
Provably Secure Framework for
Information Aggregation in Sensor Networks

(Full version)

Mark Manulis and Jörg Schwenk

Horst-Görtz Institute for IT-Security, Ruhr-University Bochum, Germany
{mark.manulis|joerg.schwenk}@nds.rub.de

Abstract. Information aggregation is an important operation in wireless sensor
networks executed for the purpose of monitoring and reporting of the environ-
mental data. Due to the performance constraints of sensor nodes the in-network
form of the aggregation is especially attractive since it allows to save expensive
resources during the frequent network queries. Easy accessibility of networks and
nodes and almost no physical protection against corruptions arise high challenges
on the security of the aggregation process. Especially, protection against attacks
aiming to falsify the aggregated result is considered to be of prime importance.
In this paper we propose a novel security model for the aggregation process based
on the well-established cryptographic techniques, focusing on the scenario with
the single aggregator node. In order to show soundness and feasibility of our def-
initions we describe a generic practical approach that achieves security against
node corruptions during the aggregation process in a provable cryptographic way
based solely on the symmetric cryptographic primitives. To the best of our knowl-
edge this is the first paper which aims to combine the paradigm of provable secu-
rity in the cryptographic sense with the task of information aggregation in WSNs.

1 Introduction

Monitoring and reporting of the physically measured data to some querying device rep-
resented by a sink, base station, or mobile reader is surely one of the main goals for the
deployment of wireless sensor networks (WSNs). This task is especially important in
scenarios where high confidence on the integrity of the reported information becomes
an indispensable part of the application security. For the purpose of performance opti-
mization the reporting phase is frequently combined with the in-network processing re-
sulting in the in-network information aggregation. The following two aggregation sce-
narios have been established throughout the literature. The single aggregator scenario
is usually applied in cases where the aggregation process is independent of the network
topology. In such scenarios the aggregator role is typically assigned to one of the nodes
based on the execution of the underlying aggregator election protocol (e.g. [13]). More-
over, this role is usually temporary and changed (randomly) between nodes in order to
distribute the increasing costs for the aggregation operation over the whole lifetime of
the WSN. On the other hand, hierarchical aggregation scenarios usually assume certain
aggregation topology computed in the underlying protocol (e.g. [8]). In such scenarios

This is a full version of the paper which appeared in:
Computational Science and Its Applications - ICCSA 2007, International Conference, Kuala Lumpur, Malaysia, August 26-29, 2007
O. Gervasi and M. Gavrilova (Eds.), Springer-Verlag, LNCS 4705, Part I, pp. 603-621

2 Mark Manulis and Jörg Schwenk

nodes located closest to the query device form the highest level of the aggregation hi-
erarchy. Both scenarios are useful and may have own advantages in terms of efficiency,
security, and administration. In this paper we focus on the single aggregator scenario
and address one of the most important issues – the security.

Due to the loose infrastructure deployed sensor nodes may easily become subject of
an adversarial attack. Surely, node corruptions in addition to active network attacks state
one of the highest security threats. Especially, assuming that all nodes have equal phys-
ical properties, without any rigorous protection mechanisms such as tamper-resistance,
designing secure information aggregation solutions becomes even more challenging.
Surely, designing and adequate formal security model together with some generic (in
the cryptographic sense) provably secure practical solution appears to be an interesting
task.

1.1 Related Work

Currently, there exist only few scientific results in the area of secure information ag-
gregation dealing with security of the aggregation process in the presence of corrupted
nodes. In [5], Hu and Evans designed a protocol for hierarchical information aggrega-
tion between a set of nodes and the sink. This was the first solution based on symmetric
cryptography that considered active attacks by compromised sensor nodes. Remarkable
that previous solutions like [3, 4, 6, 8] addressed the scenario with honest communi-
cation participants only and are therefore not of much interest in the context of this
work. The protocol in [5] requires an underlying protocol for the construction of the
aggregation tree (e.g. [8]), as well as shared individual keys possibly pre-deployed in
sensor nodes, and an authentic unidirectional communication channel between the sink
and the involved nodes (e.g. [7, 10]). As for the corruption of nodes, we observe that if
a node and a parent node in the aggregation tree are compromised then the adversary
can significantly modify the aggregated result. For instance, corruption of the root node
and its both children would allow complete falsification of the final aggregated value.
Przydatek, Song, and Perrig [11] proposed a Secure Information Aggregation (SIA)
framework for sensor networks which provides better resilience against malicious sen-
sor nodes than the process in [5]. SIA addresses the single aggregator scenario. The
main drawback of SIA (in the cryptographic sense) is its probabilistic security. In gen-
eral the probability of the query device (sink) accepting some falsified aggregation re-
sult can be minimized by increasing the communication (and computation) between
the sink and the aggregator node which constructs a Merkle hash commitment tree [9]
for the received individual inputs and proves correctness of some parts of this tree dur-
ing the subsequent interaction with the sink. Przydatek et al.’s protocol considers ag-
gregation functions whose outputs can be approximated by the uniform sampling of
the input values, e.g., computation of the MIN/MAX, AVERAGE, and MEDIAN. Re-
cently, Chan, Perrig, and Song [2] described a solution for the hierarchical in-network
aggregation which prevents active attacks aiming to modify and falsify the aggregation
result. One of the core requirements in their approach builds the notion of optimal secu-
rity – a property that no adversary can induce the sink to accept any aggregation result
which is not already achievable by the so-called direct data injection, i.e., when the at-
tacker reports biased data on behalf of nodes under its control. Their approach extends

Provably Secure Framework for Information Aggregation in Sensor Networks 3

the previous one mainly by a fully distributed result-checking phase without relying
on probabilistic security. Similar to [5] it requires the construction of the aggregation
tree structure (e.g. [8]). Optimal security is achieved via interactive computation of the
Merkle hash commitment trees. Chan et al. focus on the function SUM and show how
to use it for the computation of AVERAGE and Φ-QUANTILE (the value at the Φn-th
position in a sorted list).

1.2 Contributions and Organization

One general remark on the aforementioned solutions is that specified definitions of se-
curity are rather intuitive than formal. Therefore, proposing a formal security model to
allow cryptographically sound security proofs seems to be an interesting extensional
work in this research field. Another remark is that previous solutions cannot be really
called generic since they have been designed with respect to some concrete aggrega-
tion functions (e.g. SUM) and then extended to deal with further functions. A more
generic approach would be to give an abstract definition of the aggregation function
and its security relevant properties. In the light of these remarks we contribute in this
paper in two different ways: in Section 2 we design a formal security model for the in-
network aggregation process and formalize for the first time the aggregation function
in a very general way, and in Section 4 we design a concrete framework and prove its
security according to our formal definitions using a well-known cryptographic proving
technique after providing the required building blocks in Section 3. In terms of perfor-
mance our framework relies on the primitives of symmetric cryptography without any
costly public-key operations.

2 Formal Model for In-Network Aggregation in WSNs

In the following we propose an end-to-end model for in-network aggregation in WSNs.
We focus on the single aggregator scenario, however, remark that the model is modular
and, thus, extendable.

2.1 Communication Model and Participants

Protocol Participants By S := {S1, . . . , Sn}, n ∈ N we denote the set of all sensor
nodes in the network. We assume that all nodes have identical physical properties. By
A ∈ S we denote the role of the aggregator. This role is temporary and assigned by an
underlying random aggregator election protocol. By R we denote a digital device which
is assumed to be more powerful than any node in S. R is usually represented by a sink,
base station, or some mobile reader, and is assumed to be the party which is supposed
to obtain the aggregated result.

