
A Framework for Iterative Hash Functions —
HAIFA?

Eli Biham1?? Orr Dunkelman2? ? ?

1 Computer Science Department, Technion.
Haifa 32000, Israel

biham@cs.technion.ac.il
2 Katholieke Universiteit Leuven

Department of Electrical Engineering ESAT/SCD-COSIC
Kasteelpark Arenberg 10, B-3001 Leuven-Heverlee, Belgium

orr.dunkelman@esat.kuleuven.be

Abstract. Since the seminal works of Merkle and Damg̊ard on the iter-
ation of compression functions, hash functions were built from compres-
sion functions using the Merkle-Damg̊ard construction. Recently, several
flaws in this construction were identified, allowing for second pre-image
attacks and chosen target pre-image attacks on such hash functions even
when the underlying compression functions are secure.
In this paper we propose the HAsh Iterative FrAmework (HAIFA). Our
framework can fix many of the flaws while supporting several additional
properties such as defining families of hash functions and supporting
variable hash size. HAIFA allows for an online computation of the hash
function in one pass with a fixed amount of memory independently of
the size of the message.
Besides our proposal, the recent attacks initiated research on the way
compression functions are to be iterated. We show that most recent pro-
posals such as randomized hashing, the enveloped Merkle-Damg̊ard, and
the RMC and ROX modes can be all be instantiated as part of the HAsh
Iterative FrAmework (HAIFA).

Keywords: Merkle-Damg̊ard, randomized hashing, Enveloped Merkle-
Damg̊ard, RMC, ROX, Wide pipe, HAIFA

1 Introduction

Cryptographic hash functions play an increasingly important role in cryptogra-
phy. Many primitives and protocols rely on the existence of secure cryptographic
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hash functions. Hash functions are usually constructed by means of iterating a
cryptographic compression function, while trying to maintain the following three
requirements:

1. Pre-image resistance: Given y = H(x) it is hard to find x′ s.t. H(x′) = y.
2. Second pre-image resistance: Given x it is hard to find x′ s.t. H(x) = H(x′).
3. Collision resistance: It is hard to find x, x′ s.t. H(x) = H(x′).

The most widely used mode of iteration is the Merkle-Damg̊ard construc-
tion [9, 17, 18]. The simple iteration method maintains the collision resistance of
the compression function. The pre-image and second pre-image resistance of the
compression function were also thought to be preserved in the Merkle-Damg̊ard
construction. However, counter examples for these beliefs were suggested re-
cently.

The first evidence for this was by Dean [10] who showed that fix-points of the
compression function can be used for a second pre-image attacks against long
messages using O(m ·2m/2) time and O(m ·2m/2) memory (where m is the digest
size). Later, Kelsey and Schneier have proposed the same ideas, while removing
the assumption that fix-points can easily be found [15]. This improvement was
achieved using Joux’s multi-collision attack on iterated hash functions [13].

The previous attacks have used very long messages. This led Kelsey and
Kohno to show that using a simple pre-computation it is possible to reduce the
time requirements of chosen target pre-image attacks1 for relatively short mes-
sages [14]. The total time complexity of the attack is much below the expected
O(2m).

In this work we suggest the HAsh Iterative FrAmework (HAIFA) to replace
the Merkle-Damg̊ard construction. HAIFA maintains the good properties of the
Merkle-Damg̊ard construction while adding to the security of the transformation,
as well as to the scalability of the transformation.

HAIFA has several attractive properties: simplicity, maintaining the collision
resistance of the compressions function, increasing the security of iterative hash
functions against (second) pre-image attacks, and the prevention of easy-to-use
fix-points of the compression function. HAIFA also supports variable hash size
and has a built-in support for defining families of hash functions as part of
the framework. HAIFA also posses the online hashing property of the Merkle-
Damg̊ard construction. The computation of a HAIFA hash function requires one
pass on the message, without keeping the entire message in memory, and while
using a fixed amount of memory for the hashing of each block.

Along with recent advances in finding collisions on wide spread hash functions
from the MD family [5, 6, 21–24], this motivated many suggestions to strengthen
hash functions and modes of iteration. These suggestions are either aimed at
reducing the security requirements from the compression function [11] or at
proposing a mechanism to securely iterate a compression function [1–3, 7].

1 The herding attack can be deployed in the following scenario: The attacker publishes
in advance a digest value. Then, given a previously unknown message, the attacker
finds a pre-image to the digest value that contains the unknown message.

2



The randomized hashing scheme [11] proposed by Krawczyk and Halevi aims
to reduce the requirements on the collision resistance of the compression function
in a collision resistant hash function. By randomizing the actual inputs to the
compression functions, the existence of a collision in the compression function
can be masked. This change is mostly useful for digital signatures (preventing
the attack scenario where the attacker finds two colliding messages and asks the
victim to sign the first).

The enveloped Merkle-Damg̊ard construction [3] was proposed by Bellare and
Ristenpart as a method to maintain the collision resistance, the pseudorandom
and the pseudorandom family properties of the compression function. This is
very useful for constructions which require the pseudorandom properties of the
hash function, e.g., in cases where the hash function is used in MACs.

The last recent proposals for modes of iteration are the RMC [1] and ROX [2]
by Andreeva et al. These two modes aim at preserving the collision resistance of
the compression function, along with the second pre-image resistance (Sec) and
the pre-image resistance (Pre), and their everywhere and always variants, aSec,
eSec, aPre, and ePre.

