
Solving MRHS linear equations

H̊avard Raddum and Igor Semaev

Department of Informatics, University of Bergen, Norway

Abstract. A new method for solving algebraic equation systems com-
mon in cryptanalysis is proposed. Our method differs from the others
in that the equations are not represented as multivariate polynomials,
but as a system of Multiple Right Hand Sides linear equations. The
method was tested on scaled versions of the AES. The results overcome
significantly what was previously achieved with Gröbner Basis related
algorithms.

Keywords: Multiple Right Hand Sides linear equations, algebraic
attacks, AES.

1 Introduction

Most of the cryptanalysis done on symmetric key ciphers in the last few years
has been focused on algebraic attacks. One important feature algebraic attacks
have is the fact that you only need very few known plain-texts in order to set
up an equation system describing the cipher and determining the key uniquely.
Strategies for solving non-linear equation systems have been described [7, 8, 11]
and some have been developed into cryptanalytic attacks [3–5]. All of them
are based on the Gröbner Basis (or XL) related algorithms which make use of
multivariate polynomial representation of equations.

In this paper the equations describing encryption are represented as systems
of Multiple Right Hand Sides(MRHS) linear equations. This is a more general
representation than that independently introduced in [9] and earlier in [12].
Algorithms to solve MRHS linear equations are presented. Linear substitutions
is a common tool providing diffusion properties of encryption in modern ciphers.
So MRHS linear equations, which take into account such layers, make equations
representation quite compact and computations more efficient in comparison
with methods based on the Gröbner Basis related algorithms.

Our experiments have been inspired by the work in [2], where the smaller
clones of the AES were defined. We adopt the notation from that paper: with
SR*(n, r, c) we will mean the variant of the AES that has n rounds, and where
the cipher block has r rows and c columns, see [2] for details. Variants using the
field GF (24) could also be considered, but in our tests we only looked at AES
variants where the underlying finite field is GF (28).

In [2] standard techniques (F4 and Buchberger’s algorithm) for solving non-
linear equation systems were applied to some of the systems representing the

small versions of the AES, to see which ones that actually could be solved using
this approach on a computer with 1GB of RAM. The computer could not solve
the system for SR*(5,1,1) this way, even though the key is only 8 bits long.
Solving SR*(4,1,1) took 20286.18 seconds. This suggests that using these tech-
niques may be the wrong way to go with algebraic cryptanalysis of the AES.
The methods proposed in this paper are general in nature, and we will show
that they make a far better approach to solving equations from the different
versions of the AES. For instance, SR*(4,1,1) is solved in 0.032 seconds without
guessing any variables and more complicated instances are solved on a common
computer.

Besides the Introduction, the paper comprises Sections 2, 3, where MRHS
linear equations and their systems are presented. Sections 4,5 and 6 describe the
main techniques Agreeing, Gluing and Linear equations extracting we use. The
Agreeing being the core approach is presented in much detail. It is shown in
Section 7 how the above techniques are combined in equations solving. Finally,
our experiments with reduced versions of the AES are described in Section 8.

This is the full version of an abstract earlier published in [10].

2 Multiple Right Hand Side linear equations

All matrices and vectors are over GF (2), the field with two elements. A GF (q)
variant of the method is easy to deduce. Let X be a set of n Boolean variables
represented as a column-vector. An equation

AX = a1, a2, . . . , as (1)

is called a MRHS system of linear equations if A is a matrix of size k×n and rank
k, and a1, a2, . . . , as are column-vectors of length k. Solution to (1) is a Boolean
n-vector satisfying one of the particular linear equation systems AX = ai. The
set of all solutions to (1) is the union of solutions to the linear systems for all
ai. Suppose f(X) is a Boolean function such that

f(X) = g(AX), (2)

where g(Y) is a Boolean function in k ≤ n variables Y and A is a k×n-matrix of
rank k. We call the representation (2) nontrivial if k < n. Let now a1, a2, . . . , as

be all solutions to the equation g(Y) = 0. Then the equation f(X) = 0 is
described by the system of the MRHS linear equations (1) and vice versa (1)
implies (2). One also represents the right hand sides of (1) as a k × s matrix L
whose columns are a1, a2, . . . , as. So that (1) becomes AX = [L] and is called a
symbol, we write [L] to stress that is not an ordinary equality with matrices. If
the matrix A has just one nonzero entry in each row, we get the old definition
of a symbol from [9].

If f(X) is given as a multivariate polynomial or by a truth table and the
number of variables n is small we can map it into a symbol in the following way.
The space G(f) of Boolean n-vectors a satisfying f(X +a) = f(X) is computed.

