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Abstract. Edwards recently introduced a new normal form for elliptic curves. Every elliptic
curve over a non-binary field is birationally equivalent to a curve in Edwards form over an
extension of the field, and in many cases over the original field.

This paper presents fast explicit formulas (and register allocations) for group operations on an
Edwards curve. The algorithm for doubling uses only 3M + 48, i.e., 3 field multiplications and 4
field squarings. If curve parameters are chosen to be small then the algorithm for mixed addition
uses only 9M + 1S and the algorithm for non-mixed addition uses only 10M + 1S. Arbitrary
Edwards curves can be handled at the cost of just one extra multiplication by a curve parameter.

For comparison, the fastest algorithms known for the popular “as = —3 Jacobian” form use
3M + 58 for doubling; use 7TM + 4S for mixed addition; use 11M + 58 for non-mixed addition;
and use 10M + 4S for non-mixed addition when one input has been added before.

The explicit formulas for non-mixed addition on an Edwards curve can be used for doublings
at no extra cost, simplifying protection against side-channel attacks. Even better, many elliptic
curves (approximately 1/4 of all isomorphism classes of elliptic curves over a non-binary finite
field) are birationally equivalent — over the original field —to Edwards curves where this addition
algorithm works for all pairs of curve points, including inverses, the neutral element, etc.

This paper contains an extensive comparison of different forms of elliptic curves and different
coordinate systems for the basic group operations (doubling, mixed addition, non-mixed addition,
and unified addition) as well as higher-level operations such as multi-scalar multiplication.

Keywords: elliptic curves, addition, doubling, explicit formulas, register allocation, scalar mul-
tiplication, multi-scalar multiplication, side-channel countermeasures, unified addition formulas,
complete addition formulas, efficient implementation, performance evaluation

1 Introduction

The core operations in elliptic-curve cryptography are single-scalar multiplication (m, P —
mP), double-scalar multiplication (m,n, P,Q +— mP +nQ), etc. Miller, in his Crypto 85 pa-
per introducing elliptic-curve cryptography, proposed carrying out these operations on points
represented in Jacobian form: “Each point is represented by the triple (z,y, z) which corre-
sponds to the point (z/22,y/2%)” on a curve y? = 23 + a4z + ag. See [35, page 424]. One
can add two points using 16 field multiplications, specifically 11M + 5S, with the fastest
algorithms known today; here we keep separate tallies of squarings S and general multipli-
cations M. A mixed addition — this means that one input has z = 1—takes only 7TM + 48S.
A doubling takes 1M + 8S + 1D, where D denotes the cost of multiplying by a4; a doubling
takes 3M + 58 in the special case ay = —3.
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Several subsequent papers analyzed the performance of other forms of elliptic curves pro-
posed in the mathematical literature. See, e.g., [17] for the speed of several dialects of the
Weierstrass form, [33] for the speed of Jacobi intersections, [27] for the speed of Hessians, and
[8] for the speed of Jacobi quartics; see also [36] and [22], which introduced the Montgomery
and Doche/Icart/Kohel forms and analyzed their speed. These alternate forms attracted some
interest —in particular, many of them simplify protection against side-channel attacks, and
the speed records in [7] for single-scalar multiplication were set with the Montgomery form —
but the Jacobian form remained the overall speed leader for multi-scalar multiplication.

A new form for elliptic curves was added to the mathematical literature a few months
ago: Edwards showed in [24] that all elliptic curves over number fields could be transformed
to the shape 22 + y? = (1 + 22y?), with (0, ¢) as neutral element and with the surprisingly
simple and symmetric addition law

T1Y2 + Y122 Y1Y2 — T122 )
1+ 21229192) " (1 — T122Y1Y2)

(z1,91), (¥2,92) — (C(

Similarly, all elliptic curves over non-binary finite fields can be transformed to Edwards form.
Some elliptic curves require a field extension for the transformation, but some elliptic curves
have transformations defined over the original number field or finite field.

To capture a larger class of elliptic curves over the original field, we expand the notion of
Edwards form to include all curves 2% + y? = c?(1 + dz?y?) where cd(1 — dc*) # 0. More than
1/4 of all isomorphism classes of elliptic curves over a finite field —for example, the curve
“Curve25519” previously used to set speed records for single-scalar multiplication —can be
transformed to Edwards curves over the same field. See Sections 2 and 3 of this paper for
further background on Edwards curves.