Protocol Sessions and Participating Instances In order to distinguish between dif-
ferent protocol executions we use the notion of a session, that is every execution results
in a new session identified by some value s, which is unique for each new session. In
order to model entities Si ∈ S resp. R as participants of some session s we consider
that each entity may have an unlimited number of instances denoted Ss

i resp. Rs.

4 Mark Manulis and Jörg Schwenk

Secret Keys For the purpose of authentication we consider that every sensor node Si

resp. R is in possession of some secret key denoted ki resp. kR (notation k is used
in case of generality). This key should be seen as a place holder, that is any k can
in practice consist of several secret values, e.g., R may possess kR composed of the
secret key for broadcast authentication and secret keys shared between R and Si. By
1κ, κ ∈ N we denote the security parameter of the protocol, assuming that all security
relevant parameters are polynomially related to 1κ. In this work we apply symmetric
secret keys aiming to avoid the use of the costly asymmetric cryptography.

2.2 Aggregation Function

In the following we abstractly define the aggregation function agg operating on real
numbers in R, however, extension to other domains is straightforward. We define agg
with two inputs and consider its symmetry and associativity to deal with multiple inputs.
We also allow one of the inputs to be empty (ε); then agg is the identity function. For
the purpose of generality we require an additional auxiliary input space A.

Definition 1 (Aggregation Function). Let agg : R∪{ε}×R∪{ε}×A∪{ε} → R∪{ε}
be an aggregation function, ε an empty element, and A some auxiliary information
space. By convention agg(ε, ε; aux) = ε for any aux ∈ A. For any v1, v2, v3 ∈ R and
specific aux ∈ A the aggregation function should satisfy:

Identity: agg(v1, ε; aux) = v1

Symmetry: agg(v1, v2; aux) = agg(v2, v1; aux)
Associativity: agg(agg(v1, v2; aux), v3; aux) = agg(v1, agg(v2, v3; aux); aux)

Let v := {v1, . . . , vn}, n > 2. By agg(v; aux) we mean the output

ai+1 := agg(ai, vi+2; aux)

after i = 1, . . . , n − 2 iterations where a1 := agg(v1, v2; aux). For simplicity we will
omit the indication of aux as one of the inputs.

Many thinkable and widely used aggregation functions such as SUM, PRODUCT, addi-
tive/multiplicative AVERAGE, MIN/MAX, etc. satisfy the above properties of identity,
symmetry and associativity. Note, that in case of AVERAGE agg(v; aux) can be com-
puted correctly only if n is known during each iteration (as part of aux); otherwise
the associativity may not always hold. This emphasizes the need of A in the abstract
definition of agg.

Additionally, we define boolean predicates Bv and Ba for the inputs and outputs of
agg, respectively. These predicates will be used in our definition of security in order to
handle node corruptions in a reasonable way.

Definition 2 (Aggregation Input/Output Predicates). By Bv(v; auxv) resp. Ba(a;
auxa) we denote a boolean predicate for any input v ∈ R resp. output a ∈ R of agg,
where auxv resp. auxa is some auxiliary information.

Let v and a be sets/lists of possible inputs and outputs of agg. By Bv(v; auxv) we
mean Bv(v[1]; auxv)∧. . .∧Bv(v[n]; auxv). By Ba(a; auxa) we mean Ba(a[1]; auxa)∧
. . . ∧Ba(a[n]; auxa).

Provably Secure Framework for Information Aggregation in Sensor Networks 5

Additionally, we require that agg with corresponding predicates Bv and Ba satisfies
the following properties for any v:

Correctness: if Bv(v; auxv) = true for all v ∈ v then Ba(agg(v); auxa) = true, and
if Bv(v; auxv) = false for all v ∈ v then Ba(agg(v); auxa) = false

Consistency: if Ba(agg(v); auxa) = false then there exists NO v with Bv(v) = true

For simplicity we will use Bv(v) instead of Bv(v; auxv) and Ba(a) instead of Ba(a;
auxa).

Abstractly defined boolean predicates Bv and Ba can be used to restrict inputs and
outputs of agg, e.g., for the SUM function one can require that every input v ∈ R is
within a certain bound [vmin, vmax] (whereby vmin and vmax become part of auxv and
auxa). Then, one would typically require that every output a should be in the interval
between nvmin and nvmin where n (as part of auxa) is the maximal number of inputs to
be aggregated (added) at once. It is easy to see that in this case the above defined prop-
erties of correctness and consistency are satisfied for any v of size n. At this point we
remark that Bv and Ba play an essential role in our security definition and their correct
specification for a particular aggregation function is necessary. Finally, one important
observation is that we do NOT assume that if a strict subset of inputs does not satisfy
Bv then the output does not satisfy Ba either. This opens doors for the actual attacks.
For example, let agg be the SUM function, [0, 10] the allowed interval for its inputs, and
number 3 the total allowed number of inputs for a single aggregation. Consequently the
output should lie in the interval [0, 30]. Assume, that two inputs are 5 and 8. Obviously,
it is possible to choose the third input as 15 (which is not in the input interval) and still
satisfy the output interval, namely 5 + 8 + 15 = 28 < 30.

2.3 Definition of In-Network Aggregation and its Correctness

In the following we provide an abstract definition of the in-network aggregation proto-
col InAP1agg focusing on the single aggregator scenario.

Definition 3 (In-Network Aggregation Protocol InAP1agg). In session s of the in-
network aggregation protocol InAP1agg each sensor node instance Ss

i ∈ Ss \ As,
|Ss| = ns communicates to As own aggregation input vi ∈ R. As computes the ag-
gregation result a∗ := agg(v1, . . . , vns

) and communicates it to the instance Rs which
terminates either with or without accepting a∗ (possibly after additional interaction
with the instances in Ss).

We say that an in-network aggregation protocol InAP1agg is correct if Rs accepts a∗ :=
agg(v1, . . . , vns

) where each vi, i ∈ [1, ns] is the original input of Ss
i ∈ Ss such that

Bv(vi) = true.

2.4 Adversarial Model

As next we specify the adversarial setting for the in-network aggregation protocols. We
assume that the whole communication is controlled by the probabilistic polynomial-
time (PPT) adversary I, i.e., I is able to replay, modify, delay, drop, and deliver protocol

6 Mark Manulis and Jörg Schwenk

messages out of order as well as inject own messages. Note that since I can always
refuse to deliver protocol messages our model does not address any denial-of-service
attacks (similar to [2,11]) which aim to prevent R from obtaining any result at all. Note
that in WSNs such attacks would normally be recognized and reveal the information
about the presence of I. Thus, our security model aims to recognize an occurring attack
and prevent R from accepting a “biased” value.

Adversarial Queries The protocol execution in the presence of I is modeled based
on queries to the instances of the participants. By Send we denote a query type which
allows I to send a message m to any instance involved in the protocol execution. This
query can be used by I not only to inject own messages but also to replay or modify
those sent by the instances, or simply forward them honestly without any changes.

Send(Si, S
s
j ,m): I sends m to the node instance Ss

j (claiming that it is from some
instance of Si).