This computation takes at most 22n n-bit xor’s. The space G(f) is of rank m
for some 0 ≤ m ≤ n. There exist n-vectors b1, . . . , bm, a basis for G(f). Take
any matrix A of size k × n and of rank k = n − m such that Abi = 0 for all
i = 1, . . .m. The matrix A is computed by solving m homogenous independent
linear equations in n variables. Define now the Boolean function g in k variables
by the rule g(b) = f(a) for any Boolean k-vector b such that b = Aa. The
function g is correctly defined and the following statements are obvious.

Lemma 1. 1. The representation (2) holds for the so defined Boolean function
g and matrix A.

2. The representation (2) is nontrivial if and only if the rank of G(f) is nonzero.

The running time of the procedure does not exceed the cost of computing G(f)
that is 22n n-bit xor’s.

For example, the polynomial

x1x2+x1x4+x2x4+x2+x3+x4 = (x1+x2)(x1+x4)+(x1+x2)+(x1+x3)+(x1+x4)

has four variables, but can be written using only three linear combinations.
Hence f(X) can be written as g(AX), where g(Y) only takes three variables,
and not four, ref. (2).

In practice, there is often no need to construct (1) for f as it is already given
in the definition of the problem or very easy to deduce. This is so for the AES
and many other modern ciphers.

3 MRHS equation systems

A system of MRHS linear equations (symbols):

S1 : A1X = [L1], . . . , Sm : AmX = [Lm] (3)

is considered, where Ai and Li are matrices such that the number ki of rows in
Ai and Li is bounded by a number k. Some of the variables may be irrelevant
to some equations. This means that the related columns in Ai are zero. The
maximal number of columns in Li is 2ki . So the number k should be relatively
small in order to keep all symbols (3) in memory. The solution to (3) is an
assignment to variables X satisfying all the equations. The goal is to find all
solutions. We will present a generalization of the technique introduced in [9].
The core approach is to remove some of the Li-columns a if no one solution
of AiX = a can be a solution to (3). This is partially achieved with pairwise
agreeing.

4 Agreeing

Let two symbols

Si : AiX = [Li] and Sj : AjX = [Lj] (4)

be given. The matrices Li are of size ki× si. We say the symbols (4) agree if for
any a1 ∈ Li, there exists an a2 ∈ Lj such that the linear system

(
Ai

Aj

)
X =

(
a1

a2

)
(5)

is consistent, and for any a2 ∈ Lj there exists an a1 ∈ Li such that (5) is
consistent.

When Si and Sj do not agree one removes columns a1 from Li such that
AiX = a1 is inconsistent with AjX = [Lj]. Similarly, one removes columns
a2 from Lj if AjX = a2 is inconsistent with AiX = [Li]. The straightforward
approach is to remove a1 if the pair AiX = a1 and AjX = a2 composes an
inconsistent system of linear equations for any column a2 ∈ Lj . This requires
O(s1s2) linear algebra steps to agree Si and Sj .

We will present a faster algorithm for agreeing. Let A =
(

Ai

Aj

)
be the con-

catenation of the matrices Ai and Aj found in (5), so that A is a matrix with

t = ki + kj rows. Similarly, Tij =
(

Li

0

)
and Tji =

(
0
Lj

)
are matrices with t

rows.
Agreeing Procedure.

1. A nonsingular transform matrix U = Uij of size t× t such that the product
UA is a matrix with zeros in its last r = rij rows and of rank t − r is
produced. If r = 0, then the symbols agree.

2. If r > 0, then the matrices UTij and UTij are computed. Let Prij denote the
set of UTij-column projections to the last r coordinates. In case Prij = Prji,
the symbols agree.

3. If Prij 6= Prji, then one removes all Li-columns whose image under the
mapping ϕij : Li → Tij → UTij → Prij is not found in Prij∩Prji. Similarly,
one removes all Lj-columns whose image under the mapping ϕji : Lj →
Tji → UTji → Prji is not found in Prij ∩ Prji. This is easily accomplished
with sorted sets Prij . So the new matrices L′i and L′j , consisting of the
survived columns, are produced from Li and Lj . The symbols AiX = [L′i]
and AjX = [L′j] agree.

The algorithm is approved by the following statement.

Lemma 2. The symbols (4) agree if and only if r = 0 or Prij = Prji.

Proof. Let the symbols agree and r > 0. We will prove Prij = Prji. Take any
b ∈ Prij and fix a1 ∈ Li such that b = ϕij(a1). In other words, the projection

of Uā1 to the last r coordinates is b, where ā1 =
(

a1

0

)
∈ Tij . There exists

a2 ∈ Lj such that the system of linear equations (5) composed by AiX = a1

and AjX = a2 is consistent. The latter is true if and only if AX = ā1 + ā2 is

consistent, where ā2 =
(

0
a2

)
∈ Tji. Then (UA)X = Uā1 + Uā2. The last r

coordinates of the column vector (UA)X are zeros. This means the projections

of Uā1 and Uā2 to the last r coordinates coincide. Therefore, b ∈ Prji and so
Prij ⊆ Prji. The inclusion Prji ⊆ Prij is similarly checked. So Prji = Prij .