Besides suggesting modes of iteration for the compression functions, recent
research also suggests using larger internal state [16]. The approach, named wide
pipe, mitigate the flaws of iterated hashing by using a larger internal state than
the output size. This approach leads to the fact that internal collisions, i.e.,
collisions in the chaining value, are eventually as hard as finding a pre-image of
the hash function itself (assuming a good compression function is being used).

After presenting HAIFA, we show that HAIFA can be used to instantiate any
of these modes. Thus, a HAIFA compression function can easily be made to follow
each of these suggestions according to the properties sought by the designer.
For example, as a ROX hash function can be instantiated using the HAIFA
framework, it is possible to construct a HAIFA hash function that maintains the
(a/e)Sec and (a/e)Pre properties of the compression function.

This paper is organized as follows: In Section 2 we describe the Merkle-
Damg̊ard construction and various results regarding the construction. In Sec-
tion 3 we propose HAIFA. We discuss the security aspects of HAIFA in Sec-
tion 4. We show how to implement the randomized hashing scheme, the en-
veloped Merkle-Damg̊ard, and the RMC and ROX constructions using a HAIFA
hash function in Section 5. We compare the above constructions with HAIFA in
Section 6. Finally, Section 7 summarizes the paper.

2 The Merkle-Damg̊ard Constructions and its Pitfalls

The Merkle-Damg̊ard construction is a simple and elegant way to transform a
compression function CMD : {0, 1}mc × {0, 1}n → {0, 1}mc into a hash func-
tion [9, 17, 18]. Throughout this paper mc denotes the size of the chaining value,
and n denotes the block size for the compression function. We also denote by m
the hash output length (in many cases m = mc).
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The message M is padded with its length (after additional padding to make
the message a multiple of the block size n after the final padding), and the
message is divided into blocks of n bits each, M = M1M2M3 . . .Mk. An initial
chaining value h0 = IV ∈ {0, 1}mc is set for the hash function (also called
initialization vector) and the following process is repeated k times:

hi = CMD(hi−1,Mi)

The final hk is outputted as the hash value, i.e., H(M) = hk.
It is easy to prove that once a collision in the hash function H(·) is found,

then a collision of the compression function CMD(·) is found as well [9, 17, 18].
Thus, the Merkle-Damg̊ard construction retains the collision resistance of the
compression function.

When from hi = CMD(hi−1,Mi) and Mi the value of hi−1 can be easily
computed, a pre-image attack on H(·) can be mounted using a birthday at-
tack [25]. However, the opposite statement is not true. Even if an inversion
attack on CMD(·) requires O(2m) operations, the security claims for the hash
function H(·) cannot offer security better than O(2m/2). This surprising prop-
erty was first noted by Dean [10], which went unnoticed until rediscovered (and
expanded) by Kelsey and Schneier [15].

2.1 Fixed Points, Expandable Messages, and Finding Second
Pre-Images

It was widely believed by the cryptographic community that the security proof
of the Merkle-Damg̊ard construction applies also to second pre-image attacks.
However, Dean [10] noticed that this is not true for long messages if the compres-
sion function has easy to find fix-points. His observations were later generalized
by Kelsey and Schneier [15] that used the multi-collision technique to eliminate
the need for easily found fix-points.

Let us consider a long message M = M1M2 . . .Ml that is processed using
H(·), a Merkle-Damg̊ard hash function, when the message length is not padded
(the Merkle-Damg̊ard strengthening). An attacker that wishes to construct a
message M∗ such that H(M∗) = H(M) can randomly select messages M ′ until
H(M ′) equals to any of the l chaining values found during the computation of
H(M). Once such an instance is found, the attacker can concatenate to M ′ the
message blocks of M that are hashed starting from the given chaining value,
resulting with M∗ such that H(M∗) = H(M). This attack is foiled by the
Merkle-Damg̊ard strengthening, as the message length which is appended to the
message is expected to differ for M and M∗.

Assume that the compression function CMD is such that finding fix-points is
easy, i.e., it is easy to find (h, M) satisfying h = CMD(h, M). This is the case for
the Davies-Meyer construction that takes a block cipher E that accept mc-bit
plaintexts and n-bit keys and sets

hi = CMD(hi−1,Mi) = EMi(hi−1)⊕ hi−1.
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For such a compression function it is easy to find fix-points by computing h =
E−1

M (0) for randomly selected messages M .
Dean uses these fix-points to bypass the Merkle-Damg̊ard strengthening. His

attack has three main steps:

1. Finding O(2mc/2) fix-points denoted by A = (h, m).
2. Selecting O(2mc/2) single blocks and computing their chaining value denoted

by B = (CMD(IV, m̃), m̃).
3. Finding a collision between a chaining value and a fixed point, i.e., between

chaining values in A and in B. Let the colliding chaining be h, and denote
the corresponding message block (found in A) by m, i.e., (h, m) ∈ A, and
denote the message block associated with h in B by m̃, i.e., (h, m̃) ∈ B.
The attacker repeats the previous attack starting from the message m̃||m
(i.e., trying to add blocks that cause the same chaining values as the original
message) and fixes the length by iterating the fixed point as many times as
needed.

Once such a message is found, it is easy to expand the number of blocks in the
message to the appropriate length by repeating the fix-points as many times as
needed.