Send(Si, R
s,m): I sends m to the sink instance Rs (claiming that it is from some

instance of Si).
Send(R,Ss

i ,m): I sends m to the node instance Ss
i (claiming that it is from some

instance of R).

In response to a Send query I receives the outgoing message which the receiving in-
stance would generate after processing m. This outgoing message might be an empty
string in case that m is unexpected or a failure occurred. Further, there are two special
Send queries of the form Send(Ss

i ,
′start′,Ss,As, Rs) and Send(Rs, ′start′,Ss,

As). The first query allows I to invoke the protocol execution at instance Ss
i . It con-

tains instances of other participating sensor nodes in Ss\Ss
i , reference on the aggregator

instance As (note that As ∈ Ss), and the sink instance Rs. Similarly, the second query
invokes the protocol execution at Rs. In response to these queries I receives the first
message generated by the asked instance according to the protocol specification.

In addition to the active protocol participation of I we consider node corruptions.
We do not assume any tamper-resistance property. Upon corrupting Si the adversary
obtains full control over Si and reveals all information kept in Si including its secret key
ki. We also allow corruptions of R. However, our security definition will exclude the
meaningless case where R is corrupted during the session in which I wishes to falsify
the aggregation result. Using queries Corrupt(Si) resp. Corrupt(R) the adversary can
obtain the secret key ki resp. kR.

Definition 4 (Strong Corruption Model). For any PPT adversary I we say that I
operates in the strong corruption model if it is given access to the queries Send and
Corrupt.

Protocol Execution in the Presence of I We assume that each secret key is generated
during the initialization phase and is implicitly known to all instances of the entity.
The protocol execution for one particular session s in the presence of the adversary
I proceeds as follows. After I operating in the strong corruption model invokes the
protocol execution for the session s all its queries are answered until Rs terminates

Provably Secure Framework for Information Aggregation in Sensor Networks 7

either with or without having accepted the aggregation result. If Rs terminates without
having accepted then a failure has been occurred (or an attack has been recognized).
Consequently, the goal of I is to influence Rs accepting some “biased” aggregation
result. Note that after the instance terminates it cannot be invoked for a new session so
that a new instance (with new s) should be invoked instead.

2.5 Definition of (Optimal) Security

Prior to the definition of security of InAP1agg we need to exclude the case where R
is controlled by I in the attacked session. This is done by the following definition of
freshness.

Definition 5 (Freshness of R). Let Rs be the instance that has accepted in session s
of InAP1agg , and I a PPT adversary operating in the strong corruption model. We say
that Rs is fresh if no Corrupt(R) queries have been previously asked.

Note that whenever I corrupts R all its instances which have not terminated yet can be
controlled by I. As already mentioned any sensor node including the aggregator node
can be corrupted. Hence, we can even consider the case where all sensor nodes are
corrupted and R is the only honest party. There is one general remark on consideration
of corrupted sensor nodes which equally holds for our protocol and the protocols in
[2,11]. Namely, corrupted nodes can report data which (strongly) deviates from the real
one. Even, restricting input intervals would not provide security against such attacks.
For example, if nodes measure temperature and reported values should lie between
5 and 100 degrees then any corrupted node can report 100 degrees although the real
measured value is 30. It is clear that such attacks, denoted in [2] as direct data injection,
cannot be prevented unless one completely disallows node corruptions in the adversarial
setting, but then this setting would be weak. Nevertheless, damage of such attacks can
be decreased if one ensures the overwhelming majority of uncorrupted nodes at any time
during the network lifetime. Our security definition, similar to the informal definition
of optimal security in [2], does not aim to detect such attacks. Instead, it focuses on
the modification of the aggregated result with respect to the attacks in which corrupted
nodes try to report semantically incorrect inputs to the aggregation function, that is
inputs vi with Bv(vi) = false. Note that in the single aggregator scenario such stealthy
attacks [11] are possible only if A is corrupted (unless A does not check predicates for
all received original inputs). Obviously, verification of the input predicates by A is
indispensable part of any secure protocol in the strong corruption model.

Definition 6 ((Optimal) Security of InAP1agg). Let I be a PPT adversary operating
in the strong corruption model and Gameopt−sec

InAP1agg
(I, κ) denote the interaction where

I interacts via queries with instances of parties in S , |S | = ns and instances of R
participating in the in-network aggregation protocol InAP1agg such that at the end of
this interaction there is a fresh instance Rs which has accepted with the aggregation
result a∗. Let Ss

h ⊆ Ss be a subset of sensor node instances for which no Corrupt
queries have been asked prior to the acceptance of a∗ by Rs. Let vh be a set/list of size
nh ∈ [1, ns] containing original inputs of instances in Ss

h and ah := agg(vh).

8 Mark Manulis and Jörg Schwenk

We say that I wins in Gameopt−sec
InAP1agg

(I, κ) if there exists NO set/list vc of size nc =
ns − nh with Bv(vc) = true such that a∗ = agg(ah,vc).

Let Succopt−sec
InAP1agg

(κ) denote the maximal probability (over all adversaries I running
within time κ) of winning in the above interaction, i.e.

Succopt−sec
InAP1agg

(κ) = max
I

∣∣∣Pr[I wins in Gameopt−sec
InAP1agg

(I, κ)]
∣∣∣ .

We say that InAP1agg is (optimally) secure if Succopt−sec
InAP1agg

(κ) is negligible.

In the following we provide some explanations. The main goal is to require that I
should be unable to exclude contributions (inputs) of uncorrupted nodes from the ag-
gregated result. For example, if agg is SUM then the aggregated result should be at least
the sum of inputs of uncorrupted nodes (denoted by ah). On the other hand, falsifica-
tion of the input data by corrupted nodes is not considered as an attack as long as their
aggregation result, say some ac, satisfies the boolean predicate Ba (in spirit of direct
data injection), note that in this case the result a∗ := agg(ah, ac) would also satisfy Ba

due to the correctness of agg. Therefore, as an attack we consider the opposite case,
i.e., where the receiver instance accepts a∗ such that ac does not satisfy Ba. The only
general condition for Ba(ac) = false is when all inputs vc with ac := agg(vc) do not
satisfy Bv , i.e., if Bv(vc) = false (due to the correctness of agg). Hence, in our defini-
tion we require that there exists NO set/list of possible inputs vc with Bv(vc) = true,
in addition to the inputs of uncorrupted users vh (that is why nc = ns − nh should
hold).

3 Building Blocks

In this section we describe main building blocks of our framework distinguishing be-
tween cryptographic primitives and technical constructions.

3.1 Background on used Symmetric Cryptographic Primitives

Definition 7 (Hash Function). By H : {0, 1}κ1 → {0, 1}κ2 , κ1, κ2 ∈ N we denote a
collision-resistant hash function, i.e., for every PPT algorithm I the probability that I
finds x1, x2 ∈ {0, 1}κ1 such that x1 6= x2 and H(x1) = H(x2) is upper-bounded by a
negligible fraction εH.

Definition 8 (Message Authentication Code). By MAC := (Gen, Sign, Verify) we
define a message authentication code with the algorithms:

Gen: A probabilistic algorithm that on input a security parameter 1κ outputs a
secret key k ∈ {0, 1}κ.
Sign: A deterministic algorithm that on input k and a message m ∈ {0, 1}∗ outputs
a MAC value µ.
Verify: A deterministic algorithm that on input k, m ∈ {0, 1}∗ and a candidate
MAC value µ outputs 1 or 0, indicating whether µ is valid or not.

