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Abstract

We propose a new general primitive called lossy trapdoor functions (lossy TDFs), and realize
it under a variety of different number theoretic assumptions, including hardness of the decisional
Diffie-Hellman (DDH) problem and the worst-case hardness of standard lattice problems.

Using lossy TDFs, we develop a new approach for constructing several important crypto-
graphic primitives, including standard trapdoor functions, collision-resistant hash functions,
chosen ciphertext-secure cryptosystems, and more. All of the constructions are simple, efficient,
and black-box.

Taken all together, these results resolve some long-standing open problems in cryptography.
They give the first known injective trapdoor functions based on problems not directly related
to integer factorization, and provide the first known CCA-secure cryptosystem based solely on
the worst-case complexity of lattice problems.
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1 Introduction

A central goal in cryptography is to realize a variety of security notions based on plausible compu-
tational assumptions. Historically, such assumptions have typically been concerned with number
theoretic problems from one of three broad categories: those related to integer factorization, those
related to the discrete logarithm problem in cyclic groups, and more recently, those related to
computational problems on lattices.

For several reasons, it is important to design secure cryptographic schemes based on all three
categories. First, to act as a hedge against advances in cryptanalysis, e.g., improved algorithms for
one class of problems or the construction of a large-scale quantum computer. Second, to justify
the generality of abstract notions. And third, to develop new outlooks and techniques that can
cross-pollinate and advance the field as a whole.

In public key cryptography in particular, two of the most important notions are trapdoor func-
tions (TDFs) and security under chosen ciphertext attack (CCA security) [35, 39, 17]. The former
is an idea going all the way back to the seminal paper of Diffie and Hellman [14], while the latter
has become the de facto notion of security for public key encryption.

Unfortunately, it is still not known how to realize TDFs and CCA security under all types of
problems listed above. For CCA security, there are secure constructions based on problems related
to factoring and discrete log [35, 17, 12, 13], but not lattices. For trapdoor functions, the situation
is even less satisfactory: though TDFs are widely viewed as a general primitive, they have so far
been realized only from problems related to factoring [42, 38, 36].

In this paper, we make the following contributions:

• We introduce a new general primitive called lossy trapdoor functions, and show how to realize
it based on the hardness of the decisional Diffie-Hellman (DDH) problem in cyclic groups,
and the hardness of worst-case problems on lattices.

• We show that lossy trapdoor functions imply injective (one-to-one) trapdoor functions in the
traditional sense. This yields the first known trapdoor functions based on number theoretic
problems that are not directly related to integer factorization.

• We present a black-box construction of a CCA-secure cryptosystem based on lossy TDFs.
Notably, our decryption algorithm is witness recovering, i.e., it first recovers the randomness
that was used to create the ciphertext, and then tests the validity of the ciphertext simply
by reencrypting the message under the retrieved randomness. Until now, witness-recovering
CCA-secure cryptosystems were only known to exist in the random oracle model [4, 20].

Our approach has two main benefits: first, our construction is black-box, making it more
efficient than those following the general NIZK paradigm [6, 35, 16, 43].1 Second, ours is the
first known construction of a CCA-secure cryptosystem based entirely on lattice assumptions,
for which there is currently no known realization in the NIZK framework.

• We further demonstrate the utility of lossy TDFs by constructing collision-resistant hash
functions and semi-honest oblivious transfer (OT) protocols, in a black-box manner. Using
standard (but non-black box) transformations [27, 28], this implies OT protocols and general
secure multiparty computation for malicious adversaries.

1We note that Cramer and Shoup [12, 13] gave efficient CCA-secure constructions using NIZK-like techniques,
based on specific number theoretic assumptions.
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1.1 Trapdoor Functions and Witness-Recovering Decryption

One interesting and long-standing question in cryptography is whether it is possible to construct
trapdoor functions from any semantically secure cryptosystem [3]. One tempting approach is to
encrypt the function’s random input x using x itself as the randomness, so that decrypting with
the secret key (i.e., the trapdoor) returns x. This method has several potential benefits. First, the
construction is very straightforward and efficient. Second, the technique could be extended to build
a CCA-secure cryptosystem: the encryption algorithm would simply choose a random string r and
encrypt it along with the “true” message m, also using r as the randomness to the encryption. The
decryption algorithm would check for well-formedness of a ciphertext by first decrypting, yielding
the message m and randomness r, and then would simply recompute the ciphertext to verify that
it matches the input ciphertext. Indeed, approaches like these have proved fruitful in the random
oracle model [3, 4, 20].

Unfortunately, the technique of encrypting a ciphertext’s own randomness has so far met with
less success in the standard model, because semantic security is guaranteed only if the randomness is
chosen independently of the encrypted message. For example, consider a (pathological) encryption
algorithm E′, which is built from another (secure) encryption algorithm E: the algorithm E′(m; r)
normally returns E(m; r), except if m = r it simply outputs r. Then the candidate trapdoor
function f(x) = E′(x;x) is simply the identity function, which is trivial to invert.

While this is just a contrived counterexample for one particular attempt, Gertner et al. [23]
demonstrated a black-box separation between (poly-to-one) trapdoor functions and semantically
secure encryption. More precisely, it is impossible to construct a (poly-to-one) trapdoor function
from a semantically secure cryptosystem in a black-box fashion, using a black-box security reduc-
tion. The chief difficulty is that inverting a trapdoor function requires the recovery of its entire
input, whereas decrypting a ciphertext recovers the input message, but not necessarily the random-
ness. For similar reasons, there is also some evidence that achieving CCA security from semantic
security (in a black-box manner) would be difficult [22].

Perhaps for these reasons, constructions of CCA-secure encryption in the standard model [35,
16, 43, 12, 13] have followed a different path. As explained in [18], all the techniques used so far
have employed a “two-key” construction, where the well-formedness of a ciphertext is guaranteed by
a (simulation-sound) non-interactive zero knowledge (NIZK) proof. The zero-knowledge paradigm
has the benefit that the decryption algorithm can be guaranteed the well-formedness of a ciphertext
without needing to know a witness to that fact (e.g., the input randomness). The two-key/NIZK
paradigm has led to CCA-secure encryption based on general assumptions, such as trapdoor permu-
tations [16], and efficient systems based on specific number theoretic assumptions [12, 13], such as
the decisional Diffie-Hellman (DDH) [7] and composite residuosity [36] assumptions. However, the
NIZK approach has two significant drawbacks. First, the constructions from general assumptions
are inefficient, as they are inherently non-black-box. Second, while there are semantically secure
public key cryptosystems based on worst-case assumptions relating to lattices [2, 40, 41], there
are still no known CCA-secure systems, because it is unknown how to realize NIZKs from lattice
assumptions.

1.2 The Power of Losing Information

In this paper we revisit the idea of building trapdoor functions and witness-recovering CCA-secure
encryption, in the standard model. As discussed above, past experience seems to suggest that a
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stronger notion than semantic security might be needed.
We introduce a new approach that is centered around the idea of losing information. Specifically,

we introduce a new primitive called a lossy trapdoor function, which is a public function f that is
created to behave in one of two ways. The first way matches the usual completeness condition for an
(injective) trapdoor function: given a suitable trapdoor for f , the entire input x can be efficiently
recovered from f(x). In the second way, f statistically loses a significant amount of information
about its input, i.e., f ’s image is significantly smaller than its domain. Finally, the two behaviors
are indistinguishable: given just the description of f , no efficient adversary can tell whether f is
injective or lossy.

Using lossy trapdoor functions as a general tool, we develop new techniques for constructing
standard trapdoor functions and CCA-secure cryptosystems, and proving their security. In essence,
lossy TDFs allow us to prove security via indistinguishability arguments over the public parameters
of a scheme (e.g., the public key of a cryptosystem), as opposed to the adversary’s challenge value
(e.g., the challenge ciphertext in the CCA game).

In more detail, the public parameters of our schemes will include some function f that is either
injective or lossy. In the former case (typically corresponding to the real system), the invertibility
of f will permit recovery of its entire input and will ensure correctness (of, say, decryption). In
the latter case, the lossiness of f will imply that the scheme becomes statistically secure. The
advantage of this approach is that when distinguishing between injective and lossy f in the security
reduction, the simulator can always create the adversary’s challenge “honestly,” i.e., knowing its
underlying randomness.

We now demonstrate the utility of lossy TDFs by informally sketching constructions of standard
TDFs, CPA-secure encryption, and CCA-secure encryption. (Formal definitions, constructions, and
proofs are given in Sections 3 and 4.)

1.2.1 Trapdoor Functions and CPA-Secure Encryption

Suppose we have a collection of lossy TDFs having domain {0, 1}n, where the lossy functions
“lose” (say) k = n/2 bits of the input. Then the injective functions from this collection make up a
collection of standard trapdoor functions. To see this, first consider the behavior of a hypothetical
inverter I for an injective function f . If we choose x ← {0, 1}n uniformly and give (f, f(x)) to
I, it must output the same value of x (with some noticeable probability), because f is injective.
Now by the indistinguishability of lossy and injective functions, the same must be true when f is
replaced with a lossy function f ′. However, f ′(x) statistically hides the value of x, because there
are on average about 2k = 2n/2 other values x′ such that f ′(x′) = f ′(x), and all are equally likely.
Therefore even an unbounded inverter I cannot guess the unique value of x. We conclude that no
poly-time inverter can exist for the injective functions either, unless the injective and lossy functions
are distinguishable.

Using the fact that lossy TDFs imply standard injective TDFs, we could construct a semantically-
secure cryptosystem using standard techniques, e.g., with a generic Goldreich-Levin hard-core pred-
icate [26]. However, it is instructive (and a useful warm-up for our CCA-secure construction) to
see that lossy TDFs admit hard-core functions with a very simple and direct proof of security.

Let H be a family of pairwise independent hash functions from {0, 1}n to {0, 1}`, where {0, 1}n
is the domain of the lossy TDFs and ` < n is a parameter determined by the lossiness (we defer
details for the purposes of this sketch). Then a hash function h chosen at random from H acts as
a hard-core function for the injective TDFs of the collection. This follows from the fact that h is a
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good randomness extractor, by a variant of the leftover hash lemma [30, 15].
In more detail, consider an adversary that attempts to distinguish h(x) ∈ {0, 1}` from uniform,

given h and f(x) for injective f and uniformly random x ∈ {0, 1}n. The adversary’s advantage
must be essentially the same if f is replaced with a randomly-chosen lossy function. In this case,
the value of x is statistically well-hidden given f(x) (more precisely, x has large min-entropy on the
average). Because h is a good extractor, it follows that h(x) is statistically close to uniform over
{0, 1}` given f(x) and h, so even an unbounded adversary has negligible advantage.

1.2.2 CCA-Secure Encryption

The construction of CCA-secure cryptosystems is more challenging, because the adversary is allowed
to make decryption (i.e., inversion) queries. If we simply replace an injective function with a lossy
function, then the simulator will not be able to answer (even well-formed) decryption queries,
because the plaintext information will be lost. Therefore we introduce a richer abstraction called
all-but-one (ABO) trapdoor functions. An ABO collection is associated with a large set B that we
call the branches of the function. The generator of an ABO function will take an extra parameter
b∗ ∈ B, called the lossy branch, and will output a function g(·, ·) and a trapdoor t. The function
g has the property that for any branch b 6= b∗, the function g(b, ·) is injective (and can be inverted
with t), but the function g(b∗, ·) is lossy. Moreover, the lossy branch is hidden (computationally)
by the description of g.

Cryptosystem. Our construction of a CCA-secure cryptosystem uses an ABO collection and a
lossy TDF collection, both having domain {0, 1}n. As before, we use a pairwise independent family
of hash functions H from {0, 1}n to {0, 1}`, where ` is the length of the plaintext. For full CCA2
security (i.e., non-malleability), we also use a strongly unforgeable one-time signature scheme, where
the set of possible verification keys is contained in the branch set B of the ABO collection. In this
sketch we will give only the main ideas, and defer the exact selection of parameters to Section 4.

The key generator for the cryptosystem chooses an injective function f from the lossy TDF
collection, along with its trapdoor f−1. Next, it chooses an ABO function g whose lossy branch is
arbitrarily set to b∗ = 0; the actual system will not need the trapdoor for g, so it can be discarded.
Finally, it selects a hash function h at random from H. The public key is pk = (f, g, h), and the
trapdoor f−1 is kept as the secret decryption key (along with pk itself).

The encryption algorithm encrypts a message m ∈ {0, 1}` as follows: it first generates a verifi-
cation key vk and corresponding signing key skσ for the one-time signature scheme. It then chooses
an x ∈ {0, 1}n uniformly at random. The ciphertext is generated as

c = (vk, c1 = f(x), c2 = g(vk, x), c3 = m⊕ h(x), σ),

where σ is a signature of (c1, c2, c3) under the signing key skσ. We emphasize that both f and g
are evaluated on the same x, and that g is evaluated on the branch corresponding to vk.

The decryption algorithm attempts to decrypt a ciphertext c = (vk, c1, c2, c3, σ) as follows:
it begins by checking that the signature σ is valid relative to vk, and aborts if not. Next, it
computes x′ = f−1(c1) using the trapdoor, obtaining an encryption witness x′. Then the decrypter
“recomputes” the ciphertext to verify that it is well formed, by checking that c1 = f(x′) and
c2 = g(vk, x′), and aborting if not. Finally, it outputs the message m′ = h(x′)⊕ c3.
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Security. The proof of security follows a hybrid two key-type argument, but without zero knowl-
edge (due to the recovery of the encryption witness). The proof involves several hybrid experiments.
In the first hybrid, the ABO lossy branch b∗ is instead set to b∗ = vk∗, where vk∗ is a verification
key that will eventually appear in the challenge ciphertext. In the next hybrid, the decryption ora-
cle decrypts using the trapdoor g−1 for the ABO function, rather than f−1. The decryption oracle
will thus be able to decrypt successfully for all branches but one, namely, the vk∗ branch — but by
unforgeability of the signature scheme, any query involving vk∗ will have an invalid signature and
can be rejected out of hand. The final step of the hybrid involves replacing the injective function f
with a lossy one. At this point, we observe that both components c1 = f(x) and c2 = g(vk∗, x) of
the challenge ciphertext lose information about x. Therefore, h(x) is statistically close to uniform
(given the rest of the view of the adversary), so even an unbounded adversary has only negligible
advantage in guessing the encrypted message.

