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Abstract. A system of algebraic equations over a finite field is called
sparse if each equation depends on a small number of variables. Finding
efficiently solutions to the system is an underlying hard problem in the
cryptanalysis of modern ciphers. In this paper deterministic Agreeing-
Gluing algorithm introduced earlier in [9] for solving such equations is
studied. Its expected running time on uniformly random instances of
the problem is rigorously estimated. This estimate is at present the best
theoretical bound on the complexity of solving average instances of the
above problem. In particular, it significantly overcomes our previous re-
sults, see [11]. In characteristic 2 we observe an exciting difference with
the worst case complexity provided by SAT solving algorithms.
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1 Introduction

Let (q, l, n,m) be a quadruple of natural numbers, where q is a prime power.
Then Fq denotes a finite field with q elements and X = {x1, x2, . . . , xn} is a set
of variables from Fq. By Xi, 1 ≤ i ≤ m we denote subsets of X of size li ≤ l.
The system of equations

f1(X1) = 0, . . . , fm(Xm) = 0 (1)

is considered, where fi are polynomials over Fq and they only depend on vari-
ables Xi. Such equations are called l-sparse. We look for the set of all solutions
in Fq to the system of equations (1). Therefore, we can only consider for fi poly-
nomials of degree at most q−1 in each variable or, in other words, the exponent
in each variable is at most q − 1. The polynomial fi defines a mapping from
the set of all li-tuples over Fq to Fq and vice versa any such mapping may be
represented by a polynomial over Fq of degree at most q − 1 in each variable.
Obviously, the equation fi(Xi) = 0 is determined by the pair (Xi, Vi), where Vi

is the set of Fq-vectors in variables Xi, also called Xi-vectors, where fi is zero.
Following terminology in [9], we also call the pair (Xi, Vi) a symbol. For q = 2
the polynomial fi is uniquely defined by Vi. Given fi, the set Vi is computed with
qli trials. Solving (1) may be considered as a Constraint Satisfaction Problem,
see [12], with constraints given by Vi.



In this paper deterministic Agreeing-Gluing Algorithm, introduced in [9] and
aimed to find all solutions to (1), is studied and its average behavior is estimated.
To this end equiprobable distribution on instances (1), each instance has the
same probability, is assumed. That is, given the sequence of natural numbers m
and l1, . . . , lm ≤ l, equations in (1) are generated independently. The particular
equation fi(Xi) = 0 is determined by the subset Xi of size li taken uniformly at
random from the set of all possible li-subsets of X, that is with the probability(

n
li

)−1, and the mapping (polynomial) fi taken with the equal probability q−qli

from the set of all possible mappings to Fq defined on li-tuples over Fq (the set
of polynomials of degree ≤ q − 1 in each of li variables).

In this setting the running time of the Agreeing-Gluing Algorithm is a random
variable. We estimate its expected complexity. For fixed q, l and c ≥ 1 let β =
β(α), where 0 ≤ α ≤ l, be the only root to the equation

qβ−α
l = qeg(α)(1−

l∑
t=0

(
l

t

)
βl−t(1− β)t(1− 1

q
)qt

)c−α
l ,

or β(α) = 0 if there is not any root for some α. Here g(α) = f(zα)−α+α ln α−
α ln q

l and f(z) = ln(ez + q−1 − 1) − α ln(z), where by zα we denote the only
positive root of the equation ∂f

∂z (z) = 0. We realize that the above equation
doesn’t depend on n. We prove

Theorem 1. Let l1+l2+...+lm
ln tend to a constant c ≥ 1 as n tends to ∞ while

q ≥ 2 and l ≥ 3 are fixed. Let r(q, l, c) be the maximal of the numbers

max
0≤α≤l

qβ(α)−α
l and 1.

Then the expected complexity of the Agreeing-Gluing Algorithm is

O((r(q, l, c) + ε)n)

bit operations for any positive real number ε.

For any triple q, l, c ≥ 1 the Theorem enables estimating the expected running
time of the Agreeing-Gluing Algorithm with some mathematical software like
Maple. To this end we realize that the equation ∂f

∂z (z) = 0 is equivalent to
zez

ez+q−1−1 = α. So α = α(z) and β = β(z) are found to be functions in z and
zα = z.