Kelsey and Schneier transformed the attack to the case where fix-points are
not easily found. While Dean’s expandable message could be extended by a
repetition of a single block, in their attack they use the multi-collision technique
to produce an expandable message. They replace the first two steps in Dean’s
attack in the following procedure. In each iteration 1 ≤ i ≤ t of the procedure
a collision between a one block message and a 2i−1 + 1 block message is found.
This procedure finds a chaining value that can be reached by messages of lengths
between t and 2t+1 + t− 1 blocks. Then, from this chaining value the third step
of Dean’s attack is executed, and the length of the found message is controlled
by the expandable prefix.

2.2 Multi-Collisions in Iterative Hash Functions

Joux identified the fact that when iterative hash functions are used, finding
multi-collisions, i.e., a set of messages with the same hash value, is almost as
easy as finding a single collision [13]. His main observation is the fact that in
iterative hashing schemes, such as the Merkle-Damg̊ard, it impossible to find
a collision for each block, e.g., for any hi−1 finding Mi and M∗

i such that
CMD(hi−1,Mi) = CMD(hi−1,M

∗
i ). Finding t such one block collision (each

starting from the chaining value produced by the previous block collision) it
is possible to construct 2t messages with the same hash value by selecting for
ith block of the message either Mi or M∗

i .
Joux also observed that the concatenation of two hash functions, i.e., H(x) =

H1(x)||H2(x), is not more secure against collision attacks than the stronger of
the two underlying hash functions. Moreover, concatenation of several iterative
hash functions is as secure as the stronger of the hash functions (up to some a
factor of mk−1, where k is the number of hash functions).
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It is worth mentioning that using fix-points of several blocks, Joux proved
that the concatenation of hash functions is as secure against pre-image attacks
as the strongest of all the hash functions. These results have disproved several
widely believed assumptions on the behavior of hash functions.

2.3 Herding Iterative Hash Functions

Kelsey and Kohno have observed that it is possible to perform a time-memory
tradeoff for several instances of pre-image attacks [14]. In their attack, an at-
tacker commits to a public digest value that corresponds to some meaningful
message, e.g., prediction of the outcome of NIST’s hash function competition.
After the announcement of the result, the attacker publishes a message that has
the pre-published digest value and contains the correct information along with
some suffix.

The attack is based on selecting the digest value carefully, helping the at-
tacker to perform a pre-image attack on this value. In the pre-computation phase,
the attacker starts with 2t possible chaining values hi (these values can either be
randomly selected or fixed in advance). The attacker then chooses O(2mc/2−t/2)
single blocks, and for each chaining value and each block computes the output
of the compression function given this input. The large amount of generated
chaining values is expected to generate collisions. More precisely, it is expected
that for each starting chaining value there is another chaining value, such that
they are compressed to the same chaining value (not necessarily under the same
message block). For each chaining value the attacker stores the message block
that causes a collision in the table, and repeats the above process with the newly
found chaining values. Once the attacker has only one chaining value, it is used
to compute the digest value to be published (maybe after padding or some other
message extension).

In the online phase of the attack, the attacker needs to perform only O(2mc−t)
operations until a message whose chaining value is among the 2t original values
is found. Once such a message is found, the attacker can retrieve from the stored
date the message blocks that would lead to the designated digest.

We note that unlike the previous attacks that require long messages, this
attack appends relatively short suffix (about t blocks) to the “real” message.
We also note, that the total time complexity of the attack is about O(2mc/2+t/2)
off-line operations for the first step of the attack and O(2mc−t) online operations
for the second step. For t = mc/3 the overall time complexity of this attack is
O(22mc/3) for finding a pre-image.

3 The HAsh Iterative FrAmework (HAIFA)

We propose the HAsh Iterative FrAmework to solve many of the pitfalls of
the Merkle-Damg̊ard construction. The main ideas behind HAIFA are the in-
troduction of number of bits that were hashed so far and a salt value into
the compression functions. Formally, instead of using a compression function
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of the form CMD : {0, 1}mc × {0, 1}n → {0, 1}mc , we propose to use C :
{0, 1}mc × {0, 1}n × {0, 1}b × {0, 1}s → {0, 1}mc , i.e., in HAIFA the chaining
value hi is computed as

hi = C(hi−1,Mi,#bits, salt),

where #bits is the number of bits hashed so far and salt is a salt value.
Thus, to hash a message M using C(·) and the salt salt and obtaining m bits

of digest value (as long as m ≤ mc), the following operations are performed:

1. Pad M according to the padding scheme described in Section 3.1.
2. Compute IVm the initial value for a digest of size m using the prescribed

way in Section 3.2.
3. Iteratively digest the padded message using C(·), starting from the initial

value IVm and using the salt. We note that in case an additional block is
padded to the message, the compression function is called on this block with
#bits = 0.

4. Truncate the final chaining value if needed (see Section 3.2).

3.1 The Padding Scheme

The padding scheme used in HAIFA is very similar to the one used in the Merkle-
Damg̊ard construction: In HAIFA the message is padded with 1, as many needed
0’s, the length of the message encoded in a fixed number of bits, and the digest
size:

1. Pad a single bit of 1.
2. Pad as many 0 bits as needed such that the length of the padded message

(with the 1 bit and the 0’s) is congruent modulo n to (n− (t + r)).
3. Pad the message length encoded in t bits.
4. Pad the digest size encoded in r bits.

Adding the digest size ensures that even if two messages M1 and M2 are
found, such that under IVl1 and IVl2 (M1 hashed to obtain l1 bits and M2

hashed to a digest of l2 bits) their chaining values collide, then the last block
changes this behavior. This approach is similar to the one used in the Merkle-
Damg̊ard strengthening, even though it deals with a scenario of variable output
sizes.