We conclude this summary with a few remarks. First, we note that in practice one would likely
use our techniques as a public-key key extraction mechanism (KEM) where the key would be derived
using the hash function as h(x). Second, while our system falls outside of the NIZK paradigm, we
do use some techniques that are reminiscent of previous work. Our construction uses a two-key
strategy originally due to Naor and Yung [35], where during hybrid experiments the simulator uses
one key to decrypt the ciphertext, while it participates in a distinguishing experiment related to
the other key. The major difference is that in the NIZK paradigm, the distinguishing experiment
is on a ciphertext corresponding to the other key. In constrast, our simulation participates in a
distinguishing experiment on the other key itself. Additionally, our use of one-time signatures for
CCA2 security inherits from Dolev, Dwork and Naor [17], and is technically most similar to the
method of Canetti, Halevi, and Katz [11] for constructing CCA-secure encryption from identity-
based encryption. Finally, we point out that our decryption algorithm does not strictly recover all
the randomness of the ciphertext, because it does not recover the randomness used to generate the
one-time signing key or the signature itself. This is a minor technical point, as the decrypter does
recover enough randomness to check validity of the ciphertext (the signature is publicly verifiable).
Additionally, for weaker CCA1 (“lunchtime”) security [39], the one-time signature is not needed at
all; vk can be replaced with a random choice of branch, and the decrypter does recover all of the
randomness in this case.

1.3 Realizing Lossy TDFs

We now sketch our basic framework for constructing lossy trapdoor functions. It is based on any
(semantically secure) cryptosystem having a few special properties, which we later instantiate based
on concrete number theoretic assumptions.

A function f (whether injective or lossy) on {0, 1}n will be specified by an entry-wise encryption
of some n×n matrix M, under a cryptosystem that is additively homomorphic (and has some other
special properties, as described below). To evaluate f(x), we view the input x ∈ {0, 1}n as an n-
dimensional bit vector x, and compute an (entry-wise) encryption of the linear product x ·M using
the homomorphism.

For an injective function, the trapdoor is the decryption key for the cryptosystem, and the
encrypted matrix M is the identity matrix I (more generally, we can let M be any invertible
matrix). The function f is therefore injective and invertible with the trapdoor, because f(x) is an
entry-wise encryption of x · I = x, which can be decrypted to recover each bit of x.

A lossy function is very similar, except the encrypted matrix M is the all-zeros matrix M = 0.
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Then for every input x, the value f(x) is an entry-wise encryption of the all-zeros vector, so f
intuitively “loses” x. However, this alone is not enough to ensure lossiness, because the output
ciphertexts still carry some internal randomness that might leak information about the input.
Therefore we need some additional ideas to control the behavior of this randomness.

We rely on two other special properties of the cryptosystem. First, we require that it remains
secure to reuse randomness when encrypting under different keys. Second, we require that the
homomorphic operation isolates the randomness, i.e., that the randomness of the output ciphertext
depends only on the randomness of the input ciphertexts (and not, say, on the key or the encrypted
messages). Many known cryptosystems are even homomorphic with respect to randomness, which
certainly suffices for our purposes.

With these two properties, we encrypt the matrix M in a special way. Each column j of the
matrix is associated with a different key pkj ; the trapdoor is the set of corresponding decryption
keys. Across each row i, we encrypt entry mi,j under key pkj using the same randomness ri

(using fresh randomness for each row). By hypothesis, it is secure to reuse randomness across
keys pkj , so the matrix M is computationally hidden. Additionally, because the homomorphism
isolates randomness, all the ciphertexts in the output vector f(x) are also encrypted under the
same randomness R (which depends only on r1, . . . , rn and x).

When M = I, we can still invert the function (given the trapdoor) by decrypting each ciphertext
entry of f(x). On the other hand, when M = 0, the function output is always a vector of encrypted
zero messages, where each entry is encrypted under the same randomness (but under a different
fixed key). Therefore the number of possible outputs of f is bounded by the number of possible
random strings that can arise. By choosing n so that the number of inputs 2n is significantly larger
than the number of random strings, we can guarantee that the function is lossy when M = 0.

Concrete assumptions. Under the decisional Diffie-Hellman assumption, it is relatively straight-
forward to implement the above framework for constructing lossy TDFs (see Section 5). On the
other hand, when working with lattice-based cryptosystems [2, 40, 41], many additional technical
difficulties arise. In fact, we only know how to construct lossy TDFs based on the “learning with
error” (LWE) problem (a generalization of learning parity under noise), as defined by Regev [41].
The LWE problem can be seen as an average-case “unique decoding” problem on a certain family
of random lattices, and is believed (like learning parity under noise) to be hard. In addition, Regev
showed that LWE is hard on the average if standard lattice problems are hard in the worst case,
for quantum algorithms [41]. Quantum algorithms are not known to confer any advantage over
classical algorithms for the worst-case lattice problems in question. Furthermore, even if quantum
algorithms are able to solve lattice problems efficiently (i.e., even if Regev’s reduction turned out to
be vacuous), the LWE problem may still be hard (at least for classical algorithms). Indeed, it seems
plausible that the reduction could be “dequantized,” which would render the entire issue moot.

There are two reasons why our lattice-based constructions seem to be limited to LWE. First, the
LWE problem involves some public randomness that can be securely reused, whereas the underlying
hard problems of [2, 40] involve secret randomness that is not apparently reusable in a secure way.
The second difficulty is that lattice-based schemes involve some non-reusable error terms, which
leak additional information in our constructions. The error terms in [2, 40] are exponentially large,
therefore they may leak more bits than we are able to lose via our matrix construction. In constrast,
the error terms in the LWE problem are only polynomially large, so their leakage can be kept under
control (this requires careful trade-offs and some additional techniques; see Section 6 for details).
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1.4 Lossy Trapdoors in Context

It is informative to consider lossy trapdoors in the context of previous systems. A crucial technique
in using lossy trapdoors is that security is typically demonstrated via indistinguishability arguments
over the public parameters of a scheme, as opposed to arguments about the scheme’s outputs.

Our approach can be contrasted with the oblivious transfer (OT) paradigm of Even, Goldreich,
and Lempel [19] and the efficient OT protocols of Naor and Pinkas [32]. The EGL paradigm
constructs (semi-honest) oblivious transfer protocols from any public key cryptosystem in which
a public key can be sampled without knowing its corresponding decryption key (or equivalent).
In the OT protocol, one of the messages is encrypted under such a public key, thereby hiding it
computationally from the receiver. Lossy TDFs can be employed to construct OT in a similar
way, but the security properties are reversed: one can sample a lossy public key that is only
computationally indistinguishable from a “real” one, but messages encrypted under the lossy key
are statistically hidden.2

Another interesting comparison is to the techniques used to prove CCA security from Identity-
Based Encryption (IBE) [45] that were introduced by Canetti, Halevi, and Katz [11] and improved
in later work [9, 10, 8]. Our construction and simulation share some techniques with these works,
but also differ in important ways. In the constructions based on IBE, the simulator is able to acquire
secret keys for all identities but one special identity ID∗, and can therefore answer decryption queries
in the CCA experiment. The special identity ID∗ is hidden statistically by the public key, while the
challenge ciphertext encrypted under ID∗ hides its message only computationally. In our simulation,
the security properties are once again reversed: the lossy branch b∗ is hidden only computationally
by the public key, but the challenge ciphertext hides its message statistically.

Our concrete constructions of lossy TDFs (by reusing randomness across many encryption keys)
are technically similar to the constructions of pseudorandom synthesizers by Naor and Reingold [33].
In particular, indistinguishability of injective and lossy functions follows directly from pseudoran-
domness. The novelty in our constructions is in the use of additional homomorphic structure to
compute encrypted linear products, and to bound the number of possible outputs in the lossy case.

Finally, a concurrent and independent work of Gentry, Peikert, and Vaikuntanathan [21] demon-
strates natural, “innate” trapdoors for hard random lattices. The techniques in that work are
completely different from ours, and seem best suited for complementary cryptographic applications
(e.g., signatures schemes and identity-based encryption).

2 Preliminaries

Here we review some standard notation and cryptographic definitions. We also give relevant back-
ground relating to entropy of distributions and extraction of nearly uniform strings.

2.1 Notation

We let N denote the natural numbers. For n ∈ N, [n] denotes the set {1, . . . , n}. For positive
functions f = f(n), g = g(n), we say that f = O(g) if limn→∞ f(n)/g(n) = c for some fixed
constant c. We say that f = o(g) if limn→∞ f(n)/g(n) = 0. We say that f = Ω(g) (or f = ω(g))

2We point out that the final OT protocol in [32] (based on DDH) actually does lose information about the message
itself, but it does not aspire to any trapdoor property, as this is not needed for OT.
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if g = O(f) (or g = o(f), respectively). We say that f = Õ(g) if f = O(g logc n) for some fixed
constant c. We let poly(n) denote an unspecified function f(n) = O(nc) for some constant c.

The security parameter will be denoted by λ throughout the paper (except in Section 6, where
we use d). We let negl(λ) denote some unspecified function f(λ) such that f = o(λ−c) for every
fixed constant c, saying that such a function is negligible (in λ). We say that a probability is
overwhelming if it is 1− negl(λ).

Let X = {Xλ}λ∈N and Y = {Yλ}λ∈N denote two ensembles of probability distributions in-
dexed by λ. Given an algorithm D, define its advantage in distinguishing between X and Y as∣∣Prx←Xλ

[D(1λ, x) = 1]− Pry←Yλ
[D(1λ, y) = 1]

∣∣. We say that X and Y are computationally indis-
tinguishable if the advantage of any probabilistic polynomial-time algorithm D is negl(λ).3

2.2 Trapdoor Functions

Here we review a standard definition of a collection of injective trapdoor functions. For generality,
let n = n(λ) = poly(λ) denote the input length of the trapdoor functions in terms of the security
parameter. A collection of trapdoor functions is given by a tuple of (possibly probabilistic) poly-
time algorithms (S, F, F−1) having the following properties:

1. Easy to sample, compute, and invert with trapdoor: S(1λ) outputs (s, t) where s is a function
index and t is its trapdoor, F (s, ·) computes an injective function fs(·) over the domain
{0, 1}n, and F−1(t, ·) computes f−1

s (·).

2. Hard to invert without trapdoor: for any PPT inverter I, the probability that I(1λ, s, fs(x))
outputs x is at most negligible, where the probability is taken over the choice of (s, t)← S(1λ),
x← {0, 1}n, and I’s randomness.

2.3 Secure Cryptosystems

Here we review the standard definitions of a cryptosystem and notions of security, including chosen-
plaintext (CPA) and chosen-ciphertext (CCA). A public key cryptosystem consists of three (ran-
domized) algorithms that are modeled as follows:

• G(1λ) outputs a public key pk and secret key sk.

• E(pk, m) takes as input a public key pk and a message m ∈ M (where M is some fixed
message space, possibly depending on λ), and outputs a ciphertext c.

• D(sk, c) takes as input a private key sk and a ciphertext c, and outputs a message m ∈
M∪ {⊥}, where ⊥ is a distinguished symbol indicating decryption failure.

The standard completeness requirement is that for any (pk, sk)← G(1λ) and any m ∈M, we have
D(sk, E(pk, m)) = m. This notion can be relaxed to hold with overwhelming probability over the
choice of (pk, sk).

A basic notion of security for a public key cryptosystem is indistinguishability under a chosen
plaintext attack. This notion, called CPA security, is defined by the following game between a
challenger and an adversary A. Both are given the security parameter 1λ as input. The challenger

3For simplicity, throughout the paper we opt for security under uniform adversaries. This can be easily adapted
to a non-uniform treatment without affecting the results.
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generates a key pair (pk, sk) ← G(1λ), and gives pk to A. A outputs two messages m0,m1 ∈ M.
The challenger picks a random b ∈ {0, 1}, lets c∗ ← E(pk, mb), and gives c∗ to A. A outputs a
guess b′ ∈ {0, 1} and wins if b′ = b. The advantage of A as

∣∣Pr[b′ = b]− 1
2

∣∣. A cryptosystem is
said to be CPA-secure if every probabilistic polynomial-time adversary A has only negligible (in λ)
advantage in the CPA game.

A much stronger and commonly accepted notion of security for a public key cryptosystem is
that of indistinguishability under an adaptive chosen ciphertext attack. This notion, called CCA
security, is defined by a game similar to CPA game, where the adversary A is additionally given
access to an oracle O that computes D(sk, ·), with the exception that O returns ⊥ if queried on the
challenge ciphertext c∗. The advantage of A in the game is

∣∣Pr[b′ = b]− 1
2

∣∣. A cryptosystem is said
to be CCA-secure if every probabilistic polynomial-time adversary A has only negligible advantage
in the CCA game.

2.4 Strongly Unforgeable One-Time Signatures

Here we review standard definitions of signature schemes and a security notion called strong (one-
time) unforgeability. A signature system consists of three algorithms Gen, Sign, and Ver:

• Gen(1λ) outputs a verification key vk and a signing key skσ.