We will prove the reverse statement now. Let r > 0 and Prji = Prij . Then
for any a1 ∈ Li we will find a2 ∈ Lj such that (5) is consistent. Let b = ϕij(a1)
be the image of a1 under ϕij . As Prji = Prij , there exists a2 ∈ Lj whose image
under ϕji is also b. So the column U

(
a1
a2

)
= Uā1 + Uā2 has r zeros in its last

coordinates. Therefore, the system (UA)X = U
(
a1
a2

)
is consistent, as the matrix

UA has zeros in its last r rows and is of rank t−r. So the system (5) is consistent
too. Similarly, we prove that for any a2 ∈ Lj one finds a1 ∈ Li such that (5) is
consistent. Therefore, the symbols agree.

Finally, assume that r = 0. Then the matrix A =
(

Ai

Aj

)
is of the full rank t.

That means that the system (5) is consistent for every a1 ∈ Li and a2 ∈ Lj .
Therefore, the symbols agree. This finishes the proof of the Lemma.

The running time of the agreeing is defined by sorting and table look-ups. So
with neglecting the contribution from t and n, the running time is O(s1 log s1 +
s2 log s2) linear algebra steps. In order to agree symbols several times, as in the
case of solving (3), the computation of the matrices U = Uij , UTij , and UTji.
may be done once, as in the Agreeing2 Algorithm presented below.
Example. Two equations A1X = [L1] and A2X = [L2] in variables X =
{x1, x2, x3, x4, x5}:




1 1 0 0 0
1 0 1 0 0
1 0 0 1 0







x1

x2

x3

x4

x5




=




1 0 0 1
0 1 0 0
0 0 1 1


 ,




0 1 0 0 1
0 0 1 0 1
0 0 0 1 1







x1

x2

x3

x4

x5




=




0 1 0 0
1 1 0 0
1 1 0 1




are given. In the algebraic normal form they are:

x1x4 + x1x2 + x2x4 + x2 + x3 + x4 + 1 = 0,

x2x3 + x2x5 + x3x4 + x4x5 + x2 + x3 = 0.

The first equation can also be represented in the form of (2) as

y1y3 + y1 + y2 + y3 + 1 = 0,




y1

y2

y3


 =




1 1 0 0
1 0 1 0
1 0 0 1







x1

x2

x3

x4


 .

The representation (2) for the second equation is

y1y2 + y2y3 + y1 + y2 = 0,




y1

y2

y3


 =




1 0 0 1
0 1 0 1
0 0 1 1







x2

x3

x4

x5


 .

The matrix A is produced and transformed with the matrix U :

A =




1 1 0 0 0
1 0 1 0 0
1 0 0 1 0
0 1 0 0 1
0 0 1 0 1
0 0 0 1 1



→ UA =




1 1 0 0 0
1 0 1 0 0
1 0 0 1 0
0 1 0 0 1
0 0 0 0 0
0 0 0 0 0




, U =




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
1 1 0 1 1 0
1 0 1 1 0 1




.

Then r = 2. Put now

T1 2 =




1 0 0 1
0 1 0 0
0 0 1 1
0 0 0 0
0 0 0 0
0 0 0 0




and T2 1 =




0 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0
1 1 0 0
1 1 0 1




,

and compute

UT1 2 =




1 0 0 1
0 1 0 0
0 0 1 1
0 0 0 0
1 1 0 1
1 0 1 0




and UT2 1 =




0 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0
1 0 0 0
1 0 0 1




.

Look at the last two coordinates of columns in the above matrices and define

Pr1 2 = {(1, 1), (1, 0), (0, 1)}, P r2 1 = {(1, 1), (0, 0), (0, 1)},
P r1 2 ∩ Pr2 1 = {(1, 1), (0, 1)}.

We see that the second and the fourth columns of UT1 2 don’t match any columns
of UT2 1. So the second and the fourth columns of L1 should be removed. Sim-
ilarly, the second and the third columns of L2 should be removed. The new
symbols are:




1 1 0 0 0
1 0 1 0 0
1 0 0 1 0







x1

x2

x3

x4

x5




=




1 0
0 0
0 1


 ,




0 1 0 0 1
0 0 1 0 1
0 0 0 1 1







x1

x2

x3

x4

x5




=




0 0
1 0
1 1


 ,

and they agree.
In the next two sections we will present algorithms for producing pairwise

agreed symbols from (3). Though the algorithms do not necessarily solve the
equation system, they are in the core of our methods for finding solutions.

4.1 Agreeing1 Algorithm

The Agreeing1 Algorithm works by repeatedly finding two indices i and j such
that Si and Sj disagree, and apply the agreeing procedure then. When running
the Agreeing1 Algorithm we often run into situations where Si and Sj agree, but
Sj and Sl disagree. After deleting some Lj-columns from Sj to make it agree
with Sl, it may well be that Si and Sj disagree. In other words, applying the
agreeing procedure to one pair of symbols may cause disagreement in other pairs.
We may get a chain-reaction of deletions of columns that will actually remove a
lot of wrong columns.