We note that when a full padding block is added for the hashing (i.e., the full
original message was already processed by the previous calls to the compression
function, and the full message size was already input to the previous call), the
compression function is called with the number of bits hashed so far set to zero.
This allows for the compression function to identify whether this is the last block
and moreover, whether this is a full padding block. It is easy to see that when
the number of bits hashed so far is not a multiple of the block length, then this
is certainly the last block (and the question whether there is a full padding block
can be easily deduced from the length of the message). We note that for the null
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string there is a padding of a full padding block anyway. Appendix A contains
the exact algorithm for finding the last block of the message.

The security is not affected by this method, as the length of the message is
necessarily embedded in the full padding block, and was already input to the
previous call to the compression function.

3.2 Variable Hash Size

Different digest sizes are needed for different applications. This fact has moti-
vated NIST to publish SHA-224 and SHA-384 as truncated variants of SHA-256
and SHA-512, respectively. We note that these truncated hash functions use the
same construction, but with different initial values.

Our framework supports truncation that allows arbitrary digest sizes (up to
the output size of the compression function), while securing the construction
against attacks that try to find two messages that have similar digest values.
This problem eliminates the easy solution of just taking the number of output
bits from the output of the compression function.

Let IV be an initial value chosen by the designer of the compression function,
and let m be the required length of the output. For producing hash values of m
bits the following initial value is computed2

IVm = C(IV,m, 0, 0).

The value m is encoded in the first r bits, followed by a single bit 1, and n−r−1
0’s. In other words, m is found in the first r bits of the block. We note that even
though #bits = 0, this call is distinct from all other calls to the compression
function. This is due to the fact that the only other call to the compression
function with #bits = 0 is in the case of using an additional padding block, for
which the message block is either all 0’s or a 1 followed by as many 0’s as needed,
whereas in this case the message block contains the encoding of m.

After the final block is processed, the digest is composed of the m first bits
of ht, where ht is the last chaining value. We advise implementors to make sure
that these m bits are the most diffused bits of the chaining value.

This suggestion allows for supporting various digest lengths in a simple and
straightforward way. An implementation of a HAIFA-based hash function re-
quires only the value of IV for the ability to produce any hash length, while
in implementations where only a single output length l is needed, IVl can be
precomputed and hardcoded into the implementation.

4 The Security of HAIFA Hash Functions

We first note that proving the HAIFA hash function is collision resistant if the
underlying compression function is collision resistant is quite easy. The same
arguments that are used to prove that the Merkle-Damg̊ard construction retains
2 We alert the reader that in [7] a typo suggested that IVm = C(m, IV, 0, 0).
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the collision resistance of the underlying compression function, can be used to
prove that HAIFA does so as well. We consider the strongest definition of a
collision in the compression function where the attacker has a control over all
input parameters to the compression function and tries to generate the same
output. Let M1 and M2 be the two colliding messages with respective lengths l1
and l2. If l1 and l2 are different, then the paddings are necessarily different (due
to the different length), and a collision in the compression function is found. If
the lengths of the messages are the same, one can start from the joint digest
and trace backwards till the point where the inputs to the compression function
differ. For example, if the messages are hashed with a different salt, then the
last block is necessarily a collision. Otherwise, both messages were hashed with
the same salt and have the same length (and thus have the same #bits in each
call to the compression function), and the same argument as the one for the
Merkle-Damg̊ard mode shows that there must exist a message block i such that
M1

i 6= M2
i or h1

i−1 6= h2
i−1 (where the superscript denotes the corresponding

message), for which C(h1
i−1,M

i
1, s, i · n) = C(h2

i−1,M
i
2, s, i · n).

We note that any iterative construction can be attacked by some of the
attacks described in Section 2. However, as noted before, using our ideas, it is
possible to reduce the applicability of these attacks, by preventing an efficient
pre-computation that reduces the online computational phase of these attacks.

We continue by first discussing some of the security reasons behind the added
parameters to the compression function. Then we analyze the general security
feature of a HAIFA hash function.

4.1 Number of Bits Hashed so Far

The inclusion of the number of bits hashed so far was suggested (with small
variants) in order to prevent the easy exploitation of fix-points. The attacker is
forced to work harder in order to find fix-points. While for CMD, once a fix-point
(h, M) such that h = CMD(h, M) is found, it can be used as many times as the
attacker sees fit [10, 15]. Even if the compression function does not mix the #bits
parameter well, once an attacker finds a fix-point of the form (h, M, #bits, salt)
such that h = C(h, M, #bits, salt), she cannot concatenate it to itself as many
times as she wishes because the number of bits hashed so far has changed.

We note that it is possible to use the number of blocks that were treated so
far instead. However, current schemes keep track of the number of bits hashed
so far which is used for for the padding, rather than the number of blocks.
Thus, it is easier for implementations to consider only one parameter (number
of bits) rather two (somewhat related) parameters (number of bits and number
of blocks).

It is interesting to consider message authentication codes based on the fol-
lowing HAIFA hash function H(·): MACk(M) = H(k, M). While for a Merkle-
Damg̊ard construction or suggestions that use the number of blocks hashed so
far, this suggestion is clearly not secure against message expansion techniques,
for HAIFA this construction is secure. The reason for that is that the last block
(or the one before it, in case an additional padding block is added) is compressed
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with the number of bits that were processed so far. If this value is not a multiple
of a block, then the resulting digest does not equal the chaining value that is
needed to the expansion of the message. If the message is a multiple of a block,
then an additional block is hashed (with the parameter #bits set to 0). Thus,
the chaining value required for the expansion remains obscure to the attacker.