• Sign(skσ,m) takes as input a signing key skσ and a message m ∈M (whereM is some fixed
message space, possibly depending on λ) and outputs a signature σ.

• Ver(vk,m, σ) takes as input a verification key vk, a message m ∈M, and a signature σ, and
output either 0 or 1.

The standard completeness requirement is that for any (vk, skσ) ← Gen(1λ) and any m ∈ M,
we have Ver(vk,m, Sign(skσ,m)) = 1. This can be relaxed to hold with overwhelming probability
over the choice of (vk, skσ).

We will use a security notion known as strong existential unforgeability under a one-time chosen
message attack, which is defined using the following game between a challenger and an adversary A
(both given the security parameter 1λ): The challenger first generates a key pair (vk, skσ)← G(1λ),
and gives vk to A. A then queries a message m ∈ M, and the challenger responds by giving
σ ← Sign(skσ,m) to A. A then outputs a pair (m′, σ′), and wins the game if Ver(vk,m′, σ′) = 1
and (m′, σ′) 6= (m,σ).

We define the advantage of an adversary A to be the probability that A wins the above game,
taken over the randomness of the challenger and the adversary. We say that a signature scheme is
secure (in the strongly unforgeable, one-time sense) if every probabilistic polynomial time adversary
A has only negligible advantage in the above game.

Strongly unforgeable one-time signatures can be constructed from one-way functions [24], and
more efficiently from collision-resistant hash functions [29]. Both primitives are implied by the
worst-case hardness of standard lattice problems (see, e.g., [1, 25]).

2.5 Hashing

A family of functions H = {hi : D → R} from a domain D to range R is called pairwise indepen-
dent [46] if, for every distinct x, x′ ∈ D and every y, y′ ∈ R,

Pr
h←H

[h(x) = y and h(x′) = y′] = 1/ |R|2 .
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The family H is called universal if, for every distinct x, x′ ∈ D, Prh←H[h(x) = h(x′)] = 1/ |R|.
Pairwise independence is a strictly stronger property than universality. Families satisfying either
notion can be efficiently constructed and evaluated.

We say that PPT algorithms (Scrh, Fcrh) give a collection of collision-resistant hash functions
from length `(λ) to length `′(λ) < `(λ) if: (1) Scrh(1λ) outputs a function index i, (2) Fcrh(i, ·)
computes a (deterministic) function Hi : {0, 1}`(λ) → {0, 1}`

′(λ), and (3) for every every PPT ad-
versary A, A(1λ, i) outputs distinct x, x′ ∈ {0, 1}`(λ) such that Hi(x) = Hi(x′) with only negligible
probability (over the choice of i← Scrh(1λ)).

A collection of universal one-way hash functions (UOWHFs) [34] is similarly given by algorithms
(Suowhf, Fuowhf), with the following security property. Let A be a PPT adversary that plays the
following game: A(1λ) outputs an x ∈ {0, 1}`(λ), then a function index i ← Suowhf(1λ) is chosen
and given to A, then A outputs some x′ ∈ {0, 1}`(λ) distinct from x. Then the probability (over all
the randomness of the game) that Fuowhf(i, x) = Fuowhf(i, x′) is negl(λ).

2.6 Extracting Randomness

Here we review a few concepts related probability distributions and extracting uniform bits from
weak random sources.

The statistical distance between two random variables X and Y having the same domain D is
∆(X, Y ) = 1

2

∑
v∈D |Pr[X = v]− Pr[Y = v]|. We say that two variables are ε-close if their statistical

distance is at most ε.
The min-entropy of a random variable X is H∞(X) = − lg(maxx Pr[X = x]). In our applica-

tions, the variable X will often be correlated with another variable Y whose value will be known
to the adversary; this of course decreases the entropy of X. We will find it convenient to use a
definition of Dodis et al. [15], which captures the remaining unpredictability of X conditioned on
the value of Y , called average min-entropy :

H̃∞(X|Y ) := − lg
(

E
y←Y

[
2−H∞(X|Y =y)

])
.

The average min-entropy corresponds exactly to the optimal probability of predicting of X, given
knowledge of Y . The following useful lemma was proved in [15]:

Lemma 2.1. If Y has 2r possible values and Z is any random variable, then H̃∞(X|(Y, Z)) ≥
H∞(X|Z)− r.

In our cryptosystems we will need to derive truly uniform bits from a weakly random source X.
In general, this can be done using a randomness extractor (see Shaltiel’s survey for details [44]).
However, for our purposes we will not need any of the more sophisticated extractor constructions.
Pairwise independent hash functions [46] will suffice, and in fact they interact particularly well with
the notion of average min-entropy. We will use the following lemma from [15]:

Lemma 2.2. Let X, Y be random variables such that X ∈ {0, 1}n and H̃∞(X|Y ) ≥ k. Let H be
a family of pairwise independent hash functions from {0, 1}n to {0, 1}`. Then for h← H, we have

∆((Y, h, h(X)), (Y, h, U`)) ≤ ε

as long as ` ≤ k − 2 lg(1/ε).
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3 Lossy and All-But-One Trapdoor Functions

3.1 Lossy TDFs

Here we define lossy trapdoor functions. Define the following quantities as functions of the security
parameter: n(λ) = poly(λ) represents the input length of the function and k(λ) ≤ n(λ) represents
the lossiness of the collection (we often omit the dependence on λ). For convenience, we also define
the residual leakage r := n − k. Then a collection of (n, k)-lossy trapdoor functions is given by a
tuple of (possibly probabilistic) poly-time algorithms (Sltdf, Fltdf, F

−1
ltdf) having the properties below.

For notational convenience, we define the algorithms Sinj(·) := Sltdf(·, 1) and Sloss(·) := Sltdf(·, 0).

1. Easy to sample an injective function with trapdoor: Sinj(1λ) outputs (s, t) where s is a function
index and t is its trapdoor, Fltdf(s, ·) computes an injective function fs(·) over the domain
{0, 1}n, and F−1

ltdf(t, ·) computes f−1
s (·).

2. Easy to sample a lossy function: Sloss(1λ) outputs (s,⊥) where s is a function index, and
Fltdf(s, ·) computes a function fs(·) over the domain {0, 1}n whose image has size ≤ 2r = 2n−k.

3. Hard to distinguish injective from lossy: the first outputs of Sinj(1λ) and Sloss(1λ) are compu-
tationally indistinguishable. More formally, let Xλ denote the distribution of s from Sinj(1λ),
and let Yλ denote the distribution of s from Sloss(1λ). Then {Xλ}

c
≈ {Yλ}.

Note that we make no explicit requirement that an injective function be hard to invert. As
we will see in Lemma 3.1, this is implied by combination of the lossiness and indistinguishability
properties.

For our lattice-based constructions we will need to consider a slightly relaxed definition of
lossy TDFs, which we call almost-always lossy TDFs. Namely, with overwhelming probability, the
output s of Sinj describes an injective function fs that F−1

ltdf inverts correctly on all values. In other
words, there is only a negligible probability (over the choice of s) that fs(·) is not injective or that
F−1

ltdf(t, ·) incorrectly computes f−1
s (·) for some input. Furthermore, we only require that the lossy

function fs generated by Sloss has image size at most 2r with overwhelming probability. In general,
the function sampler cannot check these conditions because they refer to “global” properties of the
generated function. The use of almost-always lossy TDFs does not affect security in our applications
(e.g., CCA-secure encryption) because the adversary will have no control over the generation of
trapdoor/lossy functions. Therefore the potential advantage of the adversary due to sampling an
improper function will be bounded by a negligible quantity.

3.2 All-But-One TDFs

For some of our applications, it will be more convenient to work with a richer abstraction that
we call all-but-one (ABO) trapdoor functions. In an ABO collection, each function has several
branches. Almost all the branches are injective trapdoor functions (having the same trapdoor
value), except for one branch which is lossy. The lossy branch is specified as a parameter to the
function sampler, and its value is hidden (computationally) in the resulting function index.

We retain the same notation for n, k, r as above, and also let B = {Bλ}λ∈N be a collection
of sets whose elements represent the branches. Then a collection of (n, k)-all-but-one trapdoor
functions with branch collection B is given by a tuple of (possibly probabilistic) poly-time algorithms
(Sabo, Gabo, G

−1
abo) having the following properties:
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1. Sampling a trapdoor function with given lossy branch: for any b∗ ∈ Bλ, Sabo(1λ, b∗) outputs
(s, t), where s is a function index and t is its trapdoor.

For any b ∈ Bλ distinct from b∗, Gabo(s, b, ·) computes an injective function gs,b(·) over the
domain {0, 1}n, and G−1

abo(t, b, ·) computes g−1
s,b (·).

Additionally, Gabo(s, b∗, ·) computes a function gs,b∗(·) over the domain {0, 1}n whose image
has size at most 2r = 2n−k.

2. Hidden lossy branch: for any b∗0, b
∗
1 ∈ Bλ, the first output s0 of Sabo(1λ, b∗0) and the first

output s1 of Sabo(1λ, b∗1) are computationally indistinguishable.

Just as with lossy TDFs, we also need to consider a relaxed definition of ABO trapdoor functions,
also called almost-always. Specifically, the injective, invertible, and lossy properties need only hold
with overwhelming probability over the choice of the function index s. For similar reasons, using
an almost-always ABO collection will not affect security in our applications.

3.3 Basic Relations

Lossy and ABO trapdoor functions are equivalent for appropriate choices of parameters; we briefly
sketch this equivalence here. First, suppose we have a collection of (n, k)-ABO TDFs having branch
set B = {0, 1} (without loss of generality). Then we can construct a collection of (n, k)-lossy TDFs
as follows: Sinj samples an ABO function having lossy branch b∗ = 1 (retaining the trapdoor), and
Sloss samples an ABO function having lossy branch b∗ = 0. The evaluation algorithm Fltdf always
computes the ABO function on branch b = 0. The inverter F−1

ltdf can invert any injective function
(with the trapdoor) because it is evaluated on a non-lossy branch.

We now sketch the converse implication. Suppose that (Sltdf, Fltdf, F
−1
ltdf) gives a collection

of (n, k)-lossy TDFs. We can construct an (n, k)-ABO collection having branch set B = {0, 1}
as follows: the generator Sabo(1λ, b∗) outputs (s, t) = ((s0, s1), t) where (s0, t0) ← Sltdf(1λ, b∗),
(s1, t1)← Sltdf(1λ, 1− b∗), and t = t1−b∗ . The evaluation algorithm on index s = (s0, s1), branch b
and value x outputs Fltdf(sb, x). The inversion algorithm on trapdoor t, branch b = 1−b∗, and input
y outputs F−1

ltdf(t, y). It is straightforward to verify the required properties of this construction.
Additionally, an ABO collection for branch set B = {0, 1} and input length n having residual

leakage r = n− k implies an ABO collection for branch set B = {0, 1}` and the same input length
n having residual leakage ` · r (this is therefore only interesting when the original leakage r < n/`).
The main idea is to generate, for desired lossy branch b∗ ∈ {0, 1}`, ` individual functions having
lossy branches b∗i (i.e., the ith bit of b∗). The evaluation algorithm on branch b ∈ {0, 1}` and input
x outputs the value of each corresponding function on branch bi and x. Then when b 6= b∗, the
branches differ on some bit i, and x can be recovered from the corresponding function value (given
the trapdoor). When b = b∗, then all ` functions are lossy and the total number of possible outputs
is at most (2r)`.

3.4 Primitives Implied by Lossy TDFs

We now show that lossy TDFs (having appropriate parameters) are sufficient for black-box construc-
tions of other important cryptographic primitives, such as standard (injective) trapdoor functions
and collision-resistant hash functions.
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3.4.1 Trapdoor Functions

Our first result shows that the injective functions from a lossy collection are indeed trapdoor
functions in the standard sense (i.e., easy to invert with a trapdoor, and hard to invert otherwise).

Lemma 3.1. Let (Sltdf, Fltdf, F
−1
ltdf) give a collection of (n, k)-lossy trapdoor functions with k =

ω(log λ). Then (Sinj, Fltdf, F
−1
ltdf) give a collection of injective trapdoor functions. (The analogous

result applies for almost-always collections.)

Proof. By definition, fs(·) = Fltdf(s, ·) is injective for any s generated by Sinj, and F−1
ltdf inverts fs(·)

given the trapdoor t. Therefore the completeness conditions hold.
Suppose by way of contradiction that I is a PPT inverter, i.e., that I(1λ, s, fs(x)) outputs x

with nonnegligible probability over the choice of (s, t)← Sinj(1λ), x← {0, 1}n, and I’s randomness.
We use I to build a distinguisher D between injective functions (those generated by Sinj) and lossy
ones (those generated by Sloss).
D works as follows: on input a function index s, choose x← {0, 1}n and compute y = Fltdf(s, x).

Let x′ ← I(s, y). If x′ = x, output “injective,” otherwise output “lossy.”
We now analyze D. First, if s is generated by Sinj(1λ), then by assumption on I, we have x′ = x

with nonnegligible probability, and D outputs “injective.” Now, suppose s is generated by Sloss(1λ).
Then the probability (over the choice of s and x) that even an unbounded I predicts x is given by
the average min-entropy of x conditioned on (s, fs(x)), i.e., the prediction probability is at most
2−H̃∞(x|(s,fs(x))). Because fs(·) takes at most 2n−k values, Lemma 2.1 implies H̃∞(x|(s, fs(x))) ≥
H∞(x|s)− (n− k) = n− (n− k) = k. Because k = ω(lg λ), the probability that I(s, y) outputs x,
and D outputs “injective,” is negl(λ). We conclude that D distinguishes injective functions from
lossy ones, a contradiction.