We did the computation with Maple for some of 2, l, 1(e.g. n Boolean equa-
tions in n variables each equation depends on l variables) and show the data
obtained in Table 1 along with the expected complexities of the Gluing1 and
Gluing2 Algorithms from our previous work [11]. Agreeing-Gluing1 Algorithm is
a variant of the Agreeing-Gluing Algorithm with the same asymptotical running
time and polynomial in n memory requirement. We have shown in [11] that in
case q = 2 each instance of (1) may be encoded with a CNF formula in the
same set of variables and of clause length at most l. Therefore, l-SAT solving
algorithms provide with the worst case complexity estimates found e.g. in [5].



So in the first line we show the worst case estimates for (1) too. We remark
an exciting difference in the worst case complexity and expected complexity of
the Agreeing-Gluing Algorithm. It is quite obvious that average instances of the

Table 1. Algorithms’ running time.

l 3 4 5 6

the worst case 1.324n 1.474n 1.569n 1.637n

Gluing1, expectation 1.262n 1.355n 1.425n 1.479n

Gluing2, expectation 1.238n 1.326n 1.393n 1.446n

Agreeing-Gluing1, expectation 1.113n 1.205n 1.276n 1.334n

.

l-SAT problem and that of (1) are different. That gives insight into why the
expected complexity is so low in comparison with the worst case.

In case of n Boolean equations (q = 2) of algebraic degree d in n variables
defining a so called semi-regular system( it was conjectured, see [1], but not
proved that an average instance of the problem behaves semi-regularly) the run-
ning time of the popular Gröbner Basis Algorithm and its variants, e.g. [2] and
[4], is known. For d = 2, one gets the bound O(1.7n) by guessing a number of
variables before the Gröbner Basis Algorithm (or XL) application, see [13]. For
d ≥ 3 the bounds exceed the cost of the brute force algorithm, that is 2n. Thus
the Agreeing-Gluing family algorithms seem better on sparse equation systems
(1) than the Gröbner Basis related algorithms.

This article was motivated by applications in cryptanalysis. Modern ciphers
are product, that is the mappings they implement are compositions of functions
in small number of variables. Then intermediate variables are introduced in or-
der to simplify equations, describing the cipher, and to get a system of sparse
equations. E.g., given one pair of plain-text, cipher-text blocks, DES is described
by 512 Boolean equations in 504 variables, each equation involves at most 14
variables, see [9]. For a more general type of sparse equations, Multiple Right
Hand Side linear equations describing in particular AES, see [10]. Solving such
systems of equations breaks the cipher. Here we are studying an approach which
exploits the sparsity of equations and doesn’t depend on their algebraic degree.
This approach was independently discovered in [14] and [8], where the Agree-
ing procedure was described for the first time. The term Agreeing itself comes
from [9]. The Agreeing procedure was in these works then combined with guess-
ing some of the variables values to solve (1). That makes somewhat similar to
the Agreeing-Gluing1 Algorithm of the present paper. However no asymptotical
estimates for that type of algorithms were given in [14, 8, 9].

It is often important in cryptology to understand the hardness of average
instances of the computational problem under question rather than its worst case
complexity. So the present paper, like [11], focuses on the expected performance
of the algorithms.

The rest of the paper is organized as follows. In Sections 2 Gluing proce-
dure and the Gluing Algorithm are presented. The Agreeing procedure and the



Agreeing-Gluing Algorithm are described in Section 3. Section 4 presents the
Agreeing-Gluing1 Algorithm and in Section 5 asymptotic bound on its running
time, that is Theorem 1, is proved.

Before reading this paper, we recommend to look through our previous work
[11], where some necessary basic facts were proved. For the reader’s convenience
we also formulate them in Section 2.

The author is grateful to H.Raddum for careful reading this work and nu-
merous remarks.