Agreeing1 Algorithm.

while symbols (3) do not pairwise agree
- find Si and Sj which do not agree
- agree Si, Sj with the Agreeing Procedure.

Lemma 3. 1. The output of the Agreeing1 Algorithm doesn’t depend on the
order of pairwise agreeings.

2. The running time of the Agreeing1 Algorithm is bounded by O(m3k222k) bit
operations. The memory requirement is O(mnk + mk2k) bits.

Proof. We will prove the first statement. Consider a set of sub-symbols AiX =
[Ui], where Ui ⊆ Li, meaning that columns of Ui are among columns of Li,
for all 1 ≤ i ≤ m. The set of sub-symbols is called a maximal agreed set of
sub-symbols if AiX = [Ui] pairwise agree and for any sets U ′

i of columns, where
Ui ⊆ U ′

i ⊆ Li, with Ui ⊂ U ′
i for at least one i, the sub-symbols AiX = U ′

i ,
1 ≤ i ≤ m do not pairwise agree. We will prove that the maximal agreed set of
sub-symbols is unique and is produced with the Agreeing1 Algorithm regardless
of the order of pairwise agreeings.

Assume there are two maximal agreed sets of sub-symbols: AiX = [Ui],
1 ≤ i ≤ m and AiX = [U ′

i], 1 ≤ i ≤ m. Then one constructs the new set of
sub-symbols AiX = [Ui ∪ U ′

i], 1 ≤ i ≤ m. They pairwise agree. That is only
possible when Ui = U ′

i , 1 ≤ i ≤ m. So the maximal agreed set of sub-symbols is
unique.

Let AiX = [Ui], 1 ≤ i ≤ m be the output of the Agreeing1 Algorithm
and Ui ⊆ U ′

i ⊆ Li for some set of symbols AiX = [U ′
i], 1 ≤ i ≤ m which

pairwise agree. An intermediate stage of the Agreeing algorithm is the set of
sub-symbols AiX = [L′i], where L′i ⊆ Li. Let this be the stage just before
deleting any of the columns in U ′

i \ Ui, 1 ≤ i ≤ m. Then U ′
i ⊆ L′i, 1 ≤ i ≤ m.

The Agreeing1 Algorithm now deletes some a1 ∈ U ′
i \ Ui. This means there is

a symbol AjX = [L′j] such that AiX = a1 is inconsistent with AjX = a2 for
any a2 ∈ L′j and, therefore, for any a2 ∈ U ′

j . This means that the symbols
AiX = [U ′

i] and AjX = [U ′
j] do not agree. The contradiction implies U ′

i = Ui

for all 1 ≤ i ≤ m. So AiX = [Ui], 1 ≤ i ≤ m is the maximal agreed set of
sub-symbols. That proves the first statement.

We will prove the second statement now. In order to delete at least one col-
umn from some matrix Li one should find at least one pair Si and Sj of symbols
which disagree. To this end the matrices U = Uij , UTij , and UTji are computed.
Then the symbols are checked for agreeing and made agreed with list sorting of
size at most 2k and table look-ups. That is to delete one column costs O(m2k22k)
bit operations in the worst case. As one should delete at most m2k columns, this
implies the running time estimate. The memory requirement is obvious as m
matrices Ai and m of Li should be kept. That finishes the proof of the Lemma.

4.2 Agreeing2 Algorithm

In this section another approach to pairwise agreeing of the equations (3) is
presented. It is significantly faster than the previous variant but requires some
additional memory.

Agreeing2 Algorithm.

(Precomputation.) For each pair of symbols Si and Sj the matrix U = Uij

and the number r = rij ≤ k of zero rows in U
(

Ai

Aj

)
are computed. If r = 0,

then there is nothing to do. If r > 0, then UTij , and UTji are computed,
but only U = Uij should be kept for the main step of the algorithm. For
each r-bit address b the tuple (Lijb, Ljib) is computed and kept. The list
Lijb consists of the addresses of columns a1 in Li whose image under the
mapping ϕij is b. Similarly, Ljib denotes the list of addresses of columns a2

in Lj whose image under ϕji is b. The list of tuples for Li, Lj is denoted by
Lij as in Fig.1.

Fig. 1. Precomputation.

(Agreeing.) The Algorithm starts with any tuple (Lijb, Ljib), where just one
list is empty and follows the rules:
1. Let the list Lijb in the current tuple (Lijb, Ljib) ∈ Lij be empty, while

Ljib is not. Then all the columns a, whose addresses are in Ljib, are
deleted from Lj and Ljib is made empty. One should actually not delete
a in order to not change addresses of other columns. One simply marks
a somehow.