4.2 Salt

The salt parameter can be considered as defining a family of hash functions
as needed by the formal definitions of [19] in order to ensure the security of
the family of hash functions. This parameter can be viewed as an instance of
the randomized hashing concept, thus, inheriting all the “goodies” such concept
provides:

– Ability to define the security of the hash function in the theoretical model.
– Transformation of all attacks on the hash function that can use precompu-

tation from an off-line part and an on-line part to only on-line parts (as the
exact salt is not known in advance).

– Increasing the security of digital signatures, as the signer chooses the salt
value, and thus, any attack aiming at finding two messages with the same
hash value has to take the salt into consideration.

We note that the salt can be application specific (e.g., a string identifying
the application), a serial number that follows the application (e.g., the serial
number of the message signed), a counter, or a random string. It is obvious that
s can also be set as a combination of these values.

4.3 Security against the Multi-Collision Attack

Let us consider the multi-collision attack. This attack works against all itera-
tive hashing schemes, independent of their structure. While the time complexity
for finding collisions for each block is not different in our framework than in
the Merkle-Damg̊ard construction, an attacker cannot pre-compute these multi-
collisions before the choosing of the salt value.

4.4 Preventing Attacks Based on Fix-Points

As noted before, our framework prevents Dean’s attack, as it is highly unlikely
that some fix-point of the compression function can be repeated. We note that
the existence of an additional random input is not sufficient to ensure security
against this kind of attacks. For example, when considering the randomized
hashing modes proposed in [11] it is evident that this attack still applies to
them. Dean’s attack can be easily applied to the randomized Merkle-Damg̊ard
constructions Hr(M) = H(M ⊕ (r|r|r . . . |r)) and H̃r(M) = Hr(0|M), as once
a fix-point is found, it remains a fix-point for these constructions. We note that
the first two steps of Dean’s attack can be mounted off-line just as in Dean’s
attack on regular Merkle-Damg̊ard hash functions for these two constructions.
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As for Kelsey and Schneier’s attack, just like in Joux’s multi-collision attack,
the attacker has to know the value of the salt before being able to generate
the expandable message. Thus, an attacker who tries to generate a second pre-
image, has to wait till the original message and salt are provided (or generate
an expandable message for each and every possible salt).

We conclude by noting that like in Joux’s multi-collision attack, once the
attacker is given the salt, the attacker can repeat the Kelsey and Schneier attack.

4.5 Mitigating the Herding Attack

Under HAIFA, the precomputation phase of the herding attack is infeasible
without the knowledge of the salt that is used. We note that if a security of
O(2m) against pre-image attacks such as the herding attack is requested, then
the size of the salt must be at least mc/2 bits long, in order to prevent the
herding attack. We also note that when the attacker is the one choosing the salt,
then the herding attack cannot be avoided, but due to the #bits parameters,
the attacker can mount the attack starting from one specific point (rather than
moving the diamond structure around and compensating using an expandable
message after the diamond structure).

We note that if the length of the salt is short, then an attacker can still use
precomputation to overcome the security proposed by HAIFA. It is therefore
recommended that the salt length would be of 64 bits at least, or at least mc/2
bits when possible.

4.6 Final Notes about the Security of HAIFA

The approach of increasing the chaining value was promoted in [16] and it may
seem that our suggestion supports this approach. However, the analysis in [16]
assumes that the hash function is a “good” hash function for all the bits of
the chaining value, and the compression function does not accept the additional
inputs that HAIFA support. Therefore, a large increase in mc is needed (typically,
doubling the size). In our approach the salt and #bits parameters are treated
separately from the chaining value, and allow us to protect from the weakness of
a short chaining value without doubling the size of the chaining values. Thus, it is
expected that HAIFA hash functions will be faster than wide hash constructions.

We conclude that the security of a Merkle-Damg̊ard hash function against
a pre-image attacks is equivalent to its security against collision attacks. For
HAIFA this is not the case, as we have shown earlier. We give the security level
of an ideal hash function and of the Merkle-Damg̊ard and HAIFA constructions
(under two cases — with a variable salt, and with a fixed salt) in Table 1.

5 Modeling Other Constructions in HAIFA

In this section we show that recent proposals for modes of iteration can be viewed
as an instance of HAIFA. This shows that the interface proposed by HAIFA is
robust enough for any of the possible proposals for modes of iteration.
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Type of Attack Ideal Hash MD HAIFA HAIFA
Function fixed salt with (distinct) salts

= ≥ ≥ ≥
Preimage 2mc 2mc 2mc 2mc

One-of-many pre-image 2mc/k′ 2mc/k′ 2mc/k′ 2mc

(k′ < 2s targets)
Second-pre-image 2mc 2mc/k 2mc 2mc

(k blocks)
One-of-many second 2mc/k′ 2mc/k 2mc/k′ 2mc

pre-image(k blocks in
total, k′ < 2s messages)

Collision 2mc/2 2mc/2 2mc/2 2mc/2

Multi-collision (k-collision) 2mc(k−1)/k dlog2 ke2mc/2 dlog2 ke2mc/2 dlog2 ke2mc/2

Herding [14] – Offline: 2mc/2+t/2 Offline: 2mc/2+t/2 Offline: 2mc/2+t/2+s

Online: 2mc−t Online: 2mc−t Online: 2mc−t

The figures are given for MD and HAIFA hash functions that use an ideal compression function.