3.4.2 Universal One-Way and Collision-Resistant Hashing

We now show how to construct UOWHFs and collision-resistant hash functions from a lossy TDF
collection. The construction is quite simple: the hash function H is defined as H(x) := h(f(x)),
where f is an injective function from a lossy TDF collection, and h is selected from a universal
family of hash functions. For an appropriate output length of the universal family, the function H
will shrink its input. For appropriate values of the lossiness, finding collisions will imply the ability
to distinguish injective functions from lossy ones. The main idea behind the security proof (for
both UOWHFs and CRHFs) is the following: in a real instance of the function H = h◦f , collisions
must occur in the “outer” application of h, because f is injective. Now consider an alternate
construction in which we replace f by a lossy function f ′. Then for appropriate settings of the
parameters, the function h will (with overwhelming probability) have no collisions, either on the
target point (for UOWHFs) or on the entire function (for CRHFs). Therefore all collisions in the
alternate construction must occur in the “inner” application of f ′. We can therefore distinguish
between injective and lossy functions by whether a given collision of H occurs in its outer or inner
part. We now proceed more formally for the construction of CRHFs (which are also UOWHFs).

Assume without loss of generality that the input length n(λ) = λ equals the security parameter.
Let (Sltdf, Fltdf, F

−1
ltdf) give a collection of (n, k)-lossy trapdoor functions {fs : {0, 1}n → R} having

arbitrary range R and residual leakage r = n − k ≤ ρn for some constant ρ < 1/2. (An almost-
always family would also suffice.) Let H = {hi : R→ {0, 1}κn} be a universal family of hash
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functions where κ = 2ρ + δ < 1 for any constant δ ∈ (0, 1− 2ρ).4

The algorithms for the collection of collision-resistant hash functions are as follows:

• Generator Scrh(1λ) chooses (s, t) ← Sinj(1λ) and disposes of t. It also chooses h ← H. The
index of the generated hash function is i = (s, h).

• Evaluator Fcrh(i, x) on index i = (s, h) and input x ∈ {0, 1}n outputs h(Fltdf(s, x)) ∈ {0, 1}κn.

Lemma 3.2. The algorithms (Scrh, Fcrh) described above give a collection of collision-resistant hash
functions from {0, 1}n to {0, 1}κn.

Proof. Let C be an adversary in the collision-finding game for the collection we described. Specif-
ically, C takes an index i = (s, h) and outputs a supposed collision x, x′ ∈ {0, 1}n. Let E be the
event that the output x, x′ is a valid collision. Let E′ be the event that x, x′ is a valid collision
and Fltdf(s, x) 6= Fltdf(s, x′). In the real game, because Fltdf(s, ·) is injective, the events E and E′

are equivalent.5 Then it will suffice to show that p0 = Pr[E′] in the real game is negligible, via an
alternate game.

The alternate game proceeds as follows: C is given an index i = (s, h) where s is instead
generated by Sloss, and h is chosen as above. Then by indistinguishability of lossy and injective
functions, p1 = Pr[E′] in the alternate game is only negligibly different from p0. We now show that
p1 is negligible (even if C is unbounded).

Fix the s chosen in the alternate game, and let I = Fltdf(s, {0, 1}n) be the image of the lossy
function. By lossiness, |I| ≤ 2ρn. Now consider any fixed distinct pair y, y′ ∈ I: by universality of
H, we have Prh[h(y) = h(y′)] ≤ 2−κn. Summing over all the (at most) 22ρn such pairs via a union
bound, we see that

Pr
h

[∃ distinct y, y′ ∈ I : h(y) = h(y′)] ≤ 2(2ρ−κ)n = 2−δn = negl(λ).

Now consider the event E′ in the alternate game: for x, x′ to be a valid collision and y = Fltdf(s, x)
and y′ = Fltdf(s, x′) to be distinct requires h(y) = h(y′). By above, the probability of such an event
is negligible, and we are done.

Discussion. The crucial hypothesis in the above proof is that the residual leakage of the lossy
TDF collection is strictly less than n/2, so as to circumvent the birthday bound. For UOWHFs, it
suffices for the leakage to be ρn for (say) some constant ρ < 1, because we only need to rule out
collisions for the specific input chosen ahead of time by the adversary.

We note that alternate constructions, in which s is generated by Sloss instead of Sinj, can also
yield UOWHFs and CRHFs. This construction might even seem more natural, because Fltdf(s, ·)
can be seen as “compressing” its input into a small image (of possibly long strings), followed by a
“smoothing” step in which h maps the image to a set of short strings. The proof is symmetric to
the one above, with the event E′ redefined to require that x, x′ be a valid hash collision and that
Fltdf(s, x) = Fltdf(s, x′). Then in the real game (the “lossy” case), events E and E′ are equivalent
except when h contains a collision on the image I; in the alternate game (the “injective” case),
event E′ never occurs.

4Technically, we require one family Hλ of hash functions for each value of the security parameter λ.
5In the almost-always case, comparable events are equivalent if we add the constraint that Fltdf(s, ·) is actually

injective, which fails with negligible probability.
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Finally, we note that these constructions do not require the trapdoor property of lossy TDFs
in either the construction or the security proof. Therefore, it is possible to construct collision-
resistant hash functions simply from a collection of lossy functions, a weaker primitive whose
injective functions need not have trapdoors.

4 Cryptosystems and More

Our main goal is to construct a cryptosystem that is secure against chosen ciphertext attacks, using
lossy and ABO trapdoor functions. We start in Section 4.1 with a simple construction of a cryp-
tosystem that is secure against chosen-plaintext attacks, which illuminates some of the main ideas
behind the main CCA-secure construction. In Section 4.2 we use the CPA-secure cryptosystem for
constructing oblivious transfer against semi-honest adversaries and secure multiparty computation.
Finally, we conclude in Section 4.3 with our CCA-secure construction and its proof of security.

4.1 CPA-Secure Construction

We first describe our basic CPA-secure cryptosystem. All of the parameters in the system will
depend upon the security parameter λ; for notational convenience we will often omit this explicit
dependence.

Let (Sltdf, Fltdf, F
−1
ltdf) give a collection of (n, k)-lossy trapdoor functions. (Almost-always lossy

TDFs are also sufficient.) Let H be a family of pairwise independent hash functions from {0, 1}n
to {0, 1}`, where ` ≤ k − 2 lg(1/ε) for some negligible ε = negl(λ). Our cryptosystem will have
message space {0, 1}`.

• Key generation. G(1λ) first generates an injective trapdoor function: (s, t) ← Sinj(1λ). It
also chooses a hash function h← H.

The public key pk = (s, h) consists of the injective function index and the hash function. The
secret key sk = (t, h) consists of the trapdoor and the hash function.

• Encryption. E takes as input (pk, m) where pk = (s, h) is a public key and m ∈ {0, 1}` is
the message.

It first chooses x← {0, 1}n uniformly at random. The ciphertext is c = (c1, c2), where

c1 = Fltdf(s, x), c2 = m⊕ h(x).

• Decryption. D takes as input (sk, c) where sk = (t, h) is the secret key and c = (c1, c2) is a
ciphertext.

The decryption algorithm computes x = F−1
ltdf(t, c1) and outputs c2 ⊕ h(x).

Theorem 4.1. The algorithms (G, E ,D) described above are a cryptosystem secure against chosen
plaintext attack.

Proof. We prove security by defining two hybrid experiments Game1, Game2 where Game1 is the
real chosen plaintext game. Then we show that the adversary’s views in Game1 and Game2 are
indistinguishable. Finally we show unconditionally that the adversary’s advantage in Game2 is only
negligibly better than 1/2. It follows that the cryptosystem is CPA-secure.
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A chosen-plaintext attack game is entirely specified by two algorithms that keep joint state: (1)
an algorithm Setup that on input 1λ, outputs a public key pk, and (2) an algorithm Challenge that
on input of two messages m0,m1 ∈ {0, 1}` from the adversary, outputs a challenge ciphertext c∗.
In both of our games, Challenge(m0,m1) will be the same as in the real game: it chooses a uniform
bit b← {0, 1} and outputs c∗ ← E(pk, mb).

The only difference between the two games is in Setup. In Game1, Setup(1λ) proceeds as in the
real CPA game, outputting pk = (s, z) where (s, t) ← Sinj(1λ) and z ← {0, 1}d is a uniform seed
for the extractor. In Game2, Setup(1λ) generates a lossy function instead, outputting pk = (s, z)
where (s,⊥)← Sloss(1λ) and z ← {0, 1}d.

It is straightforward to show that the adversary’s views in the two games are indistinguishable,
using the indistinguishability of injective and lossy functions. We now show that in Game2, any
adversary (even an unbounded one) has only negligible advantage, unconditionally.

Consider the random variable x used by E in Game2, which is independent of pk. Because
fs(·) = Fltdf(s, ·) has image size at most 2n−k, by Lemma 2.1 we have H̃∞(x|(c1, pk)) ≥ H∞(x|pk)−
(n − k) = k. Therefore by Lemma 2.2 and the hypothesis that ` ≤ k − 2 lg(1/ε), we have that
h(x) is ε-close to uniform (conditioned on the rest of the view of the adversary). It follows that
c2 = mb ⊕ h(x) is ε-close to uniform, independent of the challenge bit b (and the rest of the view).
We conclude that the adversary has negligible advantage in Game2, and we are done.

4.2 Interlude: Oblivious Transfer and MPC

One interesting property of our CPA scheme is that it can be used to create an oblivious transfer
protocol in a manner that roughly follows the EGL paradigm [19]. Suppose we have a CPA-
secure cryptosystem that allows sampling a public key in two different but indistinguishable ways:
first, in the normal way so that the corresponding decryption key is known, and second, in an
“oblivious” way so that messages encrypted under the public key remain semantically secure even
to the sampler. Then the following is an `-out-of-m (semi-honest) oblivious transfer protocol: the
receiver generates ` public keys normally (with decryption keys) and m− ` public keys obliviously,
and delivers all m public keys to the sender so that the normal public keys correspond to the `
desired messages. The sender encrypts each of the m messages under the corresponding public key,
and returns the m ciphertexts, of which the receiver can decrypt exactly the desired `.

In our CPA-secure construction, one can sample a public key obliviously by generating a lossy
function rather than an injective one, letting (s,⊥) ← Sloss(1λ). By arguments from the proof of
Theorem 4.1, public keys sampled in this way are (computationally) indistinguishable from normal
ones, and messages encrypted under such keys are (statistically) secret. We remark that in the
context of the OT protocol, these security properties are a reversal of the usual case in the EGL
paradigm (using, e.g., trapdoor permutations), where the receiver’s security is statistical and the
sender’s security is computational.

Using zero-knowledge proofs (which can be based on any one-way function [27]) one can obtain
an OT protocol secure against malicious adversaries and, more generally, secure multiparty com-
putation [28]. Using our realization of lossy TDFs from Section 6, we obtain OT and MPC based
solely on worst-case lattice assumptions.

We remark that this construction of OT from lossy TDFs is primarily of theoretical interest,
because semi-honest OT protocols can be based directly on existing lattice-based [2, 40, 41] and
DDH-based cryptosystems. In these cryptosystems, one can sample a (malformed) “lossy” public
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key (indistinguishable from a valid public key), whose ciphertexts carry no information about the
encrypted messages.

4.3 CCA-Secure Construction

We now describe our CCA-secure cryptosystem.
Let (Gen,Sign,Ver) be a strongly unforgeable one-time signature scheme where the public ver-

ification keys are in {0, 1}v. Let (Sltdf, Fltdf, F
−1
ltdf) give a collection of (n, k)-lossy trapdoor func-

tions, and let (Sabo, Gabo, G
−1
abo) give a collection of (n, k′)-ABO trapdoor functions having branches

Bλ = {0, 1}v (which contains the space of signature verification keys).6 We require that the total
lossiness k + k′ ≥ n + κ for some κ = κ(n) = ω(log n).

Let H be a family of pairwise independent hash functions from {0, 1}n to {0, 1}`, where ` ≤
κ− 2 lg(1/ε) for some negligible ε = negl(λ). Our cryptosystem will have message space {0, 1}`.

• Key generation. G(1λ) first generates an injective trapdoor function: (s, t) ← Sinj(1λ).
It then generates an ABO trapdoor function having lossy branch 0v: (s′, t′) ← Sabo(1λ, 0v).
Finally, it chooses a hash function h← H.

The public key consists of the two function indices and the hash function:

pk = (s, s′, h).

The secret decryption key consists of the two trapdoors, along with the public key:

sk = (t, t′, pk).

(In practice, the ABO trapdoor t′ may be discarded, but we retain it here for convenience in
the security proof.)

• Encryption. E takes as input (pk, m) where pk = (s, s′, h) is a public key and m ∈ {0, 1}`
is the message.

It first generates a keypair for the one-time signature scheme: (vk, skσ) ← Gen(1λ). It then
chooses x← {0, 1}n uniformly at random. It computes

c1 = Fltdf(s, x), c2 = Gabo(s′, vk, x), c3 = m⊕ h(x).

Finally, it signs the tuple (c1, c2, c3) as σ ← Sign(skσ, (c1, c2, c3)).

The ciphertext c is output as
c = (vk, c1, c2, c3, σ).

• Decryption. D takes as input (sk, c) where sk = (t, t′, pk = (s, s′, h)) is the secret key and
c = (vk, c1, c2, c3, σ) is a ciphertext.

The decryption algorithm first checks that Ver(vk, (c1, c2, c3), σ) = 1; if not, it outputs ⊥. It
then computes x = F−1

ltdf(t, c1), and checks that c1 = Fltdf(s, x) and c2 = Gabo(s′, vk, x); if
not, it outputs ⊥.

Finally, it outputs m = c3 ⊕ h(x).

Theorem 4.2. The algorithms (G, E ,D) described above are a cryptosystem secure against adaptive
chosen ciphertext attack.