2. When the column a is being deleted(marked) from Lj , one computes the
addresses d = ϕjl(a) for l 6= j, where rjl > 0. Then the address of a in
Lj is deleted from Ljld, where (Ljld, Lljd) is now the current tuple.

3. For each starting tuple the algorithm walks through a search tree with
backtracking. If new deletions do not occur in the current tree, then a
new tuple, where just one term is empty, is taken and the above steps
repeat.

4. The algorithm stops when in all tuples (Lijb, Ljib) the terms both are
empty or both non-empty.

By Lemma 3 the order of the tuples the algorithm walks through is irrelevant
for the result. The complexity of the Agreeing2 Algorithm is estimated with the
following Lemma.

Lemma 4. After O(m2k22k) bit operations of precomputation, the running time
of the Agreeing2 Algorithm is bounded by the maximum running time of O(m2k22k)
bit operations and O(m22k) look-ups in a table comprising at most 2k binary
strings of length at most k. The memory requirement is O(mnk + m2k2k) bits.

Proof. Each deletion of a column a ∈ Li results in at most m−1 computations of
the addresses b = ϕij(a), table look-ups, and removals of its address from Lijb.
As one should delete at most m2k columns of the matrices Li, the algorithm
running time is O(m2k22k) bit operations or at most O(m22k) look-ups. There
should be enough memory locations to keep m matrices Ai of size at most k×n
and m matrices Li of size at most k × 2k. Besides, for each pair of symbols
Si, Sj the matrix Uij and the list of tuples Lij comprising at most 2k+1 of k-bit
addresses each are kept. So the memory requirement is O(mnk + m2k2k) bits.
This proves the Lemma.

We remark that the Agreeing Algorithms’ output may be far away from any
solution of the system. What typically happens for the equation systems from
ciphers is that all symbols are pairwise agreed already from the beginning, e.g.
all rij = 0 or Prij = Prji. So one should do something to start deletions by
agreeing. We will describe two approaches to the problem: gluing symbols, which
may produce rij > 0 or Prij 6= Prji, and guessing variables which may result in
Prij 6= Prji.

5 Gluing

By definition, the gluing of the symbols (4) is a MRHS system of linear equations
BX = [L] whose set of solutions is the set of common solutions to AiX = [Li] and
AjX = [Lj]. The point of this operation is that to represent (find) all common
solutions to the above two equations takes at most O(s1 log s1 + s2 log s2 + s)
steps of sorting and linear algebra, where s is the number of columns in L. This
may be significantly faster than a full search over all strings in relevant variables.

Let B be the sub-matrix of UA in its t− r nonzero rows. The gluing of the
symbols is the symbol BX = [L], where L is a matrix of t − r rows and some

number of columns. Each column of L is the sum of one column from UTij and
one from UTji having the same projection to the last r coordinates, and reduced
to the first t− r coordinates. One checks that solutions of BX = [L] are exactly
all common solutions to the equations (4) in variables X. Then the new symbol
S : BX = [L] satisfies all requirements to a MRHS system of linear equations.
We denote the result of the gluing as S = S1 ◦ S2.

The straightforward complexity of gluing is at most O(s1s2) linear algebra
steps. On the other hand, the bound O(s1 log s1 + s2 log s2 + s) is also true.
To demonstrate this one sorts the columns UTij by their last r-coordinate sub-
vectors and glue columns of UTij and UTji(compute their sum to produce
columns of L) with the same sub-vector by table look-ups. The gluing of the
above example symbols is computed as




1 1 0 0 0
1 0 1 0 0
1 0 0 1 0
0 1 0 0 1







x1

x2

x3

x4

x5




=




1 0
0 0
0 1
0 0


 . (6)

When the symbols (3) reach an agreeing state, we can glue together some of
them to create new equations. When gluing S1 and S2 together we discard S1

and S2, since all information in them are contained in S1 ◦ S2. When we have
glued together several pairs of symbols the new set of symbols will in general not
be in an agreeing state, so we can start the Agreeing algorithm again. The price
to pay when gluing together symbols is longer right hand sides lists. They may
be as big as s1s2. We may run into cases where we can not afford any symbols
to be glued. Then a threshold is set up and we only glue together symbols that
produce symbols with the number of the right hand sides below this threshold.