MAC is secure if for any PPT algorithm I which obtains polynomially bounded number
of MAC values on any messages of its choice the probability that I outputs (m,µ) such
that Verify(k,m, µ) = 1 and no MAC value for m has been previously asked by I is
upper-bounded by a negligible fraction εMAC.

Provably Secure Framework for Information Aggregation in Sensor Networks 9

3.2 List Structures

In the following we define lists, their operations, and further notations used in the de-
scription of our protocol.

Definition 9 (Lists and Operations). By convention we use bold letters to denote lists.
For any list x by |x| we denote its size. By x[i], i ∈ [1, |x|] we denote the element at its
i-th position. An empty element is denoted ε. Upon initialisation each list x is empty,
that is x = {ε} and by convention |x| = 0. Let y be an element to be inserted into x.
We use y.x to say that y is pre-pended to x resulting in x[1] = y. Similarly, we use x.y
to say that y is appended to x resulting in x[|x|] = y.

Note that lists can be represented via binary trees and vice versa, e.g., using the pre-oder
notation, that is the root vertex of the tree followed by its child vertices is recursively
appended to the empty list. In general lists reduce implementation overhead compared
to binary trees.

Definition 10 (Paths, Siblings, Co-Paths, Child and Parent Elements). Let x :=
{x1, . . . , xn} be a list and p ∈ [2, n] any position within it. By{

x
[p

2

]
, . . . ,x

[p

2blog2 pc = 1
]}

we denote the path of x[p] (note that x[p] does not belong to its path). If p is even then
x[p + 1], otherwise x[p − 1], is said to be the sibling of x[p]. By co-path of x[p] we
denote the list consisting of its sibling and of siblings of all elements in the path of x[p]
except for x[1]. For any p ∈ [1, n] by x[2p] and x[2p+1] we denote the first and second
child element of x[p], respectively. Consequently, x[p] is the parent element of x[2p]
and x[2p + 1].

4 Specification of the InAP1agg Framework

Our InAP1agg framework consists of the protocol which proceeds in three stages (UP-
FLOW, DOWNFLOW, VERIFICATION) described in the following. For simplicity we
assume that the received messages reveal unique identities of their senders. Since we
describe one particular protocol execution we use entities and not their instances.

4.1 The UPFLOW Stage

In the UPFLOW stage every Si after having received the authenticated sink’s query con-
taining a random nonce r and the expected number of nodes ns sends own initial data
value vi to A. At the same time A initializes the node counter denoted c, the timer t, the
list of sensor node’s identities id and the list of sensor nodes’ initial data values v and
assigns own identity idA and own data value vA to their first positions, respectively. The
formal specification of the aggregator’s calculations is given in Figure 1. Whenever A
receives a new message it extends both lists by corresponding identities and data values.
This extension is performed until A obtains messages from all ns − 1 nodes; otherwise
it sends a negative acknowledgement ERR to R indicating that a failure has occurred.

10 Mark Manulis and Jörg Schwenk

On input r, ns, and kA the aggregator proceeds as follows:
initialize id, v, a, h, timer t, c := 1, compute id := id.idA, v := v.vA

while c ≤ ns or t is not expired do
if new vi received and Bv(vi) = true then c := c + 1, id := id.idi, v := v.vi

if c 6= ns and t is expired then µA := MAC.Sign(kA, (r, ERR)), send (ERR, µA) to R
else (a,h) := Commit(r,v,a,h), send (r,a[1],h[1]) to R

Fig. 1. UPFLOW stage specification for the aggregator A

Note that under the assumption that messages arrive in the order which is correlated
with their “physical” distance to A the identities and initial data values of “closer”
nodes would appear in the beginning of both lists. This will be of advantage wrt. the
communication efficiency in the DOWNFLOW stage.

Starting with nodes whose identities and initial data values are assigned to the later
positions in both lists A computes the list of intermediate aggregation values a and the
list of intermediate commitment values h using the auxiliary Commit function speci-
fied in Figure 2.We remark that the same function will be used by other nodes in the
DOWNFLOW stage. Let id[i] be a sensor node’s identity. Then, a[i] is the output of

Commit(r,v,a,h) :
cv := |v|, n := |v|
while cv ≥ 1 do

if 2cv ≥ n then a := v[cv].a, h := H(r,a[1]).h
else if 2cv ≤ n and 2cv + 1 > n then

a := agg(v[cv],a[cv]).a, h := H(r,a[1],h[cv]).h
else a := agg(v[cv],a[cv],a[cv + 1]).a, h := H(r,a[1],h[cv],h[cv + 1]).h
cv := cv − 1

return (a,h)

Fig. 2. Function Commit

the aggregation function agg on inputs v[i] and every data value v[j] of node id[j]
which has id[i] in its path. Further, h[i] is a hash commitment computed on r, a[i],
h[2i], and h[2i + 1]. Note h[2i] and h[2i + 1] are included into the hash commitment
only if these values really exist; otherwise missing hash commitments are treated as
empty elements. The construction of a ensures that a[1] gives the aggregation result
agg(v[1], . . . ,v[ns]). Similarly, the construction of h ensures that h[1] is the final hash
commitment value which depends on all intermediate commitments. At the end of the
UPFLOW stage A forwards (r,a[1],h[1]) to R which verifies that r is correct and checks
whether Ba(a[1]) = true. R terminates if ERR is received or if Ba(a[1]) = false.
Otherwise, R broadcasts authenticated (r, a∗, h∗) with a∗ = a[1] and h∗ = h[1] to all
nodes in the network initiating the DOWNFLOW stage. Figure 3 shows an example of
computed lists for the scenario with seven sensor nodes S := {S1, . . . , S7} where S3

plays the role of A.

Provably Secure Framework for Information Aggregation in Sensor Networks 11

A

S5 S6

S2 S7 S1 S4

id = id3 id5 id6 id2 id7 id1 id4

v = v3 v5 v6 v2 v7 v1 v4

a = agg(v3,a[2],a[3]) agg(v5, v2, v7) agg(v6, v1, v4) v2 v7 v1 v4

h = H(r,a[1],h[2],h[3]) H(r,a[2],h[4],h[5]) H(r,a[3],h[6],h[7]) H(r, v2) H(r, v7) H(r, v1) H(r, v4)

1

2 3
4 5 6 7

1 2 3 4 5 6 7

Fig. 3. List Structures in the UPFLOW Stage for S := {S1, . . . , S7}, A = S3. Left side:
Visualisation of node assignments in a binary tree structure. Right side: Reference lists
id, v, a, and h computed by A. Some exemplary notations: sibling of S7 (id[5]) is S2

(id[4]); path of S7 consists of S5 and A (id[2] and id[1]); co-path of S7 consists of S2

and S6 (id[4] and id[3]); first child of S6 is S1 (id[6]); second child of S6 is S4 (id[7]);
parent of S2 is S5.

