P ||Mpref ||Md

where Md are the message blocks that contributed in the construction of the diamond structure and
Mpref is the checksum control prefix. This message hashes to the chosen target digest committed
in the past.
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