6 From MRHS to URHS

Ordinary (Unique Right Hand Side) linear equations can often be produced
from MRHS linear equations. Consider a MRHS system of linear equations:
S : AX = [L], where L is a k× s matrix. We will try to produce linear equations
in variables X satisfied by all solutions of AX = [L]. To this end one triangulates
L with a row transform U to get an upper-triangular matrix with zeros in its
last r1 ≥ 0 rows. Let A′ be the sub-matrix of UA in its last r1 rows. Then
A′X = 0 is the system of all independent linear homogenous equations satisfied
by the solutions of AX = [L]. Non-homogenous equations may occur as well.
It is enough to construct one of them. With the above triangulation of L one
finds out whether the rows of L generate the all ones vector 1̄ of length s. If
this is so, then the system bL = 1̄ has a solution b, which is a Boolean k-vector.
Then (bA)X = 1 is the sought equation. That is, S admits r1 or r1 + 1 linearly
independent linear equations. One sees that if k ≥ s there should be at least one

linear equation produced from S. E.g. the symbol (6) is transformed to




1 1 0 0 0
0 1 0 1 0
1 0 1 0 0
0 1 0 0 1







x1

x2

x3

x4

x5




=




1 0
1 1
0 0
0 0




with obvious row transformations. This implies three linear equations: x2 +x4 =
1, x1 + x3 = 0 and x2 + x5 = 0, which are equivalent to the system of the two
initial quadratic equations.

7 Solving systems by guessing variables and collecting
linear equations

Before starting solving the equations some symbols may be enlarged by gluing
up to some threshold. When a variable x ∈ X is guessed, the linear equation
x = 0 or x = 1 is produced. Several such guesses produce a system of linear
equations A0X = a0, that is a new symbol S0. These equations are glued to
other symbols (3) during their agreeing in order to enhance deletions. Alterna-
tive and equivalent approach is to eliminate variables using current linear equa-
tions. After agreeing, the symbols where deletions have occurred are checked for
producing new linear equations with the approach from Section 6. Remark that
the deletions enhance symbols to imply linear equations as the number of right
hand sides in the related MRHS linear systems is reducing. All produced linear
equations are being up-glued to the symbol S0, enlarging the system A0X = a0.
Then the whole thing repeats.

One concludes that the guess was wrong when all right hand sides of a symbol
have been deleted or the system of linear equations in S0 is inconsistent. Then
one backtracts and takes another guess. When neither new linear equations nor
new deletions in symbols are found, some guesses of new variables should be
made in order to restart the process until there are enough linear equations to
produce all solutions to (3) or to reject the current guess.

8 Equation systems for reduced versions of the AES

For readers not familiar with the internal structure of the AES, we refer to [6]
or [2]. We consider the general scaled AES, SR*(n, r, c). The variables of the
equations we construct will be:

– All bits from the user selected key which is identical to K0, the round key
used to mask the plaintext before the first round, 8rc variables.

– All bits in the leftmost columns of the round keys Ki, i = 1, . . . , n, that is
8nr variables.

– All bits in the cipher block after application of the S-boxes in each round,
except for the last, 8(n− 1)rc variables. In round i, the block is denoted Xi.

For example, the bytes that are variables of SR*(3,4,4) are shown below, marked
with ’X’, at Fig. 2. Any bit in any of the round keys, and any bit at any stage

x
x
x
x

x x x
x x x
x x x
x x x

S SRS SR − MCS SR − MC

x
x
x
x

x
x
x
x

x
x
x
x

x
x
x
x

x x x
x x x
x x x
x x x

x
x
x
x

x x x
x x x
x x x
x x x

X 1 X 2

K 1K 0 K 2 K 3

P C

Fig. 2. SR*(3,4,4) equations variables.

of the encryption can be expressed as a linear combination of in total 8rn(c+1)
Boolean variables.

Each S-box used in SR*(n, r, c) produces one MRHS linear equation. Each
of the eight bits going in or out of one S-box is expressed as a linear combina-
tion of the variables, and possibly some plaintext or ciphertext bits (considered
known constants), or round constants from the key schedule. Let the eight linear
combinations going into one S-box be denoted l0, . . . , l7 and the eight linear com-
binations going out of the same S-box be l8, . . . , l15. Let A be the matrix having
the coefficients of li as row i. There are 256 possible inputs to the S-box, each
one producing a unique output. Hence there are 256 possible sets of values the 16
linear combinations l0, . . . , l15 can have, namely the 16-bit string (a, S(a)) for all
8-bit strings a. Collecting this we get the following MRHS equation AX = [L],
where the columns of L are written in hexadecimal notation:




l0
. . .
l7
l8
. . .
l15




=




0 1 . . . F
0 0 . . . F
3 C . . . 6
6 7 . . . 1


 . (7)

There are r S-boxes used when computing Ki+1 from Ki, and there are rc S-
boxes used in each round of SR*(n, r, c). Hence the total number of MRHS linear
equations making up the system is nr(c + 1). We expect the system to have a
unique solution, so exactly one of the columns in L will be consistent with the
solution.

We have implemented SR*(n, r, c) for various choices of r, c and n, con-
structed the associated MRHS equation systems, and tried to solve them by
guessing key bits, running the agreeing algorithm and gluing equations.

For variants where the key is 16 bits or less, the maximum number of columns
in L when gluing was set to 28. When the key size was above 16 bits, two symbols
could be glued if the number of right hand sides in the glued symbol was 216 or
less.