4.2 The DOWNFLOW Stage

The DOWNFLOW stage of our protocol is a distributed process requiring communication
between the sensor nodes. Its goal is to provide every node with sufficient information
which will be used during the VERIFICATION stage to recompute the intermediate
aggregation values and hash commitments along the path (in spirit of [2]). However,
(unlike the tree structure in [2]) all lists computed during the UPFLOW stage are first
known to A, but not to the other nodes. Therefore, A is the first to start the dissem-
ination process which is specified in Figure 4. First, (honest) A must check that the

On input r, ns, a∗, h∗, id, v, a, h the aggregator proceeds as follows:
acc := true
if ns 6= c or a∗ 6= a[1] or h∗ 6= h[1] then acc := false
else if ns ≥ 2 then

initialize idL, vL, idR, vR, aco
L , aco

R , hco
L , hco

R , vP

pL := 2
if ns ≥ 3 then pR := 3
if ns ≥ 4 then (idL,vL, idR,vR) := SplitIdV(id,v, idL,vL, idR,vR)
(aco

L ,hco
L ,aco

R ,hco
R) := SplitAH(n,a,h,aco

L ,hco
L ,aco

R ,hco
R)

vP := vP.vA

send (idL,vL, pL,vP,a
co
L ,hco

L) to Sid[2]

if ns ≥ 3 then send (idR,vR, pR,vP,a
co
R ,hco

R) to Sid[3]

Fig. 4. DOWNFLOW stage specification for the aggregator A

message received from R contains the same values that have been sent by A in the
UPFLOW stage; otherwise the verification process would fail. Therefore, if A notices
the mismatch then it sets its boolean variable acc := false and turns immediately into
the VERIFICATION stage where it will send its negative acknowledgement to R. If no
mismatch is found then A whose identity is assigned to id[1] sends one message to each
of its child nodes id[2] and id[3]. Note that via ns ≥ 2 it can easily check whether any
child nodes exist. The message addressed to id[2] (id[3]) contains: (1) a list of identities
idL (idR) which consists of elements from id which have id[2] (id[3]) in their paths, (2)

12 Mark Manulis and Jörg Schwenk

a list of initial data values vL (vR) which consists of elements from v which have v[2]
(v[3]) in their paths, (3) position value p = 2 (p = 3), (4) a list of initial data values vP

consisting of vA, (5) a list of intermediate aggregation values acoL (acoR) which contains
a[3] (a[2]), and (6) a list of intermediate hash commitments hco

L (hco
R) which contains

h[6] and h[7] (h[4] and h[5]), if such values exist.
The auxiliary function SplitIdV (Figure 5) is used by A to build the corresponding

sets (idL,vL) resp. (idR,vR). Of course, SplitIdV is executed only if ns ≥ 4, that is

SplitIdV(id,v, idL,vL, idR,vR) :
x := 4, y := 0
while (x + y) ≤ |id| do

if y < x
2

then idL := idL.id[x + y], vL := vL.v[x + y]
else idR := idR.id[x + y], vR := vR.v[x + y]
if y < x− 1 then y := y + 1
else x := 2x, y := 0

return (idL,vL, idR,vR)

Fig. 5. Function SplitIdV

if id[2] and id[3] have in turn further child nodes. SplitIdV function splits the initial
sets id resp. v into the sublists idL and idR resp. vL and vR containing identities resp.
original data values of sensor nodes that have id[2] and id[3] resp. v[2] and v[3] in their
paths. The idea behind the SplitIdV function is to move along the initial id resp. v
lists and insert their elements into either idL or idR resp. vL or vR lists based on the
condition y < x

2 , which identifies whether id[x + y] has id[2] or id[3] in its path.
Another auxiliary function called SplitAH (Figure 6) is used by A to compute lists

of intermediate aggregation values acoL resp. acoR and hash commitments hco
L resp. hco

R

in the co-paths of its first and second child nodes.

SplitAH(c,a,h,aco
L ,hco

L ,aco
R ,hco

R) :
if c ≥ 3 then aco

R := aco
R .a[2], aco

L := aco
L .a[3]

else aco
R := aco

R .a[2], aco
L := aco

L .ε
if c ≥ 7 then

hco
R := hco

R .h[4].h[5], hco
L := hco

L .h[6].h[7]
else if c ≥ 6 then

hco
R := hco

R .h[4].h[5], hco
L := hco

L .h[6]
else if c ≥ 5 then hco

R := hco
R .h[4].h[5]

else if c ≥ 4 then hco
R := hco

R .h[4]
return (aco

L ,hco
L ,aco

R ,hco
R)

Fig. 6. Function SplitAH

For example, according to Figure 3 the aggregator A = S3 sends to its first child
node S5 the following contents: idL := {id2, id7}, vL := {v2, v7}, p = 2, vP := {v3},
acoL := {agg(v6, v1, v4)}, and hco

L := {H(r, v1), H(r, v4)}.

Provably Secure Framework for Information Aggregation in Sensor Networks 13

Calculations performed by any other Si during the DOWNFLOW stage (Figure 7) are
similar to that of A, except that Si has to wait for the message containing (id,v, p,vP,
aco,hco). Before, Si performs computations of the DOWNFLOW stage it pre-pends own

On input r, ns, a∗, h∗, id, v, p, vP, aco, hco every sensor node Si proceeds as follows:
id := idi.id, v := vi.v, c := |id|, cp := |vP|, acc := true
if c 6= |v| or cp 6= |aco| or cp 6= blog2 pc or Bv(v) = false or Bv(vP) = false

or Ba(a∗) = false or Ba(a) = false then acc := false
else

initialize a, h
(a,h) := Commit(r,v,a,h)
if c ≥ 2 then

initialize idL, vL, idR, vR, aco
L , aco

R , hco
L , hco

R , v′
P

aco
L := aco, aco

R := aco, hco
L := hco, hco

R := hco, pL := 2p
if c ≥ 3 then pR := 2p + 1
if c ≥ 4 then (idL,vL, idR,vR) := SplitIdV(id,v, idL,vL, idR,vR)
(aco

L ,hco
L ,aco

R ,hco
R) := SplitAH(c,a,h,aco

L ,hco
L ,aco

R ,hco
R), v′

P := vP.vi

send (idL,vL, pL,v
′
P,a

co
L ,hco

L) to Sid[2]

if c ≥ 3 then send (idR,vR, pR,v
′
P,a

co
R ,hco

R) to Sid[3]

Fig. 7. DOWNFLOW stage specification for the sensor node Si

identity idi and data value vi to id and v, respectively. Note that this results in id[1] =
idi and v[1] = vi. Before Si proceeds with the computation it checks whether the re-
ceived parameters are well-formed. Note that the equality cp = blog2 pc ensures the
consistency between the node’s position p and the number of nodes in its path. If any of
these verifications fails then Si sets its boolean variable acc to false and turns directly
into the VERIFICATION stage. Note that in this case child nodes of Si will not receive
any messages. Thus, a negative acknowledgement will be sent to A and then forwarded
to R. Otherwise, Si (with id[1]) invokes the Commit function which outputs interme-
diate aggregation values a and hash commitments h. Then Si checks whether there are
any further child nodes via the condition c ≥ 2. If so, Si splits id resp. v into idL and
idR resp. vL and vR using the SplitIdV function, updates acoL and acoR resp. hco

L and hco
R

based on the previously computed lists a and h using the SplitAH function, extends
v′
P := vP.vi (note that the received vP remains unchanged since it will be needed in the

VERIFICATION stage), and sends appropriate messages to its existing child node(s).
According to the example in Figure 3 node S5 sends to S2 the following contents:

idL := {ε}, vL := {ε}, p = 4, vP := {v3, v5}, acoL := {agg(v6, v1, v4), v7}, and
hco
L := {H(r, v1), H(r, v4)}; and to S7: idR := {ε}, vR := {ε}, p = 5, vP := {v3, v5},

acoR := {agg(v6, v1, v4), v2}, and hco
R := {H(r, v1), H(r, v4)}. The dissemination pro-

cess of the DOWNFLOW stage is executed until every of ns−1 nodes obtains the required
information and turns into the VERIFICATION stage.