2 Gluing procedure and Gluing Algorithm

We describe the Gluing procedure. Given symbols (Xi, Vi) for i = 1, 2, one
defines two sets of variables Z = X1 ∪ X2 and Y = X1 ∩ X2 and a set of Z-
vectors U by the rule U = {(a1, b, a2) : (a1, b) ∈ V1, (b, a2) ∈ V2}, where ai is an
(Xi \ Y )-vector and b is a Y -vector. We denote (a1, b, a2) = (a1, b) ◦ (b, a2) and
say that (a1, b, a2) is the gluing of (a1, b) and (b, a2). In order to glue (X1, V1)
and (X2, V2) one can sort V1 or V2 by Y -subvectors and only glues vectors with
the same Y -subvector. So the complexity of the gluing is

O(|U |+ (|V1|+ |V2|) log(|Vi|)) (2)

operations, as rewriting and comparison, with Fq-vectors of length at most |Z|,
where |Vi| are big enough. We actually use a simpler bound O(|V1||V2|+|V1|+|V2|)
in what follows. We denote (Z, U) = (X1, V1) ◦ (X2, V2).

Gluing Algorithm
input: the system (1) represented by symbols (Xi, Vi), where 1 ≤ i ≤ m.
output: the set U of all solutions to (1) in variables X(m) = X1 ∪ . . .∪Xm.
put (Z, U) ← (X1, V1) and k ← 2,
while k ≤ m do (Z, U) ← (Z, U) ◦ (Xk, Vk) and k ← k + 1,
return (Z,U).

It is obvious that U is the set of all solutions to (1) in variables X(m).
Example. For the system

x1 x2

a1 0 0
a2 1 0
a3 1 1

,

x2 x3

b1 0 0
b2 1 0
b3 1 1

,

x1 x3

c1 0 0
c2 0 1

the Algorithm computes two gluings:

x1 x2

0 0
1 0
1 1

◦
x2 x3

0 0
1 0
1 1

=

x1 x2 x3

0 0 0
1 0 0
1 1 0
1 1 1

,

x1 x2 x3

0 0 0
1 0 0
1 1 0
1 1 1

◦
x1 x3

0 0
0 1

=
x1 x2 x3

0 0 0 .



So there is only one solution (x1, x2, x3) = (0, 0, 0). The Gluing Algorithm takes

O(
m−1∑

k=1

|Uk||Vk+1|+ |Uk|+ |Vk+1|) = O(
m−1∑

k=1

|Uk|+ m) (3)

operations with Fq-vectors of length at most n, where q and l are fixed, and n or
m may grow. The memory requirement is of the same magnitude as the running
time. Here (X(k), Uk) = (X1, V1) ◦ . . . ◦ (Xk, Vk) and (3) is the cost of m − 1
gluings. The set Uk consists of all solutions to the first k equations in variables
X(k) = X1 ∪ . . .∪Xk. The sequence of |Uk| fully characterizes the running time
(3) of the algorithm. The asymptotical analysis of |Uk| and the Gluing Algorithm
is done in [11] using Random Allocations Theory results found in [7, 6, 3]. In [11]
the following Theorem was proved:

Theorem 2. Let ε be any positive real number, l ≥ 3 and q ≥ 2 be fixed
natural numbers as n or m tend to infinity. Then the expected complexity of
the Gluing Algorithm is O((q1−γq,l + ε)n + m) bit operations, where γq,l =
1
l + (q

1
l − 1) logq(

1−q−1

1−q
− 1

l
) .

Two technical statements from [11] are formulated. We use them in Section 5.

Lemma 1. (Lemma 4 in [11]) Let the subsets of variables X1, . . . , Xk be fixed
while f1, . . . , fk are randomly chosen according to our model. Then the expected
number of solutions to the first k equations in (1) is

Ef1,...,fk
|Uk| = q|X(k)|−k.

Lemma 2. (Lemma 5 in [11]) Let Lk = l1 + . . .+ lk and α = Lk/n, and k ≤ n.
Let 0 < δ < 1 be fixed as n tends to ∞. Then the expected number of solutions
to the first k equations is

E|Uk| = EX1,...,Xk
(q|X(k)|−k) =

{
< qnδ

, if Lk < nδ;
O((qeg(α) + ε)n), if Lk ≥ nδ,

for any positive real number ε. Here g(α) = f(zα) − α + α ln α − α ln q
l and

f(z) = ln(ez + q−1 − 1) − α ln(z), where by zα we denote the only positive root
of the equation ∂f

∂z (z) = 0.