6Almost-always lossy and ABO TDFs are also sufficient.
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4.4 Proof

First we argue the correctness of the cryptosystem. Consider decryption of some properly gener-
ated ciphertext c = (vk, c1, c2, c3, σ) of a message m. By completeness of the one-time signature,
Ver(vk, (c1, c2, c3), σ) = 1. The function fs(·) = Fltdf(s, ·) is injective (with overwhelming prob-
ability over the choice of s, in the almost-always case), therefore F−1

ltdf(t, c1) = x, where x is the
randomness used in the encryption. By construction, c1 = Fltdf(s, x) and c2 = Gabo(s′, vk, x).
Therefore the decrypter outputs c3 ⊕ h(x) = m⊕ h(x)⊕ h(x) = m.

We prove security by first describing a sequence of games Game1, . . . ,Game5, where Game1

is the real chosen ciphertext attack game. Then we show that for all i = 1, . . . , 4, Gamei and
Gamei+1 are indistinguishable (either computationally, or in some cases statistically). Finally, we
make an unconditional argument that even an unbounded adversary must have negligible advantage
in Game5. It follows that the cryptosystem is CCA-secure.

We now define the sequence of games we use to prove security. A chosen ciphertext attack game
is entirely specified by three algorithms (which keep joint state) that interact with the adversary
in the manner described in the definition of the CCA game:

• Setup. On input 1λ, outputs a public key pk.

• Decrypt. On input a ciphertext c from the adversary, outputs an m ∈ {0, 1}` ∪ {⊥}.

• Challenge. On input two messages m0,m1 ∈ {0, 1}` from the adversary, outputs a challenge
ciphertext c∗.

When referring to an implementation of these algorithms in a specific game i, we use a subscript i,
e.g., Setup1.

Before defining these algorithms for the individual games, we define two “global” aspects of the
algorithms that will remain the same in all the games. First, Setup(1λ) will always first choose a
one-time signature keypair (vk∗, sk∗σ)← Gen(1λ), and will then proceed as we define below. Second,
Challenge(m0,m1) will always choose a bit b← {0, 1} and output a ciphertext c∗ ← E(pk, mb), but
with one modification to the operation of E : instead of generating a one-time signature keypair
(vk, skσ) on its own, it uses (vk, skσ) = (vk∗, sk∗σ) as generated in the first step of Setup. We stress
that Challenge operates this way in all the games we define, hence we will not specify it further.

When making these changes to the real CCA game (Game1), the view of the adversary remains
identical, because Challenge is called only once. We make these changes merely for the convenience
of having vk∗ defined throughout both query phases, which will aid the analysis.

Game1: Algorithms Setup1 and Decrypt1 are identical to those in the CCA2 game given in Sec-
tion 2.3, with the above-noted changes. That is, Setup1(1λ) calls (pk, sk)← G(1λ) and outputs
pk; Decrypt1(c) calls m← D(sk, c) and outputs m.

In particular, note that G chooses the ABO lossy branch to be 0v, and D inverts c1 using the
injective function trapdoor t.

Game2: In this game, Setup2 = Setup1. The only change is to Decrypt2, which is defined as
follows: on input a ciphertext c = (vk, c1, c2, c3, σ), if vk = vk∗ (as chosen by Setup2), then
output ⊥. Otherwise return Decrypt1(c). (Note that by defining vk∗ in Setup, this new rule
is well-defined during both query phases.)
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Game3: In this game, Decrypt3 = Decrypt2. The only change is to Setup3, in which the ABO
function is chosen to have a lossy branch b∗ = vk∗ rather than b∗ = 0v. Formally, in G we
replace (s′, t′)← Sabo(1λ, 0v) with (s′, t′)← Sabo(1λ, vk∗).

Note that Decrypt3 still decrypts using the injective function trapdoor t.

Game4: In this game, Setup4 = Setup3. The only change is to Decrypt4, in which decryption
is now done using the ABO trapdoor t′. Formally, in D we replace x = F−1

ltdf(t, c1) with
x = G−1

abo(t
′, vk, c2).

Note that Decrypt4 still first rejects if vk = vk∗ (as in Decrypt2), and performs all the consis-
tency checks of D.

Game5: In this game, Decrypt5 = Decrypt4. The only change is to Setup5, in which we replace
the injective function with a lossy one. Formally, in G we replace (s, t) ← Sinj(1λ) with
(s, t)← Sloss(1λ).

We now state and prove a sequence of claims that establish the main theorem.

Claim 4.3. Game1 and Game2 are computationally indistinguishable, given the strong one-time
existential unforgeability of the signature scheme.

Proof. We begin by observing that Game1 and Game2 behave equivalently unless an event F
happens, which is that the adversary A makes a legal (i.e., not equal to c∗) decryption query of the
form c = (vk = vk∗, c1, c2, c3, σ), where Ver(vk, (c1, c2, c3), σ) = 1. We show that event F happens
with negligible probability.

Consider a simulator S that mounts a (one-time) chosen message attack against the signature
scheme as follows: on input vk generated by Gen(1λ), it emulates Setup by letting vk∗ = vk
and letting (pk, sk) ← G(1λ), and gives pk to A. Upon any decryption query from A of the
form c = (vk = vk∗, c1, c2, c3, σ) such that Ver(vk, (c1, c2, c3), σ) = 1, S immediately outputs
((c1, c2, c3), σ) as a forgery and returns ⊥ to A. Otherwise, S returns m← D(sk, c) to A.

When A asks to be challenged on two messages m0,m1 ∈ {0, 1}`, S chooses b← {0, 1} and cre-
ates the challenge ciphertext c∗ = (vk∗, c∗1, c

∗
2, c
∗
3, σ
∗) by running E(pk, mb) except that the signature

σ∗ is generated by querying the signing oracle on the message (c∗1, c
∗
2, c
∗
3).

It is clear that S simulates Game2 perfectly to A. We now show that event F happens if and
only if S outputs a valid forgery. If F happens during the first query phase, then S outputs a valid
signature without making any queries, which is a forgery. If F happens during the second query
phase on a query c = (vk∗, c1, c2, c3, σ), then because c 6= c∗ we must have either (c1, c2, c3) 6=
(c∗1, c

∗
2, c
∗
3) or σ 6= σ∗. In either case, S’s output ((c1, c2, c3), σ) is unequal to its single signature

query ((c∗1, c
∗
2, c
∗
3), σ

∗), and hence is a forgery.
Because the signature scheme is one-time strongly unforgeable, we conclude that F happens

with negligible probability.

Claim 4.4. Game2 and Game3 are computationally indistinguishable, given the hidden lossy branch
property of the ABO TDF collection.

Proof. We prove this claim by describing a simulator algorithm SO(1λ) that has access to an oracle
O that takes two inputs b∗0, b

∗
1 ∈ Bλ. S will simulate Game2 (resp., Game3) perfectly, given an

oracle that returns an index s′ where (s′, t′) ← Sabo(1λ, b∗0) (resp., (s′, t′) ← Sabo(1λ, b∗1)). By the
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hidden lossy branch property, the two oracles return computationally indistinguishable outputs,
and hence the claim follows.

The simulator SO(1λ) operates by implementing Setup, Decrypt, and Challenge. Setup is imple-
mented in a manner similar to Game2 by choosing (vk∗, sk∗σ)← Gen(1λ), (s, t)← Sinj(1λ), h← H,
but by letting s′ ← O(0v, vk∗). The public key is output as pk = (s, s′, h). We stress that the s′

part of the public key comes from the oracle. We also point out that S knows the injective trapdoor
t, but does not know the trapdoor t′ corresponding to s′.

Decrypt is implemented just as in Game2 and Game3. Note that the only secret information
Decrypt needs to operate is t, which the simulator knows. Likewise, Challenge is implemented just
as in all the games.

One can now verify that S perfectly simulates Game2 or Game3, depending on O.

Claim 4.5. Game3 and Game4 are perfectly equivalent (if the lossy and ABO collections are both
perfect) or statistically close (if either the lossy or ABO TDF collection is almost-always).

Proof. The only difference between Game3 and Game4 is in the implementation of Decrypt. We
will show that Decrypt is perfectly equivalent in the two games (with overwhelming probability, if
the trapdoor systems are almost-always).

First note that if the trapdoor systems are almost-always, the injective, invertible, and lossy
properties hold for all inputs simultaneously, with overwhelming probability over the choice of s
and s′. From now on we assume that this is so.

We now analyze Decrypt in both games on an arbitrary query c = (vk, c1, c2, c3, σ). Since
Decrypt always outputs ⊥ in both games if vk = vk∗, we may assume that vk 6= vk∗. Additionally,
both implementations check that c1 = Fltdf(s, x) = fs(x) and c2 = Gabo(s′, vk, x) = gs′,vk(x) for
some x that they compute (in different ways), and output ⊥ if not. Therefore we may assume that
such an x exists. It suffices to show that such an x is unique, and that both implementations of
Decrypt find it.

In both games, (s, t) is generated by Sinj(1λ) and (s′, t′) is generated by Sabo(1λ, vk∗). Therefore
fs(·) and fs′,vk(·) are both injective (in the latter case, because vk 6= vk∗). Therefore there is a
unique x such that (c1, c2) = (fs(x), fs′,vk(x)). Decrypt3 finds that x by computing F−1

ltdf(t, c1), while
Decrypt4 finds it by computing G−1

abo(t
′, c2).

Claim 4.6. Game4 and Game5 are computationally indistinguishable, given the indistinguishability
of injective and lossy functions of the lossy TDF collection.

Proof. We prove this claim by describing a simulator algorithm S(1λ, s) that simulates Game4

perfectly if s was generated by Sinj(1λ), and that simulates Game5 perfectly if s was generated by
Sloss(1λ). By the indistinguishability of injective and lossy functions, the claim follows.

The simulator S(1λ, s) operates by implementing Setup, Decrypt, and Challenge. Setup is imple-
mented in a manner similar to Game4 by choosing (vk∗, sk∗σ) ← Gen(1λ), (s′, t′) ← Sabo(1λ, vk∗),
and h← H. The public key is output as pk = (s, s′, h). We stress that the s part of the public key
comes from S’s input. We also point out that S knows the ABO trapdoor t′, but does not know
the trapdoor t corresponding to s (if it even exists).

Decrypt is implemented just as in Game4 and Game5. Note that the only secret information
Decrypt needs to operate is t′, which the simulator knows. Likewise, Challenge is implemented just
as in all the games.
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It is easy to see that S perfectly simulates Game4 or Game5, depending on whether s is the
index of an injective or lossy function (respectively).

Claim 4.7. No (even unbounded) adversary has more than a negligible advantage in Game5.

Proof. Fix all the randomness (including the adversary’s) in Game5, except for the choice of the
hash function h and the randomness x used by Challenge when producing the challenge ciphertext
c∗ ← E(pk, mb). We will show that conditioned on the values of the challenge ciphertext components
c∗1, c

∗
2 and the value of the fixed randomness, the value h(x) is a nearly uniform and independent

“one-time pad,” and therefore the adversary has negligible advantage in guessing which message mb

was encrypted. (To be completely rigorous, we could define another game in which the component
c∗3 = h(x) ⊕ mb is replaced by string chosen uniformly and independent of all other variables,
including b.) It follows by averaging over the choice of the fixed randomness that the adversary has
negligible advantage in the full game.

We first observe that fs(·) = Fltdf(s, ·) and gs′,vk∗(·) = Gabo(s′, vk∗, ·) are lossy functions with
image sizes at most 2n−k and 2n−k′ , respectively (for an overwhelming fraction of the fixed random-
ness, in the almost-always case). Therefore the random variable (c∗1, c

∗
2) = f(x) = (fs(x), gs′,vk∗(x))

can take at most 22n−(k+k′) ≤ 2n−κ values by our requirement that k + k′ ≥ n + κ.
By Lemma 2.2, we have H̃∞(x|(c∗1, c∗2, h)) ≥ H∞(x|h)−(n−κ), which is n−(n−κ) = κ because

x and h are independent. By the hypothesis that ` ≤ κ − 2 lg(1/ε), we have that (c∗1, c
∗
2, h, h(x))

and (c∗1, c
∗
2, h, U`) are within ε = negl(λ) in statistical distance, and we are done.

4.5 Discussion

We stress that in all the games, the challenge ciphertext c∗ is created in the same way (given the
fixed pk). The only difference between games is instead in how the public key is formed and how
decryption queries are answered. Of course, changing the public key pk changes the distribution of
the challenge ciphertext; the important point is that the simulator always knows all the randomness
of the challenge ciphertext it produces. Instead, the simulator does not know whether the public key
is properly formed, i.e., whether it is lossy or injective. This is in constrast to prior constructions,
in which the simulator always produces valid public keys, but does not know the randomness of the
challenge ciphertext it produces. This difference is what allows our decryption algorithm to test
well-formedness of a ciphertext by recovering randomness.

Another important component of our construction is the use of a (one-time) strongly unforgeable
signature scheme for full CCA2 security.7 This allows the simulator first to choose the verification
key vk∗ of the challenge ciphertext, and then to make the public key be lossy at branch vk∗. In
particular, the lossy branch is not dependent on the challenge messages m0,m1 chosen later by
the adversary. Our use of a strongly unforgeable signature scheme is similar to that of Cannetti,
Halevi, and Katz [11] in their conversion of IBE schemes to CCA-secure schemes. One possible
future direction is to create variations of our scheme using ideas similar to those developed in the
IBE literature [11, 9, 8, 10].

7In fact, for weaker CCA1 (“lunchtime”) security, the one-time signature is not needed, and vk can simply be
replaced by a random nonce that specifies the branch of the ABO function.