Table 1. Complexities of Attacks on Merkle-Damg̊ard and HAIFA Hash Functions
with Comparison for an Ideal Hash Function

We note that in these constructions the padding schemes are not compatible
with the added digest size to the padding. This can be solved easily during the
identification of the last block by removing it in the compression function. We
also note that in the following constructions, HAIFA’s padding scheme does not
affect any of the security properties of the hash functions.

5.1 Randomized Hashing

The main purpose of randomized hashing is to reduce the level of requirements
from the compression function in order to achieve a collision-resistant hash func-
tion [11]. The randomized hashing is especially useful for digital signatures, where
the collision resistance is the most important requirement from the hash func-
tion. In order to achieve these properties the following two constructions were
suggested:

Hr(M1||M2|| . . . ||Mk)
def
= H(M1 ⊕ r||M2 ⊕ r|| . . . ||Mk ⊕ r)

H̃r(M)
def
= Hr(0||M) = H(r||M1 ⊕ r||M2 ⊕ r|| . . . ||Mk ⊕ r)

where H is a Merkle-Damg̊ard hash function.
It is easy to see that by setting the salt to s = r and ignoring the input of

number of bits, we can instantiate a randomized hashing scheme in a HAIFA
compression function. Let CMD be the compression function used in the ran-
domized hashing, thus we set:

CHAIFA1(hi−1,Mi,#bits, s) = CMD(hi−1,Mi ⊕ s),
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which would result in an implementation of Hr, i.e., HAIFACHAIF A1 = HCMD
r .

To implement H̃r, we use a slightly modified construction:

CHAIFA2(hi−1,Mi,#bits, s) =
{

CMD(CMD(hi−1, s),Mi ⊕ s) If 0 <#bits≤ n
CMD(hi−1,Mi ⊕ s) Otherwise

It is easy to see that for any non-empty message, the first block is hashed only
after the random value is hashed. For the empty message (null string) the com-
puted hash is CMD(IV, s) which is the value that would have been computed
for H̃r(·). We conclude that HAIFACHAIF A2 = H̃CMD

r .
Note that in both cases, if the variable message length feature is not wanted

it can be ignored by letting hi = C(hi−1,Mi,#bits, s) = hi−1 if the following
conditions hold: #bits = 0, the field that contains the digest size in the padding
is set to 0.

5.2 Enveloped Merkle-Damg̊ard

The Enveloped Merkle-Damg̊ard [3] is a proposal for a mode of iteration that
preserves the following three properties: collision resistance, pseudorandom or-
acle, and pseudorandom family. In order to achieve this, the Merkle-Damg̊ard
construction is altered in the following manner:

– The padding scheme pads the message with 1, as many 0’s as requires, and
the message length, such that the padded message, PADEMD(M) has a
length which equals to n−mc mod n.

– The final digest value is computed as

hk = CMD(IV2, hk−1||Mk),

for a second initialization vector IV2.

Let CMD be the compression function used for the enveloped Merkle-Damg̊ard,
and let CHAIFA3 be defined as:

CHAIFA3(hi−1,Mi,#bits, s) =
{

CMD(IV2, hi−1||fix pad(Mi)) Last block
CMD(hi−1,Mi) Otherwise

As noted earlier, identifying the last block is a trivial operation in HAIFA. Thus,
it is easy to see that HAIFACHAIF A3 = EMDCMD , i.e., the suggested HAIFA
hash function is equivalent to the enveloped Merkle-Damg̊ard one.

As the padding scheme used in the enveloped Merkle-Damg̊ard scheme is
slightly different than the one used in HAIFA. Fixing the padding in the last
block fix pad(·) can be done as the HAIFA padding can be easily shortened.
When the first mc zero bits of the padding (assuming mc < n) can be removed in
the last block, then the operation is straightforward. If there are not sufficiently
such bits, then a full padding block would have been needed in the enveloped
Merkle-Damg̊ard, and the generation of the correct full padding block can be
done in the compression function.

13



5.3 RMC and ROX

The RMC [1] construction suggests a method to preserve seven properties of
a compression function CRMC : {0, 1}mc × {0, 1}n × {0, 1}k → {0, 1}mc in the
hash function RMCRO1,RO2 : {0, 1}k×{0, 1}s×{0, 1}∗ → {0, 1}m. The preserved
properties are collision resistance, Second pre-image resistance, and pre-image
resistance, along with their everywhere and always variants. The RMC construc-
tion maintains these properties by using the XOR-linear hash scheme [4]. The
construction uses two random oracles (with fixed output length). The first ran-
dom oracle RO1 is used to produce strings which are XORed to the chaining
values (just like in the XOR-linear scheme). The second random oracle RO2 is
used for the padding scheme.

Let ν(i) be the largest number j for which 2j divides i. As in the XOR-linear
construction, when hashing block i, the string µν(i) is XORed to the chaining
value, unlike the XOR-linear scheme, this value is computed using a call to the
random oracle RO1. The parameters to the random oracle are the key of the
hash function (corresponding to our salt) and a salt along with the encoding of
ν(i), i.e., let the key be denoted by K and the salt by s, then

µν(i) = RO1(K, s, ν(i)).