3 Agreeing procedure and Agreeing-Gluing Algorithm

We describe the Agreeing procedure. Given symbols (Xi, Vi) for i = 1, 2, one
defines the set of variables Y = X1∩X2. Let V1,2 be the set of Y -subvectors of V1.
In other words, that is the set of projections of V1 to variables Y . Similarly, the set
V2,1 of Y -subvectors of V2 is defined. We say the symbols (X1, V1) and (X2, V2)
agree if V1,2 = V2,1. Otherwise, we apply the procedure called agreeing. We delete
from Vi all vectors whose Y -subvectors are not in V2,1∩V1,2. Obviously, we delete



Vi-vectors which can’t make part of any common solution to the equations. So
new symbols (Xi, V

′
i ) are determined, where V ′

i ⊆ Vi consist of the vectors in
Vi survived after agreeing. We finally put (Xi, Vi) ← (Xi, V

′
i ). In order to agree

(X1, V1) and (X2, V2) one sorts V1 or V2 by Y -subvectors and do agreeing by
table look ups. So the complexity of the agreeing is at most

O((|V1|+ |V2|) log(|Vi|)) (4)

operations, as rewriting and comparison, with Fq-vectors of length at most n,
where |Vi| are big enough.

For instance, we agree the first and the third equations in the example.

(X1, V1) =

x1 x2

a1 0 0
a2 1 0
a3 1 1

, (X3, V3) =
x1 x3

c1 0 0
c2 0 1

.

Then one defines Y = {x1} and V1,3 = {0, 1}, and V3,1 = {0}. Therefore, a2 and
a3 should be deleted from V1. The new agreed symbols are

(X1, V1) =
x1 x2

a1 0 0
, (X3, V3) =

x1 x3

c1 0 0
c2 0 1

.

The following Agreeing-Gluing Algorithm combines the Agreeing and Gluing
procedures to solve (1).
Agreeing-Gluing Algorithm

input: the system (1) represented by symbols (Xi, Vi), where 1 ≤ i ≤ m.
output: the set U of all solutions to (1) in variables X(m) = X1 ∪ . . .∪Xm.
put (Z, U) ← (X1, V1) and k ← 2,
while k ≤ m do s ← k,

while s ≤ m agree (Z, U) and (Xs, Vs), put s ← s + 1,
put (Z, U) ← (Z, U) ◦ (Xk, Vk) and k ← k + 1,
return (Z,U).

We introduce some notation. Let (X(1), U ′
1) be the symbol (X1, V1) after m− 1

agreeings with the symbols (Xi, Vi), where 1 < i ≤ m. Generally, for any 1 ≤
k < m let (X(k + 1), U ′

k+1) denote the symbol (X(k), U ′
k) ◦ (Xk+1, Vk+1) after

agreeing with (m−k−1) symbols (Xi, Vi), where k+1 < i ≤ m. It is easy to see
that the Agreeing-Gluing Algorithm produces the sequence of (X(k), U ′

k). For
the above example the sequence of such symbols is

(X(1), U ′
1) =

x1 x2

0 0 , (X(2), U ′
2) =

x1 x2 x3

0 0 0 , (X(3), U ′
3) =

x1 x2 x3

0 0 0 ,

where X(1) = {x1, x2} and X(2) = X(3) = {x1, x2, x3}. One sees that the
Agreeing-Gluing Algorithm takes

O(
m−1∑

k=1

|U ′
k||Vk+1|+ |U ′

k|+ |Vk+1|+ (m− k − 1)|U ′
k||Vk+1|) =

O(m(
∑m−1

k=1 |U ′
k|+ 1)) (5)



operations with Fq-vectors of length at most n, where q and l are fixed, and n
or m may grow. The formula (5) incorporates the cost of the gluing (X(k), U ′

k)◦
(Xk+1, Vk+1), which is O(|U ′

k||Vk+1|+ |U ′
k|+ |Vk+1|) = O(|U ′

k|) operations, and
the agreeing the resulting set of X(k + 1)-vectors, of size at most |U ′

k||Vk+1| =
O(|U ′

k|), with the rest m−k−1 symbols. In our setting |U ′
k| is a random variable.

We estimate the expectation of |U ′
k| in Section 5, see Theorem 3. That will imply

Theorem 1.
The memory requirement of the Agreeing-Gluing Algorithm is of the same

magnitude as the running time, but the Agreeing-Gluing1 Algorithm in the next
Section only requires polynomial memory while its asymptotical running time
is the same. From the definition of Gluing and Agreeing procedures we also get
the following statement.