We call the exact algorithm used for solving these systems the G algorithm.
It is designed to only guess variables when the other techniques fail, thus trying
to solve the system with as few guesses as possible. It works as follows:

while system not solved
- while something changed since last iteration

- run agreeing algorithm
- try to extract linear equations
- eliminate one variable for each linear equation extracted
- glue if new number of right hand sides small enough

- guess one variable from K0

The following table gives the number of K0-bits needed to guess in order to
solve the system. For comparison with [2], the time in seconds our computer
used for solving SR*(n, 1, 1) is also noted. In the trivial case of SR*(n, 1, 1) no

Table 1. The number of guessed key bits before SR*(n, r, c) is solved.

8-bit key 16-bit key 32-bit key 64-bit key 64-bit key 128-bit key
n SR*(n,1,1) SR*(n,2,1) SR*(n,2,2) SR*(n,2,4) SR*(n,4,2) SR*(n,4,4)

3 0 (0.023) 5 16 48 48 112
4 0 (0.032) 8 16 48 48 112
6 0 (0.076) 8 16 48 48 112
7 0 (0.139) 8 16 48 48 112
10 0 (0.320) 8 16 48 48 112

guessing is necessary, the system is always solved by agreeing and gluing alone.
What we immediately see is that for a k-bit key, the number of key bits

needed to guess when storing equations with up to 2l right hand sides is always
k− l (except for the probably degenerate case of three-round SR*(3, 2, 1)). This
seems to imply that l bits of the key are guessed implicitly when storing equations
with 2l right hand sides. This number-of-guesses/memory tradeoff means it is
(theoretically) possible to solve the full AES system by guessing 64 key bits when
allowing equations to have up to 264 righ hand sides. At this point, this does not
indicate a break of the AES, as the complexity of working with equations with
264 right hand sides is of the order of 264. Each right hand side must be visited
at some point, at least when it is deleted, hence the total complexity for solving
such a system would still be on the order of 2128. However, if a very fast way of
agreeing is found this tradeoff may be important.

It should also be noted that the G algorithm is sensitive to exactly which
equations that are chosen to be glued when gluings occur. The above numbers
were obtained by always gluing together the two equations that produce the
smallest number of right hand sides (assuming it is less than the 216 threshold).
We also tried the variant where we glue together the first pair we find that
produce an equation with less than 216 right hand sides. This gave significantly
weaker results in all cases except for SR*(3, 4, 4) which was solved after 105
guesses.

8.1 Random systems comparable to the AES systems

The results from the previous section are from scaled versions of the AES. For
comparison, we tried the algorithm on random systems similar to the AES sys-
tems.

For real AES systems, we take advantage of the fact that the variables rep-
resenting the user-selected key are special. If most of these variables are known,
the rest of the system can be easily solved. If there is no such subset of special
variables, how many variables do we need to guess?

We constructed random equations of size similar to the AES equations (7) as
follows. We used the right hand sides of the AES equations as right hand sides
for the random equations. The A-matrix in a random equation is a 16×n-matrix
with random linear independent rows, for various values of n. Each equation puts
an 8-bit constraint on the solution space, so with n/8 equations we would expect
the system to have about one solution, so we used systems with n/8 equations. To
make sure there was always at least one solution, we also generated a random
n-bit string to act as a solution to the system. The correct right hand side
corresponding to this synthetic solution was computed for each equation, and
replaced one of the AES right hand sides.

We ran algorithm G on these systems, still with the 216-limit on the number
of right hand sides in one equation, to see how many guesses were needed to
solve them. The results of these experiments are in the following table. As we

Table 2. The number of guesses before the system in n variables is solved.

n 48 56 64 80 96 112 128 160 192 224 256

of guesses 0 7 13 29 45 61 76 108 140 172 204

see, the differences between the number of variables and number of guesses are
mostly 51 or 52. It seems that with the limit of number of right hand sides set
to 216, the techniques agreeing, gluing and extracting linear equations are able
to solve a random looking non-linear equation system with 52 variables.

Magma is a computer algebra program that has an efficient implementation of
the F4-algorithm [7] for computing Gröbner bases. This method is considered to
be state-of-the-art when it comes to solving general non-linear equation systems.
To compare our methods to F4, we also did the following experiments.

First we constructed a system of 6 random equations with 48 variables, with
the AES right hand sides, that is as in (7). This time we did not insert any
synthetic solution. We used gluing (max 216 right hand sides), agreeing and
extracting linear equations to solve the system. On the first two attempts we
had constructed systems with no solutions, but on the third try the system had
two solutions. These solutions were found in a few seconds. We then used the
24 linearly independent quadratic polynomials listed in [4] describing the AES
S-box to generate the multivariate polynomials describing the same system, and
imported them into Magma. Together with the field polynomials x2

i +xi we then
had a set of 192 = 24 × 6 + 48 quadratic polynomials in 48 variables, and we
called the function computing the Gröbner basis for this set. It returned the
same two solutions after more than 15 hours of computing on the same machine
with a 450MHz UltraSparc II processor.