4.3 The VERIFICATION stage
In the VERIFICATION stage every Si recomputes a∗ and h∗ and checks whether these
values match those received from R. Every Si is in possession of the own intermedi-

14 Mark Manulis and Jörg Schwenk

ate aggregation value a[1] and its corresponding hash commitment h[1]. Furthermore,
every Si (and A) knows own data value vi (and vA), data values in its path given by
vP, intermediate aggregation values in its co-path given by aco, hash commitments in
its co-path given by hco, as well as the aggregation result a∗ and hash commitment h∗

from the broadcast message of R. Additionally, every Si knows own position p which
it can use to recognize whether it is the first (p is even) or the second (p is odd) child
node. Beside that every Si maintains a boolean variable acc indicating whether the
node will confirm the obtained final values or not. Note that during the DOWNFLOW
stage acc could possibly be changed to false. Figure 8 describes calculations of Si.
According to the construction of id by A in the UPFLOW stage for every node id[p]

On input r, ns, a∗, h∗, p, a, h, vP, aco, hco, acc, ki every sensor node Si proceeds as follows:
if acc = true then

a := a[1], h := h[1], cp := |vP|, ch := |hco|
while cp ≥ 1 do

if p even then
if p + 1 ≤ ns then

a := agg(vP[cp], a,aco[cp])
if 2(p + 1) + 1 ≤ ns then

h̄ := H(r,aco[cp],hco[ch − 1],hco[ch]), ch := ch − 2
else if 2(p + 1) ≤ ns then h̄ := H(r,aco[cp],hco[ch − 1]), ch := ch − 1
else h̄ := H(r,aco[cp])
h := H(r, a, h, h̄)

else a := agg(vP[cp], a), h := H(r, a, h)
else

a := agg(vP[cp],aco[cp], a)
if 2(p−1)+1 ≤ ns then h̄ := H(r,aco[cp],hco[ch−1],hco[ch]), ch := ch−2
else if 2(p− 1) ≤ ns then h̄ := H(r,aco[cp],hco[ch − 1]), ch := ch − 1
else h̄ := H(r,aco[cp])
h := H(r, a, h̄, h)

cp := cp − 1, p := b p
2
c

if a 6= a∗ or h 6= h∗ then acc = false
if acc = false then µi := MAC.Sign(ki, (r, ERR)), send (ERR, µi) to A
else µi := MAC.Sign(ki, (r, OK)), send (OK, µi) to A

Fig. 8. VERIFICATION stage specification for the sensor node Si

with odd position p > 1 there exists a sibling node id[p− 1]. However, if p is even then
the additional verification via p + 1 ≤ ns becomes necessary to ensure that id[p + 1]
exists. Note that iterative division bp/2c can further be used to find out whether id[p] is
the first or the second child node of id[bp/2c]. In case that acc is already set to false
no further checks are necessary and Si replies to A with a negative acknowledgement
in form of an error message ERR which it authenticates using a MAC value µi computed
with ki which is shared with R. Otherwise, Si recomputes the aggregation result a and
the hash commitment value h and compares them to a∗ and h∗ received from R. To
perform these computations Si sets initially a := a[1] and h := h[1]. Note that a and
h have been computed by Si via the Commit function during the DOWNFLOW stage. In

Provably Secure Framework for Information Aggregation in Sensor Networks 15

each iteration Si updates a resp. h to the aggregation value resp. hash commitment cor-
responding to the next position in its path using the auxiliary aggregation value aco[cp]
and hash commitment h̄ from its co-path. h̄ is computed by Si from the received com-
mitments and aco[cp], whereas aco[cp] is taken directly from the parent node’s message.
It is easy to check that after the final iteration a resp. h should (ideally) match a∗ resp.
h∗. If these values match then Si sends a positive acknowledgement OK to A together
with the MAC value µi.

Figure 9 specifies operations of A. Note that for A it is not necessary to recompute

On input r, ns, acc, kA aggregator A proceeds as follows:
if acc = true and ns = 1 then µA := MAC.Sign(kA, (r, OK)), send (OK, µA) to R
else if acc = true and ns > 1 then

µ := MAC.Sign(kA, (r, OK)), c := 1, nxt = true, initialize timer t
while c < ns and nxt = true and t is not expired do

receive new (m, µi)
if m = OK then µ := µ⊕ µi, c := c + 1
else if m = ERR then send (ERR, µi) to R, nxt = false

if nxt = true and c = ns then send (OK, µ) to R
else if nxt = true and c < ns then

µA := MAC.Sign(kA, (r, ERR)), send (ERR, µA) to R
else if acc = false then µA := MAC.Sign(kA, (r, ERR)), send (ERR, µA) to R

Fig. 9. VERIFICATION stage specification for the aggregator A

the final aggregation result and hash commitment since it knows them already after the
UPFLOW stage, and has already compared them to the values received from R during
the DOWNFLOW stage. In case of mismatch acc is already set to false. In this case A
sends a negative acknowledgement ERR to R together with the own MAC value µA. If
acc is true at the beginning of the stage then A checks whether it is the only node par-
ticipating in the protocol. In this case it simply replies with the positive acknowledge-
ment OK and its MAC value µA. Otherwise, A initializes timer t and starts waiting for
the acknowledgements of other nodes. A counts the number of the received acknowl-
edgements until every node has replied. In our protocol (unlike [2]) any node Si can
reply with the negative acknowledgement. In this case A simply aborts and forwards
this negative acknowledgement and the MAC value µi to R. Otherwise, A aggregates
MAC values from all positive acknowledgements using the XOR function as in [2] and
sends the result to R. On the other hand, the case where some acknowledgements are
still missing is considered as a failure so that A replies to R with its own negative
acknowledgement.

Finally, we provide description of the operations performed by R upon receiving the
verification result (m,µ) from A. R accepts the aggregation result a∗ only if m = OK
and the received value µ is valid, i.e., it matches the value recomputed by R using indi-
vidual keys of all ns nodes. In all other cases (including the case where R receives any
authenticated negative acknowledgement m = ERR) R terminates without accepting.
Note that at the end of the UPFLOW stage R has already verified that Ba(a∗) = true.

16 Mark Manulis and Jörg Schwenk

Remark 1. Note that in [2] a node replies either with a positive acknowledgement or
does not reply at all. Obviously, in this case A would need some timer; otherwise it
would not know whether it still needs to wait for further acknowledgements or not.
Furthermore, the solution in [2] does not explicitly abort further protocol execution
in case where failures are identified before all nodes receive the required information
and recompute the final hash value. By introducing negative acknowledgements we can
abort the protocol execution at any time (also during the DOWNFLOW process) saving
further processing costs. Any node which identifies a failure aborts and reports a neg-
ative acknowledgement to A. Note that if a failure is identified and reported by some
parent node before sending required information to its child node(s) then sending this
information becomes obsolete.