Lemma 3. (X(k), U ′
k) is the symbol (X(k), Uk) = (X1, V1) ◦ . . . ◦ (Xk, Vk) after

agreeing with (m− k) symbols (Xi, Vi), where k < i ≤ m.

4 Agreeing-Gluing1 Algorithm

The Gluing1 Algorithm in [11] has the same time complexity as the Gluing Algo-
rithm and only requires poly(n) bits of memory. The Algorithm walks through
a search tree with backtracking. The complexity is roughly the number of the
tree branches. The search tree for the above example is depicted in Fig.1, where
a1 ◦ b1 ◦ c1 = (0, 0, 0) is the only solution.

Fig. 1. The search tree for the Gluing1 Algorithm.

Similarly, the Agreeing-Gluing1 Algorithm is a variant of the Agreeing-Gluing
Algorithm with minor memory requirements. In order to define the related search
tree we say that an X(k)-vector a contradicts(does not agree) with the symbol
(Xi, Vi), where i > k, if the projection of a to the common variables X(k) ∩Xi

is not in the projections of Vi to the same variables. In this case a can’t be the
part of any solution to the system.

A rooted search tree is now being defined. The root, labeled by ∅, is connected
to nodes at level 1, labeled by elements of V1 which do not contradict with the



symbols (Xi, Vi) for all i > 1. Nodes at level k ≥ 2 are labeled by some of b ∈ Vk.
A node at level 1, labeled by a, is connected to a node at level 2, labeled by b,
whenever the gluing a ◦ b is possible, that is a and b have the same sub-vector
in common variables X(1)∩X2, and a ◦ b does not contradict with the symbols
(Xi, Vi) for all i > 2. Generally, a sequence a ∈ V1, . . . , b ∈ Vk−1, c ∈ Vk label a
path from the root to a k-th level node if the gluing a◦ . . .◦b◦c is possible that is
a◦ . . .◦b and c have the same sub-vector in common variables X(k−1)∩Xk and
a ◦ . . . ◦ b ◦ c does not contradict with the symbols (Xi, Vi) for i > k. In this case
a◦ . . .◦ b◦ c is a solution to the first k equations in (1) which does not contradict
to each of the last m − k equations. Orderings on Vk make the tree branches
ordered. The Algorithm walks through the whole tree with backtracking. At
each step the gluing d of labels from the current node to the root is computed
along with the length k of the path. Then d is checked whether it contradicts
to the rest of the system equations. The next step only depends on the current
and previous pairs(states) d, k, so only they should be kept. The solution to the
whole system (1) is the gluing of labels from any path of length m.

We estimate the complexity. Let d, k be the current state and the Algorithm
extends d ∈ U ′

k with some e ∈ Vk+1, that is d ◦ e is computed and checked
whether it is in contradiction with (Xi, Vi) for all i = k + 2, . . . , m. When d, k
is the current state next time again, d is to be extended with some e1 < e. This
implies that the Agreeing-Gluing1 Algorithm passes through every d ∈ U ′

k at
most ql times for every k. The figure ql may be reduced via a proper ordering of
Vi but this doesn’t change the asymptotic running time (5). In case of the above
example the search tree is depicted in Fig.2 and favorably compared with that
in Fig.1.

Fig. 2. The search tree for the Agreeing-Gluing1 Algorithm.

5 Complexity analysis of the Agreeing-Gluing Algorithm

In this section we prove Theorem 1. Let Z, X1, . . . , Xk be fixed subsets of vari-
ables and U be a fixed set of Z-vectors, so that (Z,U) is defined by an equation



f(Z) = 0. Let Vi be the set of Xi-vectors, solutions to independent equations
fi(Xi) = 0 generated uniformly at random on the set of all equations in variables
Xi.

Lemma 4. Let (Z,U ′) be the symbol produced from (Z, U) by agreeing with
(Xi, Vi) for all 1 ≤ i ≤ k. Then the expectation of |U ′| is given by

Ef1,...,fk
|U ′| = |U |

k∏

i=1

(1− (1− 1
q
)q|Xi\Z|

),

where |Xi \ Z| stands for the number of variables Xi not occurring in Z.