Our main goal in this paper is to analyze the impact of Edwards curves upon cryptographic
applications. Our main conclusions are that the Edwards form (1) breaks solidly through
the Jacobian speed barrier, (2) is competitive with the Montgomery form for single-scalar
multiplication, and (3) is the new speed leader for multi-scalar multiplication. Specifically, we
present explicit formulas (i.e., sequences of additions, subtractions, and multiplications) that

e compute an addition (X7 :Yy:Zy),(Xo:Ya: Zs) — (X1 :Y1:2Z1) 4 (X2 : Y : Z3) using
10M + 1S + 1D —here D is the cost of multiplying by a selectable curve parameter;

e compute a mixed addition (X7 : Y1 : Z1),(Xo: Yo : 1) — (X1:Y1:Z1)+ (X2 :Y2: 1)
using 9M + 1S + 1D; and

e compute a doubling (X7 : Yy : Z1) — 2(X; : Y1 : Z1) using 3M + 48.

See Section 4 for details of these computations; Section 5 for a comparison of these speeds to
the speeds of explicit formulas for Jacobian, Hessian, etc.; Sections 6 and 7 for an analysis
of the resulting speeds of single-scalar multiplication and general multi-scalar multiplication;
and Section 8 for a discussion of side-channel attacks.

An Edwards curve with a unique point of order 2 has the extra feature that the addition
formulas are complete. This means that the formulas work for all pairs of input points on the
curve, with no exceptions for doubling, no exceptions for the neutral element, no exceptions
for negatives, etc. Some previous addition formulas have been advertised as unified formulas
that can handle generic doublings, simplifying protection against side-channel attacks; our
addition formulas are faster than previous unified formulas and have the stronger property of
completeness. See Sections 3, 5, and 8 for further discussion.
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2 Transformation to Edwards form

Fix a field k of characteristic different from 2. Let E be an elliptic curve over k having a point
of order 4. This section shows that some quadratic twist of F is birationally equivalent over
k to an Edwards curve: specifically, a curve of the form 22 + y? = 1 + dz?y? with d ¢ {0,1}.
(Perhaps this twist is E itself; perhaps not.) Section 3 shows that the Edwards addition law
on the Edwards curve corresponds to the standard elliptic-curve addition law.

If £ has a unique point of order 2 then some quadratic twist of E is birationally equivalent
over k to an Edwards curve having non-square d. If k is finite and E has a unique point of
order 2 then the twist can be removed: E is birationally equivalent over k to an Edwards
curve having non-square d. Section 3 shows that the Edwards addition law is complete in this
case.

All of these equivalences can be computed efficiently. The proof of Theorem 2.1 explicitly
constructs d given a Weierstrass-form elliptic curve, and explicitly maps points between the
Weierstrass curve and the Edwards curve.

As an example, consider the elliptic curve published in [7] for fast scalar multiplication in
Montgomery form, namely the elliptic curve v? = u? + 486662u> 4+ u modulo p = 22 — 19.
This curve “Curve25519” is birationally equivalent over Z/p to the Edwards curve z? + 32 =
1 + (121665/121666)z%y?. The transformation is easy: simply define z = 1/486664u/v and
y = (u—1)/(u + 1); note that 486664 is a square modulo p. The inverse transformation is
just as easy: simply define u = (1 +y)/(1 —y) and v = z//486664u.

Every Edwards curve has a point of order 4; see Section 3. So it is natural to consider
elliptic curves having points of order 4. What about elliptic curves that do not have points of
order 4 — for example, the NIST curves over prime fields? Construct an extension field " of
k such that F(k’), the group of points of E defined over £/, has an element of order 4. Then
replace k by k' in Theorem 2.1 to see that some twist of E is birationally equivalent over k’
to an Edwards curve defined over &'.

Theorem 2.1. Let k be a field in which 2 # 0. Let E be an elliptic curve over k such that
the group E(k) has an element of order 4. Then

(1) there exists d € k—{0,1} such that the curve 2 +y? = 1+dz*y? is birationally equivalent
over k to a quadratic twist of E;

(2) if E(k) has a unique element of order 2 then there is a nonsquare d € k such that the
curve x2 + y? = 1 + dx?y? is birationally equivalent over k to a quadratic twist of E; and

(3) if k is finite and E(k) has a unique element of order 2 then there is a nonsquare d € k
such that the curve x% + y? = 1 + dxy? is birationally equivalent over k to E.

Proof. Write E in long Weierstrass form s?>4airs+ass = >4 agr?+a4r+ag. Assume without
loss of generality that a; = 0 and a3 = 0; to handle the general case, define’ s = s+ (ajr+as)/2.
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Write P for the hypothesized point of order 4 on E. Assume without loss of generality that
2P = (0,0) and thus ag = 0; to handle the general case, define 7 = r —ro where 2P = (72, s2).

The elliptic curve E now has the form s? = 73 + aor? + a4r. Write P as (r1, s1). The next
step is to express the curve coefficients ao and a4 in terms of r; and s1.