Next we constructed a system of 7 random AES equations in 56 variables.
This time we had to guess on the value of seven of the variables before we could
solve the system with gluing and agreeing. We found the unique solution to the
system, and the total time used for this was five and a half minutes. We then
imported the corresponding set of quadratic polynomials into Magma and called
its Gröbner basis function. This time Magma consumed all available memory,
more than 3 GB, before it exited with an out-of-memory message.

9 Conclusion

We believe that the methods described in this paper should be put into the
toolbox for algebraic cryptanalysis, together with the other algorithms for solving
non-linear equation systems.

We also argue that the MRHS representation of equations is much better
suited for equations made from S-boxes than multivariate polynomials and CNF
formulas as in [1]. There are two reasons for this.

First, the input/output bits of an S-box are normally linear combinations of
variables. When expressing the S-box as a set of polynomials, the products of
these linear combinations must be expanded before we get the polynomials into
ANF form. On the other hand, a lot of new variables should be introduced in or-
der to construct k-SAT formulas with small k suitable for an efficient application
of modern SAT solvers. Then these two methods heavily depend on the alge-
braic degree of the equations. The MRHS representation uses the fact that the
input/output bits of the S-box are linear combinations, keeps them intact, and

becomes a more compact representation. The method efficiency doesn’t depend
on the algebraic degree of the equations.

Second, representing an S-box using multivariate polynomials gives a whole
set of polynomials, but they are all constructed from the same set of linear
combinations, and really belong together as a group. This is exactly what is
done in the MRHS representation, making one equation from one S-box.

Comparison with the findings in [2], together with our own experiments with
Magma show that our methods are generally far stronger than what has been
considered the best way to solve non-linear equation systems over GF (2). It was
also mentioned in [1] that Magma tends to be faster than SAT-solvers approach
if it doesn’t crash due to the lack of available memory. This seems to show that
our methods overcome [1] too.

The critical reader may argue that the comparison is not fair, since the
algorithm for solving equation systems in Magma is designed to handle any
system, and that the systems that have been tested for both our program and
Magma are special and constructed to suit our methods. This really only proves
our point: The methods for solving non-linear equation systems presented in this
paper are the best known for solving systems describing ciphers.

References

1. G. Bard, N. Courtois, C. Jefferson, Efficient Methods for Conversion and Solution
of Sparse Systems of Low-Degree Multivariate Polynomials over GF (2) via SAT-
Solvers, Cryptology ePrint Archive, 2007/024, 25 January 2007.

2. C. Cid, S. Murphy, M. Robshaw, Small Scale Variants of the AES, in FSE 2005,
LNCS 3557, pp. 145 – 162, Springer-Verlag, 2005.

3. N. Courtois, The Security of Hidden Field Equations (HFE), in CT-RSA 2001,
LNCS 2020, pp. 266 – 281, Springer-Verlag, 2001.

4. N. Courtois, J. Pieprzyk, Cryptanalysis of Block Ciphers with Overdefined Systems
of Equations in Asiacrypt 2002, LNCS 2501, pp. 267 – 287, Springer-Verlag, 2002.

5. N. Courtois, W. Meier, Algebraic Attacks on Stream Ciphers with Linear Feedback,
in Eurocrypt 2003, LNCS 2656, pp. 345 – 359, Springer-Verlag, 2003.

6. J. Daemen, V. Rijmen. The Design of Rijndael; AES - The Advanced Encryption
Standard, Springer-Verlag, 2002.

7. J.-C. Faugère, A new efficient algorithm for computing Gröbner bases (F4), Journal
of Pure and Applied Algebra, vol. 139, pp. 61 – 88, 1999.

8. J.-C. Faugere, A new efficient algorithm for computing Gröbner bases without
reduction to zero (F5), Proceedings of ISSAC ’02, pp. 75 – 83, ACM Press, 2002.

9. H. Raddum, I. Semaev, New technique for solving sparse equation systems, Ecrypt’s
STVL website, January 16th 2006, see also Cryptology ePrint Archive, 2006/475.

10. H. Raddum, I. Semaev, Solving MRHS linear equations. Extended abstract in
Proceedings of WCC’07, 16-20 Avril 2007, Versailles, France, INRIA, 323–332.

11. A. Shamir, J. Patarin, N. Courtois, A. Klimov, Efficient Algorithms for Solving
Overdefined Systems of Multivariate Polynomial Equations, in Eurocrypt 2000,
LNCS 1807, pp. 392 – 407, Springer-Verlag 2000.

12. A. Zakrevskij, I. Vasilkova, Reducing large systems of Boolean equations, 4th
Int.Workshop on Boolean Problems, Freiberg University, September, 21-22, 2000.