Proof. As fi are generated independently, it is enough to prove the Lemma for
k = 1, then the full statement is proved by induction. Let Y1 = Z ∩ X1 and
|U | = ∑

a |Ua|, where Ua is the subset of U -vectors whose projection to variables
Y1 is a, in other words, whose Y1-subvector is a. Then |U ′| = ∑

a |Ua|Ia, where

Ia =
{

1, if V1,a 6= ∅;
0, if V1,a = ∅,

and V1,a is the subset of V1-vectors whose projection to variables Y1 is a. Let
Wa be the subset of all vectors in variables X1 whose projection to variables Y1

is a. We see that |Wa| = q|X1\Y1|. One computes

Pr(V1,a = ∅) = Pr(f1 6= 0 onWa) =

(q − 1)q|X1\Y1|
qq|X1|−q|X1\Y1|

qq|X1| = (1− 1
q
)q|X1\Y1|

.

So

Ef1(Ia) = Pr(V1,a 6= ∅) = 1− (1− 1
q
)q|X1\Y1| = 1− (1− 1

q
)q|X1\Z|

.

Then Ef1 |U ′| =
∑

a

|Ua|Ef1(Ia) =
∑

a

|Ua|(1− (1− 1
q
)q|X1\Z|

) = |U |(1− (1− 1
q
)q|X1\Z|

).

This proves the statement for k = 1. Generally, as fi are independent, the
identity

Ef1,...,fk
|U ′| = Ef1,...,fk−1(Efk

(|U ′| | {f1, . . . , fk−1}))
is easily proved, where Efk

(|U ′| | {f1, . . . , fk−1}) denotes the expectation of |U ′|
under f1, . . . , fk−1 are fixed. This by induction implies the Lemma on the whole.

The following Corollary is obvious.



Corollary 1. Let Z, X1, . . . , Xk be fixed sets of variables and f be generated
independently to fi where 1 ≤ i ≤ k. Then

Ef,f1,...,fk
|U ′| = Ef |U |

k∏

i=1

(1− (1− 1
q
)q|Xi\Z|

).

We will use the Corollary in order to estimate the expectation of |U ′
k|.

Lemma 5. Let 0 ≤ β ≤ 1 be any number. Then E|U ′
k| ≤

qβn−k +
∑

|Z|>βn

Pr(X(k) = Z) q|Z|−k
m∏

i=k+1

EXi(1− (1− 1
q
)q|Xi\Z|

), (6)

where Z runs over all subsets of X of size > βn.

Proof. Let first the sets Xi be fixed, and therefore X(k) = X1 ∪ . . .∪Xk is fixed,
and all fi are independently generated. Then by Lemma 3 and Corollary 1, we
have

Ef1,...,fm |U ′
k| = Ef1,...,fk

|Uk|
m∏

i=k+1

(1− (1− 1
q
)q|Xi\X(k)|

) =

q|X(k)|−k
m∏

i=k+1

(1− (1− 1
q
)q|Xi\X(k)|

), (7)

as Ef1,...,fk
|Uk| = q|X(k)|−k by Lemma 2.

We now compute the expectation of |U ′
k| when the sets of variables are also

chosen independently at random. So Ef1,...,fk
|U ′

k| is a random variable and we
can compute the expectation of Ef1,...,fm(|U ′

k|) under the fixed X(k) with (7).
So

E|U ′
k| = EX1,...,Xm(Ef1,...,fm |U ′

k|) =∑

Z⊆X

Pr(X(k) = Z)EX1,...,Xm(Ef1,...,fm(|U ′
k|) | X(k) = Z) =

∑

Z⊆X

Pr(X(k) = Z)EX1,...,Xm(q|Z|−k
m∏

i=k+1

(1− (1− 1
q
)q|Xi\Z|

)) =

∑

Z⊆X

Pr(X(k) = Z) q|Z|−kEXk+1,...,Xm(
m∏

i=k+1

(1− (1− 1
q
)q|Xi\Z|

)) =

∑

Z⊆X

Pr(X(k) = Z) q|Z|−k
m∏

i=k+1

EXi(1− (1− 1
q
)q|Xi\Z|

)

because Xi are independent. Then we partition the last sum:

E|U ′
k| =

∑

|Z|≤βn

. . . +
∑

|Z|>βn

. . .