22



5 Realization from DDH-Hard Groups

We now present constructions of lossy TDFs and all-but-one TDFs using groups in which the
decisional Diffie-Hellman (DDH) problem is hard. The construction will illustrate our core ideas
and will also serve as a template for the lattice-based constructions in the next section.

We begin by giving a brief overview of the DDH problem. Then we show how to build lossy
TDFs from DDH-hard groups, and how to extend the construction to build all-but-one TDFs.

5.1 Background

Let G be a an algorithm that takes as input a security parameter λ and outputs a tuple G = (p, G, g)
where p is a prime, G is a cyclic group of order p, and g is a generator of G.

Our construction will make use of groups for which the DDH problem is believed to be hard.
The DDH assumption is that the ensemble

{
(G, ga, gb, gab)

}
λ∈N is computationally indistinguish-

able from
{
(G, ga, gb, gc)

}
λ∈N, where G = (p, G, g) ← G(λ), and a, b, c ← Zp are uniform and

independent.

5.2 Preliminary Tools

For the remainder of this section, we implicitly assume that a group description G = (p, G, g) ←
G(1λ) is fixed and known to all algorithms. (In our TDF constructions, this group will be generated
by the function sampler Sltdf and made part of the function description.)

An ElGamal-like encryption primitive. First we review a (well-known) variant of the El-
Gamal cryptosystem, which is additively homomorphic. A secret key is chosen as z ← Zp, and
the public key is h = gz. To encrypt an m ∈ Zp, choose an r ← Zp and create the ciphertext
Eh(m; r) = (gr, hr · gm). To decrypt a ciphertext c = (c1, c2), output Dz(c) = logg(c2/cz

1); when c
encrypts a bit m ∈ {0, 1} (or any small value m) this discrete logarithm may be computed easily by
enumeration. It is well-known (and straightforward to prove) that this cryptosystem is semantically
secure under the DDH assumption.

Note that the cryptosystem is additively homomorphic in the following way:

Eh(m; r)� Eh(m′; r′) = Eh(m + m′; r + r′),

where � denotes coordinate-wise multiplication of ciphertexts. Similarly, for x ∈ Zp,

Eh(m; r)x = Eh(mx; rx)

where exponentiation of a ciphertext is also coordinate-wise. Finally, we note that without even
knowing the public key under which a ciphertext was created, one can add any scalar value v ∈ Zp

to the underlying plaintext (we will need this only for our ABO construction):

Let c = (c1, c2) = Eh(m; r). Then c � v := (c1, c2 · gv) = Eh(m + v; r).
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Encrypting matrices. We now describe a special method for encrypting a matrix M = (mi,j) ∈
Zn×n

p and generating a corresponding decryption key. First choose n independent secret/public
keypairs zj , hj = gzj for j ∈ [n] (according to the ElGamal variant above), and n independent
exponents ri ← Zp for i ∈ [n]. The encryption of M consists of the matrix C = (ci,j) of ciphertexts
ci,j = Ehj

(mi,j ; ri) for all i, j ∈ [n]. (Note that we need not publish the public keys hj .) The
decryption key is the collection of secret keys zj for j ∈ [n].

Note that because every ciphertext in row i uses the same randomness ri, we can represent the
encrypted matrix somewhat more compactly via matrices C1 and C2, where

C1 =

gr1

...
grn

 C2 =

hr1
1 · gm1,1 hr1

2 · gm1,2 · · · hr1
n · gm1,n

...
. . .

...
hrn

1 · gmn,1 hrn
2 · gmn,2 · · · hrn

n · gmn,n


We point out that if we ignore the message terms gmi,j , the matrix C2 (consisting solely of the
hri

j terms) is a synthesizer, as defined by Naor and Reingold [33]. Specifically, the n2 values hri
j

are indistinguishable from n2 uniform and independent elements of G, under the DDH assumption.
This is the essential reason why the matrix encryption remains semantically secure.

Lemma 5.1. The matrix encryption scheme described above produces indistinguishable ciphertexts
under the DDH assumption.

Proof. Intuitively, the lemma follows for the fact that it is secure to reuse randomness when en-
crypting under several independent public keys, because given only gr one can still produce a
ciphertext having randomness r if one knows the secret key z. We now proceed more formally. (A
tighter security reduction is also possible using the random self-reducibility of DDH; see, e.g., [33].
We give a looser reduction for self-containment and simplicity.)

Let L = (`i,j),M = (mi,j) ∈ Zn×n
p be any two arbitrary matrices. We first define a set of

hybrid experiments H0, . . . ,Hn2 . In experiment Hk, the output is a matrix C = (ci,j) chosen in the
following way: choose secret/public keypairs zj ∈ Zp, hj = gzj for j ∈ [n] and exponents ri ← Zp for
i ∈ [n] as above. Then for the first k pairs (i, j) ∈ [n]2 (where we order the pairs lexicographically),
let ci,j = Ehj

(`i,j ; ri). For the remaining pairs (i, j), let ci,j = Ehj
(mi,j ; ri).

Observe that experiment H0 produces an encryption of the matrix L and Hn2 produces an
encryption of the matrix M. Below we argue that for every k ∈ [n], experiments Hk−1 and Hk are
computationally indistinguishable. Then because n = poly(λ), H0 and Hn2 are also indistinguish-
able, and the claim follows.

For any k ∈ [n]2, let (i∗, j∗) be the lexicographically kth pair in [n]2. Consider the following
simulator algorithm S: the input is a public key h∗ [= gz∗ ] from the ElGamal variant and a
ciphertext c∗ = (c∗1, c

∗
2) [= Eh∗(?; r∗) = (gr∗ , gr∗z∗ · g?)], where c∗ is an encryption (under h∗) of

either `i,j or mi,j . S produces an encrypted matrix C = (ci,j) in the following way. First, for every
j 6= j∗ it chooses secret/public keys zj ← Zp, hj = gzj as above, and for every i 6= i∗ it chooses
random exponents ri ← Zp.

For rows i 6= i∗, S “encrypts normally.” That is, for i < i∗ and all j ∈ [n], let ci,j = Ehj
(`i,j ; ri);

similarly for i > i∗ and all j ∈ [n], let ci,j = Ehj
(mi,j ; ri).

For row i = i∗, S “encrypts using the secret key zj .” That is, for column j < j∗, let

ci,j = (c∗1, (c
∗
1)

zj · g`i,j ) = (gr∗ , gr∗zj · g`i,j ) = Ehj
(`i,j ; r∗),
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and similarly for j > j∗ (encrypting mi,j). Finally, for i = i∗ and j = j∗, let ci,j = c∗.
One can see that S’s output is distributed according to either Hk−1 or Hk, depending on whether

c∗ was an encryption of `i,j or mi,j (respectively). Because these two cases are indistinguishable by
the security of the ElGamal variant, so are Hk−1 and Hk, and we are done.

5.3 Lossy TDF

We now describe the function generation, evaluation, and inversion algorithms for our lossy TDF.

• Sampling an injective/lossy function. The injective function generator Sinj(1λ) first selects
G = (p, G, g)← G(1λ). The function index is a matrix encryption C (as described above) of
the identity I ∈ Zn×n

p (and implicitly the group description G). The trapdoor information t
consists of the the corresponding decryption keys zj for j ∈ [n].

The lossy function generation algorithm Sloss(1λ) likewise selects G ← G(1λ). The function
index is a matrix encryption C of 0 ∈ Zn×n

p (and G’s description). There is no trapdoor
output.

• Evaluation algorithm. Fltdf takes as input (C,x), where C is a function index (a matrix
encryption of some M = (mi,j) ∈ Zn×n

p ) and x ∈ {0, 1}n is an n-bit input interpreted as a
vector. The output is the vector of ciphertexts y = xC, where the linear product is interpreted
in the natural way using the homomorphic operations of the cryptosystem. By construction
of C and the homomorphic properties of the cryptosystem, we have

yj :=
⊙
i∈[n]

cxi
i,j = Ehj

((xM)j ; R := 〈x, r〉) ,

where r = (r1, . . . , rn) is the vector of random exponents used to construct C.

Note that if the function index C was generated by Sinj (i.e., M = I), we have yj = Ehj
(xj ;R),

whereas if C was generated by Sloss (i.e., M = 0) we have yj = Ehj
(0;R). Note also that the

randomness R inherent in yj is the same for all j ∈ [n]; therefore, we may represent y more
compactly using n + 1 group elements in a manner similar to that for matrix encryption.

• Inversion algorithm. F−1
ltdf takes as input (t,y) where the trapdoor information t consists of

the decryption keys (z1, . . . , zn). The output is x ∈ {0, 1}n where xj = Dzj (yj).

Shorter outputs. Our basic construction takes an n-bit input as a binary string and has an
output of n ciphertexts (which can be represented compactly using n+1 group elements). We note
that it is possible to achieve somewhat shorter output size by parsing the input into messages from
a space of size 2α. In this generalization, function outputs will consist of dn/αe+1 group elements.
However, there is a trade-off in the inversion time, as the ElGamal decryption algorithm will need
to enumerate over the possible 2α values. Therefore, this generalization works only for small values
of α, i.e., α = O(log λ).

Alternatively, we can also realize a more efficient variant of our construction over ZN2 , where
N is the product of two primes chosen at random by the setup algorithm. In this variant, we can
use the techniques of Paillier [36] to create an inversion routine that will know the factorization of
N and thus has access to an efficient trapdoor for an order N subgroup. The evaluation routine

25



can then process the input in blocks of α = dlg(N)e bits. The resulting ABO system gives rise
to a CCA-secure cryptosystem having comparable performance to that of the Cramer-Shoup [13]
projective-hash system when realized with Paillier encryption.

Theorem 5.2. The algorithms described above give a collection of (n, n− lg p)-lossy TDFs under
the DDH assumption for G.

Proof. We have shown invertibility for injective functions via the trapdoor information, and indis-
tinguishability between injective and lossy functions follows by Lemma 5.1. It remains to show the
lossiness property.

Recall that for a function generated by Sloss, for any input x the output y is such that yj =
Ehj

(0;R) for some fixed R ∈ Zp (dependent on x) and fixed hj . Therefore the number of possible
function outputs is at most p, the residual leakage r is at most lg p, and the lossiness is k = n− r ≥
n− lg p.

5.4 All-But-One TDF

For a cyclic group of order p, the residual leakage of our lossy TDF is at most lg p bits. For large
enough values of n, we can use a generic transformation from lossy to all-but-one TDFs to obtain
an ABO collection with many branches, based on the DDH assumption. However, the generic
transformation is rather inefficient. Here we demonstrate a more efficient ABO collection where
the number of branches can be as large as p. The construction is an extension of our lossy TDF
construction.

Let the set of branches Bλ = [q], where q is at most the smallest value of p produced by G(1λ)
(we often omit the dependence of Bλ on λ). When a cyclic group G of order p is clear from context,
we interpret a branch value b ∈ B as a distinct element of Zp.

• Sampling an ABO function. The function generator Sabo(1λ, b∗ ∈ B) first selects G =
(p, G, g)← G(1λ). The function index is a matrix encryption C of the matrix −(b∗I) ∈ Zn×n

p

(and implicitly the group description G). The trapdoor information t consists of the corre-
sponding decryption keys zj for j ∈ [n], along with the lossy branch value b∗.

• Evaluation algorithm. Gabo takes as input (C, b,x) where C is a function index, b ∈ B is
the desired branch, and x is an n-bit input interpreted as a vector. The output is the vector
of ciphertexts y = x(C � bI), where the homomorphic scalar addition operation � applies
entry-wise to the matrices, and the linear product x is interpreted in the same way as in the
lossy TDF construction.

By the homomorphic properties of the encryption and the construction of C, the jth coordi-
nate of y is

yj = Ehj
((b− b∗)xj ; R := 〈x, r〉) ,

where r = (r1, . . . , rn) is the vector of random coefficients used in the creation of C. Note
that if b = b∗, each yj = Ehj

(0;R). Also note that as before, the output y can be compactly
represented using n + 1 group elements.

• Inversion algorithm. G−1
abo takes as input (t, b,y) where t is the trapdoor information (de-

cryption keys zj for j ∈ [n] and the lossy branch b∗), b 6= b∗ is the evaluated branch, and y
is the function output. G−1

abo outputs x where xj = Dzj (yj)/(b − b∗). Note that yj can be
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efficiently decrypted because its plaintext is only one of two values (either 0 or b− b∗). Note
also that the inversion algorithm is defined only for b 6= b∗.

Theorem 5.3. The algorithms described above give a collection of (n, n− lg p)-all-but-one TDFs,
under the DDH assumption for G.

Proof. We have shown invertibility above. The hidden lossy branch property follows by Lemma 5.1.
The lossiness property follows from the fact that when b = b∗, each yj = Ehj

(0;R) is completely
determined by a single value R ∈ Zp, of which there are only p possibilities.

6 Realization from Lattices

Here we construct lossy and all-but-one TDFs based on the hardness of the learning with error
(LWE) problem, as defined by Regev [41]. The LWE problem is a generalization to larger moduli
of the learning parity under noise problem (see, e.g., [5]). It can be viewed as an (average-case)
“unique decoding” problem on a certain family of random lattices under a natural error distribu-
tion, and is believed (along with learning parity under noise) to be hard on the average. Very
interestingly, Regev showed that LWE is indeed hard on the average if standard lattice problems
(like approximating the shortest vector) are hard in the worst case, for quantum algorithms [41].
No efficient (or even subexponential-time) quantum algorithms are known for the associated worst-
case lattice problems, despite significant research efforts. Our results rely solely on the conjectured
average-case hardness of LWE, and inherit Regev’s worst-case connection as a “black box.” We
stress that although the underlying worst-case lattice assumption relates to quantum algorithms,
the LWE problem and our constructions based on it are entirely classical.