We note that the output of the random oracle is of length mc bits.
The padding scheme is composed of as many calls to RO2 that are needed

to achieve the right length of padding (with some minimal length of padding),
where in each call RO2 is called with the key K, the salt s, and the serial call
number. The padding scheme is out of the scope of our paper, but we shall
denote it as padRMC(K, s, M).

The RMC hash function that uses RO1, RO2 and CRMC is the following
scheme:

– Pad M using RO2(K, s, M), where K is the key (of length k bits) and s is the
salt. Denote the padded message by paddedRMC(M) = M1||M2|| . . . ||Mt.

– Set h0 = IV .
– Generate µi = RO1(K, s, i), for i = 0, . . . , dlog2(|M |)e.
– For i = 1, . . . , l compute hi = CRMC(hi−1 ⊕ µν(i),Mi,K).

To support the RMC mode we embed the salt and the key in the salt of
HAIFA. Thus,

CHAIFA4(hi−1,Mi,#bits, s) ={
CRMC(hi−1 ⊕RO1(s1, s2, ν(i)),Mi||padRO2(s1,s2)) Last block
CRMC(hi−1 ⊕RO1(s1, s2, ν(i)),Mi, s1) Otherwise

where s = (s1, s2), i.e., the salt is composed of the concatenation of the key
and the salt of RMC. We note that computing ν(i) in HAIFA is very easy, as
it involves dividing the #bits parameter by n to obtain the block number, and
then compute ν(i) as in RMC.
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Given the above transformation, and assuming that both hash functions use
the same random oracles, then HAIFACHAIF A4 = RMCCRMC .

In [2] the RMC construction was slightly improved, and some parameters
were changed a little bit to suggest the ROX construction. Let CMD be the
compression function, then ROXRO1,RO2

CMD
: {0, 1}k×{0, 1}∗ → {0, 1}m is defined

as:

– Pad M using RO2(K, M), where K is the key (of length k bits). Denote the
padded message by paddedROX(M) = M1||M2|| . . . ||Mt.

– Set h0 = IV .
– Generate µi = RO1(K, m̃, i), for i = 0, . . . , dlog2(|M |)e, where m̃ is the first

k bits of the message.
– For i = 1, . . . , l compute hi = CMD(hi−1 ⊕ µν(i),Mi).

We note that M replaces the salt s from RMC. We set the size of the salt to 2k,
where the first half of the salt is K, and the second half is m (which are known
immediately once the first block is hashed).

Thus, CHAIFA5 : {0, 1}m
c × {0, 1}n × {0, 1}b × {0, 1}2k is as follows:

CHAIFA5(hi−1,Mi,#bits, s) ={
CMD(hi−1 ⊕RO1(s1, s2, ν(i)),Mi||padRO2(s1)) Last block
CMD(hi−1 ⊕RO1(s1, s2, ν(i)),Mi) Otherwise

Where s = (s1, s2), and s2 = firstk(M) (the value of s1 is set by the user as well
as part of the “key” to the hash function). It is easy to see that HAIFACHAIF A5 =
ROXCMD given the access to the “same” random oracles.

Another possible reduction is based on increasing the chaining value by k
bits which are initialized to 0. When the first block is processed, these k bits
are set to firstk(M) (in the first block 0 < #bits ≤ n), and then this value is
not altered, while being transfered to all the following calls for the compression
function.

5.4 Wide-Pipe Hash Constructions

The wide-pipe hash design principal was introduced by Lucks in [16] to reduce the
effects of attacks based on internal collisions on the hash function. By increasing
the chaining value size, e.g., choosing mc = 2m (in a double-pipe construction),
the cost of the attacks based on internal collisions is at least 2mc/2 = 2m, thus
allowing for a 2m security goal against pre-image and second pre-image attacks.

The scheme employs two compression functions. The first one is C ′ : {0, 1}mc×
{0, 1}n → {0, 1}mc , while the second one is C ′′ : {0, 1}mc → {0, 1}m. The digest
value is computed like in the Merkle-Damg̊ard construction using C ′(·) as the
compression function. Then, the computed chaining value is compressed using
one call to C ′′(·) to produce the digest.

It is easy to see that transforming the wide pipe strategy into a HAIFA
construction is a straightforward (and very similar to the transformation used
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in the EMD mode):

CHAIFA6(hi−1,Mi,#bits, s) =
{

C ′′(C ′(IV2, hi−1||fix pad(Mi))) Last block
C ′(hi−1,Mi) Otherwise

As noted earlier, identifying the last block is a trivial operation in HAIFA. Thus,
it is easy to see that HAIFACHAIF A6 = WidePipeC′,C′′

, i.e., the suggested
HAIFA hash function is equivalent to the wide pipe hash function.

6 Comparing Other Constructions with HAIFA

While other constructions propose different security assurances, they lack in
the security against realistic and practical attacks. For example, Joux’s multi-
collision attack is applicable against EMD with the same ease it is applicable
against Merkle-Damg̊ard. Unlike HAIFA where the collisions are to be chosen
after the salt is known, in EMD this can even be in an off-line manner.

For the randomized hashing scheme, Joux’s multi-collision attack can be
performed off-line, where the actual multi-collision is updated according to the
random string afterwards, or can be performed in an on-line manner (once the
random value is known). The long second pre-image attack can also be easily
applied to the randomized hashing scheme, as the pre-processing of the messages
is independent of the random string (which can later be XORed into the message
to suggest the actual pre-image). The herding attack is also easily applicable to
the randomized hashing scheme, as again, the only difference in the attack is
the fact that resulting message is to be XORed with the random string (block
by block). This problems are addressed in HAIFA by the stronger diffusion of
the salt into the compression function, thus, eliminating the easy use of the
pre-computed values.