So E|U ′
k| ≤

∑
|Z|≤βn Pr(X(k) = Z)qβn−k+

∑

|Z|>βn

Pr(X(k) = Z) q|Z|−k
m∏

i=k+1

EXi
(1− (1− 1

q
)q|Xi\Z|

).

Therefore, E|U ′
k| ≤

qβn−k +
∑

|Z|>βn

Pr(X(k) = Z) q|Z|−k
m∏

i=k+1

EXi
(1− (1− 1

q
)q|Xi\Z|

).

This proves the Lemma.
In next three Lemmas we estimate the expectation

EXi(1− (1− 1
q
)q|Xi\Z|

). (8)

Lemma 6. Let Z ⊆ X be a fixed subset of variables. Then the expectation (8)
only depends on the size of Z and doesn’t depend on the set itself. The expectation
is not decreasing as |Z| is decreasing or |Xi| is increasing.

Proof. It is obvious that the expectation only depends on the size of Z. Then,
it is not decreasing as |Z| is decreasing. Whenever |A| ≤ |B| for two subsets A
and B of X, we have

EXi(1− (1− 1
q
)q|Xi\A|

) ≥ EXi(1− (1− 1
q
)q|Xi\B|

). (9)

In order to see this, we realize that as these two values do not depend on the
sets A and B, but on their cardinalities, we can assume that A ⊆ B. Therefore,
|Xi \B| ≤ |Xi \A| for any subset Xi and so (9) follows.

Intuitively, the bigger li = |Xi| the bigger the expectation. For a formal proof
we see that the inequality for the conditional expectation

EXi(1− (1− 1
q
)q|Xi\Z| | Xi ⊆ A) ≤ 1− (1− 1

q
)q|A\Z|

obviously holds for any subset A of some fixed size l ≥ li. Then we see that

EXi(1− (1− 1
q
)q|Xi\Z|

) =
∑

A⊆X

Pr(X0 = A) EXi(1− (1− 1
q
)q|Xi\Z| | Xi ⊆ A) ≤

∑

A⊆X

Pr(X0 = A) (1− (1− 1
q
)q|A\Z|

) = EX0(1− (1− 1
q
)q|X0\Z|

),

where X0 is an uniformly random l-subset of X. The first equality follows from

∑

A⊆X

Pr(X0 = A)EXi(1− (1− 1
q
)q|Xi\Z| | Xi ⊆ A) =



∑

A⊆X

1(
n
l

)
∑

B⊆A

1(
l
li

) (1− (1− 1
q
)q|B\Z|

) =
∑

B⊆X

(
n−li
l−li

)
(
n
l

)(
l
li

) (1− (1− 1
q
)q|B\Z|

) =

∑

B⊆X

1(
n
li

) (1− (1− 1
q
)q|B\Z|

) = EXi(1− (1− 1
q
)q|Xi\Z|

),

where B runs over all subsets of X of size li. This proves the Lemma.
The following statement is obvious.

Lemma 7. Let Z be a fixed u-subset of X and Xi be an li-subset of X taken
uniformly at random. Then

Pr(|Xi \ Z| = t) =

(
u

li−t

)(
n−u

t

)
(

n
li

) .

From this Lemma and Lemma 6 we derive that

EXi(1− (1− 1
q
)q|Xi\Z|

) = 1−
li∑

t=0

(
u

li−t

)(
n−u

t

)
(

n
li

) (1− 1
q
)qt

≤ 1−
l∑

t=0

(bβnc
l−t

)(
n−bβnc

t

)
(
n
l

) (1− 1
q
)qt

(10)

for u = |Z| > βn and because l ≥ li.

Lemma 8. 1. Let |Z| > βn, where 0 ≤ β ≤ 1 is fixed as n tends to ∞, then

EXi(1− (1− 1
q
)q|Xi\Z|

) ≤ 1−
l∑

t=0

(
l

t

)
βl−t(1− β)t(1− 1

q
)qt

+ O(
1
n

),

where O( 1
n ) doesn’t depend on i.

2. The function F (β) = 1−∑l
t=0

(
l
t

)
βl−t(1− β)t(1− 1

q )qt

is not increasing in

0 ≤ β ≤ 1 and 1
q ≤ F (β) ≤ 1− (1− 1

q )ql

< 1.