Our lossy TDF based on LWE uses the same basic ideas as our DDH-based construction: using
an additively homomorphic cryptosystem, the function computes an encrypted linear product xM,
where in the lossy case we will have M = 0. However, we must overcome additional technical
challenges stemming chiefly from the fact that LWE involves extra random error terms. This
requires careful trade-offs between the lossy and injective cases: in the lossy case, the noise leaks
additional information about which homomorphic operations were performed; in the injective case,
the noise determines the amount of recoverable information that can “fit into” a ciphertext, and
affects the correctness of decryption after performing homomorphic operations.

6.1 Background

We start by introducing the notation and computational problems that are relevant to this section,
for the most part following Regev [41].

For any x, y ∈ R with y > 0 we define x mod y to be x − bx/ycy. For x ∈ R, bxe = bx + 1/2c
denotes the nearest integer to x (with ties broken upward). We define T = R/Z, i.e., the group of
reals [0, 1) with modulo 1 addition.

Probability distributions. The normal distribution with mean 0 and variance σ2 (or standard
deviation σ) is the distribution on R having density function 1

σ·
√

2π
exp(−x2/2σ2). It is a standard

fact that the sum of two independent normal variables with mean 0 and variances σ2
1 and σ2

2

(respectively) is a normal variable with mean 0 and variance σ2
1 +σ2

2. We will also need a standard
tail inequality: a normal variable with variance σ2 is within distance t·σ (i.e., t standard deviations)
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of its mean, except with probability at most 1
t ·exp(−t2/2). Finally, it is possible to efficiently sample

from a normal variable to any desired level of accuracy.
For α ∈ R+ we define Ψα to be the distribution on T of a normal variable with mean 0 and

standard deviation α/
√

2π, reduced modulo 1. For any probability distribution φ : T → R+ and
an integer q ∈ Z+ (often implicit) we define its discretization φ̄ : Zq → R+ to be the discrete
distribution over Zq of the random variable bq ·Xφe mod q, where Xφ has distribution φ.

For an integer q ≥ 2 and some probability distribution χ : Zq → R+, an integer dimension
d ∈ Z+ and a vector z ∈ Zd

q , define Az,χ as the distribution on Zd
q ×Zq of the variable (a, 〈a, z〉+ e)

where a← Zd
q is uniform and e← χ are independent, and all operations are performed in Zq.

Learning with error (LWE). For an integer q = q(d) and a distribution χ on Zq, the goal of
the learning with error problem LWEq,χ is to distinguish (with nonnegligible probability) between
arbitrarily-many independent samples from the distribution Az,χ for some secret random z ← Zd

q ,
and independent samples from the uniform distribution on Zd

q × Zq.
The conjectured hardness of LWE is parameterized chiefly by the dimension d. Therefore in this

section, we let d be the security parameter (rather than λ as before), and let all other parameters
(e.g., q, α, n, and several others) implicitly be functions of this parameter.

Regev [41] demonstrated that for normal error distributions, LWE is as hard as several standard
worst-case lattice problems, for quantum algorithms. We state a version of the result here:

Proposition 6.1 ([41]). Let α = α(d) ∈ (0, 1) and let q = q(d) be a prime such that α · q > 2
√

d.
If there exists an efficient (possibly quantum) algorithm that solves LWEq,Ψ̄α

, then there exists an
efficient quantum algorithm for solving the following worst-case lattice problems:

• SIVP: In any lattice Λ of dimension d, find a set of d linearly independent lattice vectors of
length within at most Õ(d/α) of optimal.

• GapSVP: In any lattice Λ of dimension d, approximate the length of a shortest nonzero lattice
vector to within a Õ(d/α) factor.

Peikert [37] extended this result to hold for lattice problems in any `p norm, p ≥ 2, for the same
Õ(d/α) approximation factors.

We will define our lossy and ABO functions in terms of the LWE problem, without explicitly
taking into account the connection to lattices (or the restrictions on the parameters). Then in
Section 6.5, we will instantiate the parameters appropriately, invoking Proposition 6.1 to ensure
security assuming the (quantum) hardness of lattice problems.

6.2 Preliminaries

Encrypting based on LWE. Here we construct a cryptosystem based on the hardness of the
LWE problem. The cryptosystem itself is symmetric key (not public key) and has certain limited
homomorphic properties over a small message space, which will be sufficient for our purposes in
constructing lossy TDFs. This basic cryptosystem is similar to, but somewhat simpler than, Regev’s
public key cryptosystem [41] and a multi-bit variant [31].

The message space of our cryptosystem will be Zp for some p ≥ 2. For every message m ∈ Zp,
define the “offset” for m to be cm = m

p ∈ T. We let χ denote an unspecified error distribution,
which we instantiate later.
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Except where noted, all operations are performed in Zq for some integer q > p. The secret key
is a uniform z ← Zd

q . To encrypt an m ∈ Zp, choose uniform a ← Zd
q and an error term e ← χ.

Define the rounding error u = bqcme − qcm ∈ [−1/2, 1/2]. Then the ciphertext is

Ez(m, u;a, e) := (a, 〈a, z〉+ qcm + u + e) ∈ Zd
q × Zq.

Note that we treat u as an explicit input to the encryption algorithm (even though it is normally
determined by m), because it will be convenient to treat Ez(m,u;a, e) as a well-defined expression
even for u 6∈ [−1/2, 1/2]. In cases where u is simply derived from m in the manner described, we
will often omit it and write

Ez(m;a, e) := (a, 〈a, z〉+ bqcme+ e).

For a ciphertext c = (a, c′), the decryption algorithm Dz(c) computes t = (c′ − 〈a, z〉)/q ∈ T
and outputs an m ∈ Zp such that t− cm ∈ T is closest to 0 modulo 1. Note that for any ciphertext
c = Ez(m,u;a, e), as long as the absolute total error |e + u| < q/2p, the decryption Dz(c) is correct.

The cryptosystem is homomorphic:

Ez(m, u;a, e) + Ez(m′, u′;a′, e′) = Ez(m + m′, u + u′;a + a′, e + e′)

Furthermore, even without knowing the secret key under which a ciphertext was created, one
can add any scalar value v ∈ Zp to its plaintext (we will need this property only for our ABO
construction). Let c = (a, c′) = Ez(m,u;a, e), and define u′ = bqcve − qcv ∈ [−1/2, 1/2]. Then

c � v := (a, c′ + bqcve) = Ez(m + v, u + u′;a, e).

Encrypting matrices. We now describe a special extension of the encryption scheme to matrices
M = (mi,j) ∈ Zh×w

p of an arbitrary height h and width w.

• Secret key. For each column j ∈ [w], choose independent zj ← Zd
q . The tuple Z =

(z1, . . . , zw) forms the secret key.

• Encryption. To encrypt a matrix M ∈ Zh×w
p , do the following: for each row i ∈ [h], choose

independent ai ← Zd
q , forming a matrix A ∈ Zh×d

q whose ith row is ai. Generate an error
matrix E = (ei,j) ∈ Zh×w

q by choosing independent error terms ei,j ← χ. Let U = (ui,j) be a
matrix of rounding errors, where ui,j = bqcmi,je − qcmi,j ∈ [−1/2, 1/2].

The matrix encryption of M is denoted

C = (ci,j) = EZ(M,U;A,E),

where ci,j = Ezj (mi,j , ui,j ;ai, ei,j). We omit the U argument when it is determined by M.

Note that each ciphertext uses an independent error term ei,j , but that the randomness ai

is reused across row i, and the secret key zj is reused across each column j. The encrypted
matrix can be represented more compactly as (A,C′), where c′i,j = 〈ai, zj〉+qcmi,j +ui,j +ei,j .

• Decryption. An encrypted matrix C = (ci,j) of size h′×w (whose width w must match the
secret key, but whose height h′ can be arbitrary) is decrypted as the matrix M = (mi,j) =
DZ(C) ∈ Zh′×w

p , where mi,j = Dzj (ci,j).
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• Linear operations. By the homomorphism of the underlying cryptosystem, all linear op-
erations (addition of ciphertexts, multiplication and addition by scalars) extend naturally to
linear operations involving encrypted matrices. For example, say C = EZ(M,U;A,E) is an
encryption of some M ∈ Zh×w

p . Then for any x ∈ Zh
p ,

xC = EZ(xM,xU;xA,xE).

Likewise, if V ∈ Zh×w
p is a matrix of scalars inducing a matrix of rounding errors U′, then

C � V = EZ(M + V,U + U′;A,E).

Lemma 6.2. For any height and width h, w = poly(d), the matrix encryption scheme described
above produces indistinguishable ciphertexts under the assumption that LWEq,χ is hard.

Proof. It will be convenient in this proof to work with the compact representation (A,C′) of matrix
encryptions. It suffices to show that for any M ∈ Zh×w

p , a proper encryption EZ(M;A,E) of M is
indistinguishable from a “uniform” encryption EZ(M;A,R) where the error matrix R← Zh×w

q is
uniform, because the latter’s two components (A,C′) are uniform and independent.

We define a set of hybrid experiments H0, . . . ,Hw. In experiment Hk, the output is a (compact)
encryption EZ(M;A,E) where the entries in the first k columns of E are chosen independently
from χ, and the remainder are uniform and independent. Observe that experiment H0 produces
a proper encryption of M, while experiment Hw produces a uniform encryption. Below we show
that experiments Hk−1 and Hk are computationally indistinguishable. Then because the number
of columns w = poly(d), the claim follows.

For any k ∈ [w], consider the following simulator algorithm SO, where O produces samples
either from the distribution Az,χ for some z ← Zd

q , or from the uniform distribution on Zd
q × Zq.

First, for all j 6= k, S chooses independent secret keys zj ← Zd
q . Then for each i ∈ [h], S queries O,

obtaining a sample (ai, bi). S lets A be the matrix whose ith row is ai, and lets ci,k = bi + bqcmi,k
e.

Then for all columns j < k and for all i ∈ [h], S chooses independent error terms ei,j ← χ; for all
columns j > k and for all i ∈ [h], S chooses uniform and independent error terms ei,j ← Zq. For
all j 6= k and all i ∈ [h], S lets c′i,j = 〈ai, zj〉+ bqcmi,je+ ei,j . The output is (A,C′).

Observe that if the samples from O are uniform, S’s output is distributed according to Hk−1

because the bi values are uniform. If the samples from O are drawn from Az,χ, S’s output is
distributed according to Hk. Under the assumption that LWEq,χ is hard, the distributions Az,χ and
U are computationally indistinguishable; therefore, so are Hk−1 and Hk, and we are done.

We now show a technical lemma that will be needed for both the correctness and lossiness
properties of our lossy TDF construction.

Lemma 6.3. Let q ≥ 4pn, let α ≤ 1/(16p(n+g)) for some positive g, and let E = (ei,j) ∈ Zn×w
q be

an error matrix generated by choosing independent error terms ei,j ← χ = Ψ̄α. Then except with
probability at most w · 2−g over the choice of E, every entry of xE has absolute value less than q

4p

for all x ∈ {0, 1}n.

Proof. It suffices to show that for each column eT of E, |〈x, e〉| < q/4p for all x simultaneously
except with probability at most 2−g over the choice of e. The lemma follows by a union bound
over all w columns of E.
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We will show that for any fixed x ∈ {0, 1}n,

Pr
e

[|〈x, e〉| ≥ q/4p] ≤ 2−(n+g).

Taking a union bound over all x ∈ {0, 1}n, we can conclude that |〈x, e〉| < q/4p for all x ∈ {0, 1}n
except with probability at most 2−g.

Now by definition, ei = bqsie mod q where si are independent normal variables with mean 0
and variance α2 for each i ∈ [n]. Then 〈x, e〉 is at most n/2 ≤ q/8p away from q(〈x, s〉 mod 1).
Therefore it suffices to show that |〈x, s〉| < 1/8p except with probability at most 2−(n+g).

Because the si are independent, 〈x, s〉 is distributed as a normal variable with mean 0 and
variance at most n · α2 ≤ (n + g) · α2, hence a standard deviation of at most

√
n + g · α. Then by

the tail inequality on normal variables and the hypothesis on α,

Pr
s

[
|〈x, s〉| ≥ 1

8p

]
≤ Pr

s

[
|〈x, s〉| ≥ 2

√
n + g ·

(√
n + g · α

)]
≤ exp(−2(n + g))

2
√

n + g
< 2−(n+g).

6.3 Lossy TDF

Our construction of a lossy TDF based on LWE uses the same ideas as our construction based on
DDH. In particular, evaluating the function will involve computing an encrypted linear product
xM, and in the lossy case we will have M = 0. However, additional challenges must be addressed,
stemming chiefly from the fact that ciphertexts now include extra error terms that can leak infor-
mation (e.g., about the homomorphic operations that produced them). The main difficulty is to
ensure that (in the injective case) the decrypted plaintexts contain more information than might
be leaked (in the lossy case) by the error terms. We will accomplish this by exploiting the en-
tire plaintext space Zp, rather than {0, 1} as before. However, doing this properly involves some
subtleties.

As a first attempt, we could let the input be a vector x ∈ Zn
p , and specify an injective function

by an encryption C of the identity matrix I ∈ Zn×n
p . The output of the function would be an

encryption of xI = x, which would yield up to lg p bits of the input per output ciphertext. The
problem with this construction is that when computing xC via the homomorphic operations, the
error terms of C are also amplified by the entries of x, which can be as large as p. Therefore, in
the lossy case, each output ciphertext might leak lg p bits (or more) due to the accumulated error.
Therefore, this simple construction does not seem to work.