4.4 Security of InAP1agg

In the following we prove security of our framework in the formal model from Section
2 using the meanwhile classical cryptographic proving technique called sequence of
games [12].

Theorem 1. Let H be collision-resistant and MAC secure in the sense of Definitions 7
and 8. Assuming the existence of an authentication broadcast channel between R and
the sensor nodes in S and individual secret keys ki shared between each Si ∈ S and R,
the InAP1agg framework from Section 4 is (optimally) secure in the sense of Definition
6.

Proof (Sketch). We define a sequence of games Gi, i = 0, . . . , 7 with the adversary I
against the (optimal) security of InAP1agg . In each game we denote Wini the event that
I breaks the (optimal) security of InAP1agg (wins in Gameopt−sec

InAP1agg
(I, κ)), that is there

exists session s in which Rs accepts the aggregation result a∗ and there exists NO list
vc of size nc = ns − nh with Bv(vc) = true such that a∗ = agg(ah,vc). Note that
in our framework the unique session id s is given by the random nonce r chosen by R.
The classical idea behind the sequence of games technique is to start with the adver-
sarial game (interaction) described in the original security definition (here Definition
6) and construct subsequent games via small incremental changes until the resulting
adversarial probability matches the desired value (in our case 0). Upon estimating the
probability difference between two consecutive games in the sequence (using the Differ-
ence Lemma [12, Lemma 1]) one can upper-bound the total probability of a successful
attack.

Game G0. This game is the real interaction between I and instances of R and of
sensor nodes in S according to the description of Gameopt−sec

InAP1agg
(I, κ) within Definition

6 where instances of all uncorrupted parties are replaced by the simulator ∆. Note that
∆ has a view on all computations which it simulates.

Game G1. This game is identical to Game G0 with the only exception that the
simulation fails if an equal nonce r is generated by R in two different sessions. Consid-
ering qs as the total number of protocol sessions, the probability that a randomly chosen
nonce appears twice is bound by q2

s /2κ. Hence,

|Pr[Win1]− Pr[Win0]| ≤
q2

s

2κ
. (1)

Provably Secure Framework for Information Aggregation in Sensor Networks 17

Game G2. This game is identical to Game G1 with the only exception that the
simulation fails if any instance Ss

i successfully verifies any broadcast message which
has not been previously output by the corresponding instance Rs

i . Since ∆ simulates
all uncorrupted protocol parties it can easily detect this event. Let εBC denote the prob-
ability of the successful attack on the applied broadcast authentication mechanism. By
assumption εBC is negligible. Considering two broadcast messages in each session we
get

|Pr[Win2]− Pr[Win1]| ≤ 2qsεBC. (2)

Having excluded collisions of random nonces and attacks against the broadcast mes-
sages of R we remark that this game excludes any forgeries and replay attacks on the
messages of R.

Game G3. This game is identical to Game G2 with the only difference that the
simulation fails if there exists an instance Ss

i of an uncorrupted node Si which has not
output its positive acknowledgement (OK, µi) but Rs has accepted. The only condition
for the acceptance of the aggregation result by Rs is a correct verification of the received
acknowledgement µ by recomputing individual µi and aggregating them using the XOR
function. Since Si and R are uncorrupted the individual key ki remains unknown to I.
Let εMAC be the probability of a successful attack against MAC. By assumption εMAC is
negligible. Since there are at most ns nodes and qs protocol sessions we obtain

|Pr[Win3]− Pr[Win2]| ≤ nsqsεMAC. (3)

Similar to Game G2 this game excludes any forgeries and replay attacks on the ac-
knowledgements of sensor nodes.

Game G4. This game is identical to Game G3 with the only exception that the
simulation fails immediately after computing any hash commitment collision on behalf
of uncorrupted parties. The simulator is easily able to detect this event since it computes
hash commitments for all uncorrupted parties. Note that computation of equal hash
commitments on equal data values (e.g., two or more sensors report equal data) does
not count as a collision. Considering εH as the probability of finding a successful hash
collision for H and at most ns computed hash commitments for each executed protocol
session, we obtain

|Pr[Win4]− Pr[Win3]| ≤ nsqsεH. (4)

Having excluded collisions of hash commitments and due to the fact that every sensor
node verifies predicates Bv and Ba for every received value in v, vP and aco during
the protocol execution we follow that in this game every uncorrupted node outputs own
positive acknowledgement only if its contribution has been correctly included into the
aggregation result a∗ and all checked predicates are true. Successful verification of
predicates implies that for ac corresponding to the aggregation value of all adversarial
inputs Ba(ac) = true should hold. Hence, due to the correctness property of agg there
exists a tuple vc of size ns − nh such that Bv(vc) = true. Therefore,

Pr[Win4] = 0. (5)

18 Mark Manulis and Jörg Schwenk

Considering, Equations (1) to (5) we can upper-bound the total probability of a success-
ful attack as follows:

Succopt−sec
InAP1agg

(κ) ≤ q2
s

2κ
+ 2qsεBC + nsqsεMAC + nsqsεH,

which is negligible according to the assumptions made in the theorem.

5 Boolean Predicate Examples for Various Aggregation Functions

In the following we give practical examples that illustrate specification of reasonable
input/output predicates Bv/Ba for some aggregation functions. Note that in order to
achieve reasonable setting one usually needs to restrict possible input intervals (oth-
erwise any I can provide any input value of its choice and would still satisfy the re-
quirement of optimal security (as also mentioned in [2])). Note also that, if required,
any node Si is able to identify the number of original data values used to compute the
intermediate aggregation result at some position p of the reference list a computed by
A. Let nv ∈ [1, n] denote this total number. Given the total number of nodes n and
any position p ∈ [1, n] every Si (not necessary assigned to p) can compute the relative
distance1 δ := blog2 nc−blog2 pc. Let pr := (p+1)2δ−1 and p` := p2δ . Si estimates
nv as follows:

if pr ≤ n then nv := 2δ+1 − 1
else if p` ≤ n < pr then nv := 2δ+1 − (pr − n)
else nv := 2δ

For example, in Figure 3 given n = 7 and p = 2 we obtain nv = 3, that is the
intermediate aggregation value a[2] is the output of agg on 3 inputs. Assuming that the
tree is incomplete such that n = 4 and p = 2 we obtain nv = 2.

5.1 MIN, MAX

Let agg be a MIN (or MAX) function, i.e., on input v := {v1, . . . , vn}, vi ∈ R,
i ∈ [1, n], n ∈ N the aggregated result agg(v) corresponds to the minimal (or maximal)
value in v. Restricting each vi to a value in the interval between [vmin, vmax] (with vmin ≤
vmax) we obtain Bv(v) = true if and only if vmin ≤ v ≤ vmax whereby vmin and vmax
are part of auxv . Consequently, Ba(a) = true if and only if vmin ≤ a ≤ vmax whereby
auxv = auxv .

5.2 SUM, COUNT, Φ-QUANTILE

Let agg be a SUM function, i.e., on input v := {v1, . . . , vn}, vi ∈ R, i ∈ [1, n],
n ∈ N the aggregated result agg(v) corresponds to

∑n
i=1 vi. Assuming that each vi is

restricted to [vmin, vmax] as in MIN/MAX Ba(a) = true if and only if nvmin ≤ a ≤
nvmax whereby n, vmin, and vmax are part of auxa. If agg is COUNT then vi ∈ [0, 1],
vi ∈ N. Chan et al. [2] show how to implement φ-QUANTILE based on COUNT.