The EMD scheme is mostly Merkle-Damg̊ard, and thus, it is not surprising
that all the mentioned attacks are applicable with the same ease to EMD. Thus,
EMD proposes no additional security against any of these attacks. As noted
earlier, the application of the multi-collision attack can be done off-line. It is
quite obvious that security wise, HAIFA can offer a greater deal of security over
the this mode.

The RMC and ROX transformation are as susceptible to multi-collision at-
tacks as all the other iterated constructions. We note that just like in a general
HAIFA hash function, the salt has to be known (transforming the attack to
an on-line attack when this is relevant). Due to the keying, the long second
pre-image attacks are no longer possible as the change of the key affects the
compressed values in a non-predictable way. As for the herding attack, while the
herding attack can always be applied against any iterated construction when
the key is known. When the key is unknown, the attacker has to try all possible
keys. Unlike a general HAIFA hash function, the attacker can still manipulate
the location of the diamond structure, by using a sequence of µ(i) which repeats
several times, e.g., 1,2,1,3,1,2,1,. . . . This allows for the shift of the diamond
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Type of Attack Randomized EMD RMC & ROX Double Pipe HAIFA
Hashing

Multi-collision App. App. App.∗ Not App. App.∗

Long Second Preimage App. App. Not App. Not App. Not App.
Herding App. App. Partially App. Not App. Almost Not

App.
∗ — When the salt is known
App. — Applicable

Table 2. Comparison of the Various Modes of Iteration

structure (when adding at the end of the diamond structure an expandable mes-
sage to compensate for the different possible locations). Thus, RMC and ROX
are almost as secure against the herding attack as HAIFA hash function can
achieve.

While the wide-pipe offers better security against attacks based on internal
collision, such a hash function requires an additional memory to achieve this
security. In HAIFA, the only additional parameter which has to be stored is
the salt (the #bits parameter is stored for the Merkle-Damg̊ard strengthening
anyway). Thus, to ensure the security of a HAIFA construction against the
herding attack, a salt of size m/2 is sufficient, while to achieve the same goal in
the wide-pipe strategy, one needs to increase the internal state by a factor of 2.
Thus, while the internal memory of a wide-pipe is 2m, in HAIFA a 1.5m bits of
memory are sufficient.

Moreover, in the case of a salt, its effect on the compression function can
be relatively mild and scarce (e.g., mixed every few rounds if the designer so
chooses), while in the wide-pipe strategy, insufficient mixing of the additional
state is a security hazard. Hence, the additional performance load and the more
complex hash functions of the wide-pipe strategy might not be suitable for con-
strained applications.

In Table 2 we summarize these results.

7 Summary

In this paper we have presented HAIFA as a replacement for the Merkle-Damg̊ard
construction. The main differences are the addition of the number of bits hashed
so far to the compression function along with a salt value. In cases where there
is no need to add salt (e.g., message authentication codes) it is possible to set
its value to 0.

We note that even today’s compression functions can be used in HAIFA
hash functions by changing the API of such compression functions. For example,
by setting in SHA-1 64 bits (out of the 512 bits of each block) to represent
the number of bits hashed so far, and 64 bits to represent the salt, the new
compression function would hash 384 bits per call of the compression function.
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This increases the computational effort of hashing long messages by a factor of
about 4/3, but at the same time provides security against various attacks. New
hash functions are expected to mix the salt and the number of bits much more
efficiently.

We showed that the API of the HAIFA framework is sufficient to support
recently proposed modes of operation. This shows that the interface suggested by
HAIFA is sufficient for any modern hash function design, and thus we suggest
that the new hash function designers should support the API of HAIFA. In
case they wish to achieve some specific security property, they can choose a
compression function with properties which make HAIFA meet the requirements.

Finally, we recommend that new hash functions should be designed under
the HAsh Iterative FrAmework.
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A Identifying the Last Block in HAIFA

Some of our reductions are based on the fact that the last block is easily identified
by the compression function itself. This can be done by the compression function
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by using the inputs in the following manner: In case (#bits mod n) < n− (t+ r)
and #bits > 0, then this is the last message block, and no full padding block is
added. Otherwise, there are two options: #bits 6= 0 mod n, which means that a
full padding block with #bits = 0 is coming just after it, and #bits = 0 mod n.
The latter case covers the following possible events:

– This is an intermediate block of the message.
– This is a call to the compression function during the computation of IVm.
– This is a call to the compression function for a full padding block.

The first case is easy to identify, by #bits > 0. In this case, this is not the actual
last block that is compressed.

For the remaining cases, #bits = 0. If the call is during the computation of
IVm, then the last r bits of the message block are 0. Otherwise, i.e., this is a full
padding block, it has one of two forms 10n−r−t−1encodet(length)encoder(m) or
0n−r−tencodet(length)encoder(m) where length is the length of the message.

We conclude that all these options lead to the following algorithm to deter-
mine whether this is the last message block (or whether this is the computation
of IVm):

1. If #bits 6= 0 mod n return “Last block”.
2. If #bits = 0 and the r last bits of Mi are equal to 0, return “Computation

of IVm”.
3. If #bits = 0 and the r last bits of Mi are not equal to 0, return “Last block”.
4. Return “Not the last block”.
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