Proof. By taking limn→∞, the first statement of the Lemma follows from (10).
To prove the second statement we fix any 0 ≤ β1 ≤ β2 ≤ 1 and two subsets

A and B of X such that |A| = bβ1nc and |B| = bβ2nc. We see that |A| ≤ |B|.
Then (9) holds, where we put |Xi| = l, which is equivalent to

1−
l∑

t=0

(bβ1nc
l−t

)(
n−bβ1nc

t

)
(
n
l

) (1− 1
q
)qt ≥ 1−

l∑
t=0

(bβ2nc
l−t

)(
n−bβ2nc

t

)
(
n
l

) (1− 1
q
)qt

.

By applying limn→∞ to both the sides of the inequality, we get F (β1) ≥ F (β2).
The Lemma is proved.

The inequality (6) then implies

E|U ′
k| ≤ qβn−k + EX1,...,Xk

(q|X(k)|−k) (F (β) + ε)m−k. (11)



for any positive real ε as n tends to ∞.
For 0 ≤ α ≤ l we define the function 0 ≤ β(α) ≤ 1 by the rule: β = β(α) is

the solution of the equation

qβ−α
l = qeg(α)F (β)c−α

l (12)

if such a solution exists and β(α) = 0 otherwise. By Theorem 3 there should be
at most one solution to the equation (12). We remaind that l1+l2+...+lm

ln tends
to a constant c ≥ 1 as n tends to ∞ while q and l are fixed.

Theorem 3. 1. The equation (12) has at most one solution for any 0 ≤ α ≤ l.
2. Let Lk = l1 + . . . + lk and α = Lk/n, and k ≤ n. Let 0 < δ < 1 be fixed as n

tends to ∞. Then

E|U ′
k| =





< qnδ

, if Lk < nδ;
O((qβ(α)−α

l + ε)n), if ln > Lk ≥ nδ;
< 1, if Lk ≥ ln,

for any positive real ε.

Proof. Since the function F (β) is not increasing as 0 ≤ β ≤ 1, the function on
the right hand side of (12) is not increasing in β while the function on the left
hand side is strictly increasing. Therefore, there should be at most one solution
and the first statement is proved.

The second statement of the Theorem is obviously true if Lk < nδ. Let
Lk ≥ ln now. Then lk

n ≥ Lk

n ≥ l and k ≥ n. So

E|U ′
k| ≤ E|Uk| = Eq|X(k)|−k < 1

and the statement is true in this case as well.
Let ln > Lk ≥ nδ. Then by Lemma 2 we get from (11) that

E|U ′
k| ≤ (qβ−α

l )n + O((qeg(α) + ε)n(F (β) + ε)
m−k

n n),

as α
l ≤ k

n and for any positive real ε. We realize that m−k
n ≥ cn − α

l , where
cn = l1+l2+...+lm

ln . Therefore, for a small enough ε to provide F (β) + ε < 1 and
as n tends to ∞ we get

E|U ′
k| ≤ (qβ−α

l )n + O((qeg(α) + ε)n(F (β) + ε)(cn−α
l )n).

Since lim cn = c ≥ 1 and α < l, this implies

E|U ′
k| ≤ (qβ−α

l )n + O((qeg(α)F (β)c−α
l + ε)n) (13)

for any real positive ε as n tends to ∞. If (12) has one solution, then the in-
equality E|U ′

k| = O((qβ(α)−α
l + ε)n) follows from (13) and (12).

Let (12) have no solutions. So β(α) = 0 by the definition of the function
β(α). We claim that the value of the left hand side function in (12) at β = 1 is
bigger than that of the right hand side function. That is,

q1−α
l > qeg(α)q−(c−α

l ).



This inequality is equivalent to qc−α
l > ef(zα)−α+α ln α, where f(zα)−α+α ln α <

0 for any α > 0, and is therefore true. So if the equation (12) doesn’t admit any
solution, then the right had side function is always bounded by the value of
the left hand side function at β = 0, that is q−

α
l . So the inequality E|U ′

k| =
O((qβ(α)−α

l + ε)n) follows from (13) and (12) again. The Theorem is proved.
The main Theorem 1 now follows from Theorem 3 and formula (5).

References
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