1 Visualizing the list as a binary tree (e.g. Figure 3) the relative distance between two vertices
equals to the difference between levels to which these vertices are assigned, e.g., if the relative
distance is 0 then both vertices are located at the same level in the tree.

Provably Secure Framework for Information Aggregation in Sensor Networks 19

5.3 PRODUCT

Let agg be a PRODUCT function, i.e., on input v := {v1, . . . , vn}, vi ∈ R, i ∈ [1, n],
n ∈ N the aggregated result agg(v) corresponds to

∏n
i=1 vi. Let vi be restricted to

the interval [vmin, vmax] as in MIN/MAX. For the specification of the output predicate
we need to take into account that vmin and vmax may have different signs and that the
number of inputs for the single aggregation can be even or odd. Let |v| denote the
absolute value of v. It is easy to check that the following specification of Ba provides
the required consistency:

if vmax ≤ 0 then
if n even then Ba(v) = true if and only if vn

max ≤ a ≤ vn
min

if n odd then Ba(v) = true if and only if vn
min ≤ a ≤ vn

max

if vmin < 0 and vmax > 0 then
if |vmin| ≤ |vmax| then Ba(v) = true if and only if vminv

n−1
max ≤ a ≤ vn

max

if |vmin| > |vmax| then
if n even then Ba(v) = true if and only if vn−1

min vmax ≤ a ≤ vn
min

if n odd then Ba(v) = true if and only if vn
min ≤ a ≤ vn−1

min vmax
if vmin ≥ 0 then Ba(v) = true if and only if vn

min ≤ a ≤ vn
max

5.4 Additive and Multiplicative AVERAGE

Let agg be an additive AVERAGE function, i.e., on input v := {v1, . . . , vn}, vi ∈ R,
i ∈ [1, n], n ∈ N the aggregated result agg(v) corresponds to (

∑n
i=1 vi)/n. Assuming

that vi ∈ [vmin, vmax] as in MIN/MAX Ba(a) = true if and only if vmin ≤ a ≤ vmax.
Let agg be a multiplicative AVERAGE function, i.e., on input v := {v1, . . . , vn},

vi ∈ R, i ∈ [1, n], n ∈ N the aggregated result agg(v) corresponds to (
∏n

i=1 vi)/n.
Again, we assume that vi ∈ [vmin, vmax] as in MIN/MAX. The output predicate can then
be defined exactly as in PRODUCT for the difference that all bounds should be divided
by n, e.g., if vmin ≥ 0 then Ba(v) = true if and only if vn

min

n ≤ a ≤ vn
max

n .

6 Conclusions and Future Work

Along the lines of this paper we have presented a formal communication and security
model and a novel framework for the in-network aggregation in WSNs, focusing on the
single aggregator scenario. Our framework is both, practical and provably secure (in the
cryptographic sense). The modularity of our model provides basis for further extensions
(e.g. towards a hierarchical scenario [2] or concealed data aggregation processes [1,
14]). The abstract definition of the aggregation function agg and its input resp. output
predicates Bv resp. Ba provides basis for the specification of the integrity checks that
are necessary for the optimal security of the aggregation process.

Acknowledgements

This work was supported by the European Commission through STREP UbiSec&Sens
(http://www.ist-ubisecsens.org). The authors are also thankful to Benedikt
Driessen and Axel Poschmann for the (prototypical) implementation of the framework
within the UbiSec&Sens project.

http://www.ist-ubisecsens.org

20 Mark Manulis and Jörg Schwenk

References

1. C. Castelluccia, E. Mykletun, and G. Tsudik. Efficient Aggregation of Encrypted Data in
Wireless Sensor Networks. In International Conference on Mobile and Ubiquitous Systems
(MobiQuitous 2005), pages 109–117. IEEE CS, 2005.

2. H. Chan, A. Perrig, and D. Song. Secure Hierarchical In-Network Aggregation in Sensor
Networks. In Proceedings of the 13th ACM Conference on Computer and Communications
Security, CCS 2006, pages 278–287. ACM, 2006.

3. A. Deshpande, S. K. Nath, P. B. Gibbons, and S. Seshan. Cache-and-Query for Wide Area
Sensor Databases. In Proceedings of the 2003 ACM SIGMOD International Conference on
Management of Data, pages 503–514. ACM, 2003.

4. D. Estrin, R. Govindan, J. S. Heidemann, and S. Kumar. Next Century Challenges: Scalable
Coordination in Sensor Networks. In MOBICOM, pages 263–270, 1999.

5. L. Hu and D. Evans. Secure Aggregation for Wireless Network. In 2003 Symposium on
Applications and the Internet Workshops (SAINT 2003), pages 384–394. IEEE Computer
Society, 2003.

6. C. Intanagonwiwat, D. Estrin, R. Govindan, and J. S. Heidemann. Impact of Network Den-
sity on Data Aggregation in Wireless Sensor Networks. In ICDCS, pages 457–458, 2002.

7. D. Liu and P. Ning. Multilevel µTESLA: Broadcast Authentication for Distributed Sensor
Networks. ACM Transactions in Embedded Computing Systems, 3(4):800–836, 2004.

8. S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. TAG: A Tiny AGgregation
Service for Ad-Hoc Sensor Networks. In OSDI, 2002.

9. R. C. Merkle. A Certified Digital Signature. In Advances in Cryptology - CRYPTO ’89,
volume 435 of Lecture Notes in Computer Science, pages 218–238. Springer, 1990.

10. A. Perrig, R. Szewczyk, V. Wen, D. E. Culler, and J. D. Tygar. SPINS: Security Protocols
for Sensor Netowrks. In MOBICOM, pages 189–199, 2001.

11. B. Przydatek, D. X. Song, and A. Perrig. SIA: Secure Information Aggregation in Sensor
Networks. In Proceedings of the 1st International Conference on Embedded Networked
Sensor Systems, SenSys 2003, pages 255–265. ACM, 2003.

12. V. Shoup. Sequences of Games: A Tool for Taming Complexity in Security Proofs. Cryp-
tology ePrint Archive, Report 2004/332, 2006. http://eprint.iacr.org/2004/
332.pdf.

13. M. Sirivianos, D. Westhoff, F. Armknecht, and J. Girao. Non-Manipulable Aggregator Node
Election Protocols for Wireless Sensor Networks. In International Symposium on Modeling
and Optimization in Mobile, Ad-Hoc and Wireless Networks (WiOpt 2007). IEEE Computer
Society, 2007. to appear, also available at http://www.ics.uci.edu/~msirivia/
publications/sane-fullpaper.pdf.

14. D. Westhoff, J. Girao, and M. Acharya. Concealed Data Aggregation for Reverse Multicast
Traffic in Sensor Networks: Encryption, Key Distribution, and Routing Adaptation. IEEE
Transactions on Mobile Computing, 05(10):1417–1431, 2006.

http://eprint.iacr.org/2004/332.pdf
http://eprint.iacr.org/2004/332.pdf
http://www.ics.uci.edu/~msirivia/publications/sane-fullpaper.pdf
http://www.ics.uci.edu/~msirivia/publications/sane-fullpaper.pdf

	Provably Secure Framework for Information Aggregation in Sensor Networks
	Mark Manulis and Jörg Schwenk