Instead, in our actual construction the output uses the entire message space Zp, but the input
is still interpreted in binary. This will ensure that the homomorphic operations do not amplify the
error terms by too much. Our method uses a special (nonsquare) matrix instead of the identity.
Let ` = blg pc, assume without loss of generality that n is divisible by `, and let m = n/`. Then
we define a “tall and skinny” matrix B ∈ Zn×m

p as follows: in column j ∈ [m], the ((j − 1)` + k)th
entry is 2k−1 ∈ [1, p] for k ∈ [`]. All other entries of B are zero. Formally, B is the tensor (or
Kronecker) product I⊗ b, where I ∈ Zm×m

p is the identity and b = (1, 2, . . . , 2`−1)T ∈ Z`×1
p is the

column vector containing increasing powers of 2.
This choice of B is motivated by the following fact: break an input vector x ∈ {0, 1}n into m

chunks of ` bits each, and interpret the jth chunk as a value vj ∈ Zp by reading the chunk as a
value in binary notation (least significant bit first). Then each x ∈ {0, 1}n corresponds to a unique
v = (v1, . . . , vm) ∈ Zm

p . Most important, by our definition of B, we have xB = vI = v.
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Our injective trapdoor function will be described by a matrix encryption of B. Evaluating the
function on x ∈ {0, 1}n will compute an encrypted product xB = v. This allows us to recover
the entire input by decrypting v and producing the corresponding x. At the same time, the
output consists of only m = n/` ciphertexts, which means that in the lossy case, less information
is leaked overall via their error terms. We obtain a lossy TDF by ensuring that the amount
of information recoverable from each ciphertext (namely, ` ≈ lg p bits) significantly exceeds the
amount of information carried by its error term (which is ≈ lg n bits, due to the accumulated error
from the n homomorphic operations).

We now describe the lossy TDF generation, evaluation, and inversion algorithms more formally.

• Sampling an injective/lossy function. The injective function generator Sinj(1d) generates a
matrix encryption

C = EZ(B,U;A,E)

(with Z, U, A, and E chosen as described above), and outputs C as the function index. The
trapdoor information t consists of the secret keys Z = (z1, . . . , zw).

The lossy function generator Sloss(1d) outputs a matrix encryption

C = EZ(0,U;A,E)

of the all-zeros matrix 0. There is no trapdoor output.

• Evaluation algorithm. Fltdf takes as input (C,x) where C is the function index (an encryption
of either M = B or M = 0) and x ∈ {0, 1}n is an n-bit input interpreted as a vector. The
output is the vector of ciphertexts y = xC.

By the homomorphic properties, the output y is

y = EZ(xM,xU;xA,xE).

Note that every ciphertext yj is of the form (xA, y′j) ∈ Zd
q × Zq, so we may represent y more

compactly using a single copy of xA ∈ Zd
q and n values from Zq.

• Inversion algorithm. F−1
ltdf takes as input (Z,y), where Z is the trapdoor information. It

computes v = DZ(y) ∈ Zm
p , and outputs the unique x ∈ {0, 1}n such that v = xB.

Theorem 6.4. Instantiate the parameters of the above scheme as follows: let p = nc1 for some
constant c1 > 0, let q ∈ [4pn, O(pnc2)] for some constant c2 > 1, let n = dc3 for some constant
c3 > 1, and let χ = Ψ̄α where α ≤ 1/(32pn).

Then the algorithms described above give a collection of almost-always (n, k)-lossy TDFs under
the assumption that LWEq,χ is hard, where the residual leakage r = n− k is

r ≤
(

c2

c1
+ o(1)

)
· n.

Proof. First we show that the inversion algorithm F−1
ltdf is correct on all inputs y = Fltdf(C,x), with

overwhelming probability over the choice of C by Sinj. As observed above, we have

y = EZ(v = xB,xU;xA,xE).
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Letting g = n in Lemma 6.3, we have |(xE)j | < q/4p for every x and j ∈ [m], except with
probability m · 2−n = negl(d) over the choice of E. Furthermore, |(xU)j | ≤ n/2 ≤ q/8p by the
size of U’s entries. Therefore the total error in yj is |(xE)j + (xU)j | < q/2p for all j, hence the
decryption DZ(y) outputs v.

We now analyze the lossiness of a lossy function. For any input x,

y = EZ(0 = x0,xU;xA,xE).

As in the correctness argument, for every x and j ∈ [m] the absolute total error |(xU)j + (xE)j | <
q/2p (with overwhelming probability over E). Therefore for every j ∈ [m], yj is a ciphertext
(xA, y′j) ∈ Zd

q×Zq, where xA is the same randomness for all j and y′j = 〈xA, zj〉+0+(xU)j +(xE)j

can take at most q/p possible values. Then the total number of outputs of the lossy function is at
most qd · (q/p)m. The logarithm of this quantity is a bound on the residual leakage r = n− k:

r ≤ d · lg q + m · lg O(nc2)
≤ O(n1/c3 lg n) + m · (O(1) + c2 lg n)

≤ o(n) + n · O(1) + c2 lg n

bc1 lg nc

≤ n ·
(

c2

c1
+ o(1)

)
,

where we have crucially used the fact that m = n/blg pc = n/bc1 lg nc.
Finally, lossy functions are indistinguishable from injective ones by the security of matrix en-

cryption (Lemma 6.2).

6.4 All-But-One TDF

Our construction of an all-but-one TDF relies on all the ideas from our prior constructions, but
also includes some important technical differences. As always, evaluating the ABO function on an
input x ∈ {0, 1}n involves homomorphically computing an encrypted product vM, where v ∈ Zm

p

corresponds to x in the manner described above, and M is some matrix that depends on the branch
of the function being evaluated. We will require that M = 0 for the lossy branch, and that v is
recoverable from the product vM for all other branches.

In our prior ABO construction based on DDH, the matrix M was some multiple (b − b∗)I of
the identity, for b, b∗ ∈ Zp. Because the matrices M had entries from an exponentially large group
Zp, the construction supported exponentially many branches.

In the current setting, our matrices M have entries from a smaller group Zp, where p = poly(d).
Therefore, simply using multiples of I will not yield enough branches. Instead, we generalize to
matrices M having full row rank (i.e., all their rows are linearly independent), which suffices for
recovering v from the product vM. We use a family of pairwise independent hash functions to
generate the matrix M for the desired branch, and arrange for M = 0 on the lossy branch. To
ensure (with overwhelming probability) that the Ms for all other branches have full row rank, we
use matrices having a few more columns. This decreases the lossiness of the function (because the
output consists of more ciphertexts, which leak information via their error terms), but not by a
significant amount.
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The construction. As above, let ` = blg pc, assume ` divides n and let m = n/`, and let
b = (1, 2, . . . , 2`−1)T ∈ Z`×1

p be the column vector containing increasing powers of 2. For any
x ∈ {0, 1}n we associate a unique v ∈ Zm

p (and vice versa) in the manner described in the previous
section. Our construction will crucially use the fact that x(M⊗ b) = vM for any M ∈ Zm×w

p .
Let the branch set B = Bd = Zt

p for some sufficiently large t we set later, and let w denote
the width of the encrypted matrices, which will depend on the other parameters and the desired
lossiness. Let H denote a family of pairwise independent hash functions from B = Zt

p to Zm×w
p .

• Sampling an ABO function. The function generator Sabo(1d, b∗ ∈ B) first chooses a hash
function h← H. The function index consists of h and a matrix encryption

C = EZ(−h(b∗)⊗ b,U;A,E)

(where Z, U, A, and E are chosen in the usual way). The trapdoor information consists of
the secret keys Z, the lossy branch value b∗, and the hash function h.

• Evaluation algorithm. Gabo takes as input ((h,C), b,x) where (h,C) is the function index,
b ∈ B is the desired branch, and x ∈ {0, 1}n is an n-bit input interpreted as a vector. The
output is

y := x(C � (h(b)⊗ b)).

Let H = h(b)− h(b∗). Then by the homomorphic properties and linearity of ⊗, we have

y = EZ(vH = x(H⊗ b),x(U + U′) ; xA,xE),

where U′ is the matrix of rounding errors (each in [−1/2, 1/2]) induced by the scalar matrix
(h(b)⊗ b).

• Inversion algorithm. G−1
abo takes as input ((Z, b∗, h), b,y), where (Z, b∗, h) is the trapdoor

information, b is the evaluated branch, and y is the function output. It first decrypts, yielding
a vector m = DZ(y) ∈ Zm

p . It then computes H = h(b) − h(b∗), and if possible, solves
(via Gaussian elimination) for the unique v ∈ Zm

p such that vH = m. The output is the
x ∈ {0, 1}n associated with v. (We show below that such a unique v exists for all H with
overwhelming probability.)

Lemma 6.5. Let b∗ ∈ B be arbitrary and let p be prime. Then with probability at least 1− pm+t−w

over the choice of h ← H, the matrix H = h(b)− h(b∗) ∈ Zm×w
p has row rank m for every b ∈ B,

b 6= b∗. In particular, a unique solution v to the system vH = m can be found, if it exists.

Proof. It suffices to show that for any single b 6= b∗, H = h(b) − h(b∗) has row rank m with
probability at least 1 − pm−w (over the choice of h). The lemma then follows by a union bound
over all pt − 1 values of b 6= b∗.

We observe that a uniformly random matrix H ∈ Zm×w
p has row rank < m with probability at

most pm−w. This is because for any fixed nonzero v ∈ Zm
p , we have PrH[vH = 0] = p−w (this is

the only place where we use the fact that p is prime). The observation follows by summing over all
the pm − 1 nonzero v ∈ Zm

p using the union bound.
Now conditioned on the value h(b∗), the value h(b) is still uniformly random by pairwise inde-

pendence. Therefore, H = h(b)− h(b∗) is uniform, and we are done.
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Theorem 6.6. Instantiate the parameters of the above scheme as follows: let p = nc1 be prime
for some constant c1 > 0, let q ∈ [4pn, O(pnc2)] for some constant c2 > 1, let n = dc3 for some
constant c3 > 1, and let χ = Ψ̄α where α ≤ 1/(32pn). Let the matrix width w = m+t+t′ = m+2d,
letting (say) t = t′ = d.8

Then the algorithms described above give a collection of almost-always (n, k)-ABO TDFs with
branch set Zt

p = Zd
p (of size exponential in d) under the assumption that LWEq,χ is hard, where the

residual leakage r = n− k is

r ≤
(

c2

c1
+ o(1)

)
· n.

Proof. The proof is very similar to that of Theorem 6.4, adjusted to accommodate the larger matrix
width w and the pairwise independent matrices H.

The correctness of the inversion algorithm for all branches b 6= b∗ and on all values y (with
overwhelming probability over the choice of function) follows by Lemma 6.5. Specifically, for any
output y, the absolute total error in yj is < q/2p for all j ∈ [w] (with overwhelming probability),
hence the decryption DZ(y) outputs vH. Furthermore, with all but pm+t−w = p−d = negl(d)
probability, every H = h(b) − h(b∗) has full row rank, so v can be recovered from vH for all
branches b 6= b∗.

We now analyze the lossiness. All ciphertexts yj are encryptions of 0 and carry the same
randomness xA ∈ Zd

q . By Lemma 6.3, the total error in every yj has absolute value < q/2p (with
overwhelming probability over the choice of the function). Therefore the total number of outputs of
the function on lossy branch b∗ is at most qd · (q/p)w = qd · (q/p)m+2d. A calculation similar to the
one from Theorem 6.4 yields the claimed lossiness, where the only difference is an extra additive
term in the residual leakage of 2d lg O(nc2) = O(n1/c3 lg n) = o(n).

Finally, the hidden lossy branch property follows by the security of matrix encryption.

6.5 Worst-Case Connection

We now relate the security of our constructions to the conjectured worst-case (quantum) hardness
of lattice problems. The main statement is a connection between any desired constant lossiness
rate K ∈ (0, 1) (larger K means more information is lost) and the associated approximation factor
for lattice problems. This merely involves a somewhat tedious (but otherwise routine) instantiation
of all of the parameters n, p, q, . . . to satisfy the various hypotheses of the constructions.

Theorem 6.7. For any constant K ∈ (0, 1), the construction of Section 6.3 with prime q gives
a family of almost-always (n, Kn)-lossy TDFs for all sufficiently large n, assuming that SIVP
and GapSVP are hard for quantum algorithms to approximate to within Õ(dc) factors, where c =
2 + 3

2(1−K) + δ for any desired δ > 0.
The same applies for the construction in Section 6.4, with prime q and p, of almost-always

(n, Kn)-all-but-one TDFs.

Proof. Using the notation from Theorem 6.4 (likewise Theorem 6.6), we let p = nc1 and let n = dc3

for some constants c1 > 0, c3 > 1 that we set later, and let α = 1/(32pn). In order to invoke
Proposition 6.1 (connecting LWE to lattice problems), we will need to use some

q > 2
√

d/α = 64pn
√

d = 64pn1+1/(2c3).

8More generally, it suffices to let t, t′ be any functions of d growing faster than any constant and slower than n1−δ

for some δ > 0.
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Therefore we set c2 = 1 + 1/(2c3), so we may take q = O(pnc2).
Now invoking Theorem 6.4, we get that the lossy TDF collection has residual leakage

n ·
(

c2

c1
+ ε

)
= n ·

(
1 + 2c3

2c1c3
+ ε

)
for any ε > 0 and sufficiently large n.

Now by Proposition 6.1, LWE is hard for our choice of parameters, assuming the lattice problems
are hard to approximate within Õ(d/α) = Õ(d1+c3(c1+1)) factors for quantum algorithms. With the
constraint on the residual leakage as 1+2c3

2c1c3
< (1−K), we get that c1 > 1+2c3

2c3(1−K) . This implies that
the exponent in the lattice approximation factor may be brought arbitrarily close to 1+c3+ 1+2c3

2(1−K) .
Then under the constraint that c3 > 1, the exponent may be brought arbitrarily close to 2+ 3

2(1−K) ,
as desired.
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