Note that s; # 0, as otherwise P has order 2. Consequently r; # 0. The equation 2P =
(0,0) means that the tangent line to E at P passes through (0,0), i.e., that s; —0 = (r; —0)\
where ) is the tangent slope (3r? + 2agry + ag)/2s1. Thus 373 + 2a2r? + agr; = 2s3. Also
25% = 27“11)’ + 2a2r% + 2a471 since P is on the curve. Subtract to see that r% = a4ry, i.e., 7“% = a4.
Furthermore ay = (s3 — r$ — aqry)/r? = s¥/r} — 2ry. Putting d = 1 — 473 /s? we obtain
az =2((1+d)/(1 —d))r:.

Note that d # 1 since r; # 0. Note also that d # 0: otherwise the right hand side of E’s
equation would be 73 +agr? +agr = 73 +2r172 +rfr = r(r+r1)?, contradicting the hypothesis
that F is elliptic. Note also that if d is a square then there is another point of order 2 in E(k),
namely (rl(\/g—k 1)/(Vd - 1),0).

Consider two quadratic twists of E, namely the elliptic curve E’ defined by (r1/(1—d))s? =
73 4+ agr? + aqr and the elliptic curve E” defined by (dry/(1 — d))s? = r3 + aor? + ayr.

If k is finite and d is nonsquare then either 71 /(1 — d) or dry/(1 — d) is a square in k so E
is isomorphic to either £ or E”.

Substitute u = r/r; and v = s/r; to see that E’ is isomorphic to the elliptic curve
(1/(1 = d))v? = u® +2((1 +d)/(1 — d))u?® + u and that E” is isomorphic to (d/(1 — d))v? =
uwd +2((1+d)/(1 — d)u? + u.

We now show that the curve 22 +y? = 1+dx?y? is birationally equivalent to (1/(1—d))v? =
ud +2((1+d)/(1 —d))u® +u, and therefore to E’. The rational map (u,v) — (z,y) is defined
by x = 2u/v and y = (u — 1)/(u + 1); observe that

u—1)2 A2 (u — 1)2
- (u+11)2v2 (40 (u+1)% + (u = 1% = (u+ 1)%° — ddu?(u — 1)?)
- (uflf)zvz (w(u+1)* = v* — du(u - 1)%)
- (u+411L)2v2 (1= d)ju® +2(1 + d)u? + (1 = d)u — v?)

41 —-dyu [ 4 14+d 5 1 5
(0 + 1)%02 (u + 1_du +u 1_dv 0

There are only finitely many exceptional points with v(u + 1) = 0. The inverse rational map
(z,y) — (u,v) is defined by v = (1 +y)/(1 —y) and v = 2(1 + y)/(1 — y)z; there are only
finitely many exceptional points with (1 — y)x = 0.

Substitute 1/d for d and —u for u to see that z2 + y? = 1 + (1/d)x?y? is birationally
equivalent to the curve (1/(1 —1/d))v? = (—u)? +2((1 +1/d)/(1 — 1/d))(—u)? + (—u), i.e.,
to (d/(1 —d))v? = u?+2((1 +d)/(1 — d))u? + u, and therefore to E".

To summarize: (1) The curve 22 + y? = 1 + dx?y? is equivalent to a quadratic twist E’ of
E. (2) If E has a unique point of order 2 then d is a nonsquare and x? + 32 = 1 + dz?y? is
equivalent to a quadratic twist E’ of E. (3) If k is finite and F has a unique point of order 2
then d is a nonsquare so E is isomorphic to E’ or to E”; thus E is birationally equivalent to
22 4+ 9% =1+dz?y? or to 22 +y? = 1+ (1/d)z?y>%. O
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Notes on isomorphisms. If d = dé* then the curve 2% + y? = 1 + dz?y? is isomorphic to
the curve 22 + 72 = ¢2(1 + dz?y?): simply define T = éx and y = ¢y.

In particular, if k is a finite field, then at least 1/4 of the nonzero elements of k are 4th
powers, so d/d is a 4th power for at least 1/4 of the choices of d € k — {0}; the smallest
qualifying d is typically extremely small. But for computational purposes we do not recom-
mend minimizing d as a general strategy: ¢ will usually be quite large, and a small ¢ is more
valuable than a small d. See Section 4.

3 The Edwards addition law

This section presents the Edwards addition law for an Edwards curve x2 +y? = ¢?(1 +dx?y?).
We show (1) that the Edwards addition law produces points on the curve, (2) that the
Edwards addition law corresponds to the standard addition law on a birationally equivalent
elliptic curve, and (3) that the Edwards addition law is complete when d is not a square. We
postpone proofs until the end of the section.

Fix a field k of characteristic different from 2. Fix ¢,d € k such that ¢ # 0, d # 0, and
dc* # 1. Consider the Edwards addition law

T1Y2 + Y172 Y1Y2 — T122
(w1,91), (22, y2) — C(

L+ dxizayry)’ o1 — dzizoyiy2)

on the Edwards curve 22 + y? = ¢?(1 + dz?y?) over k.

Examples: for each point P = (z1,y;) on the curve, P is the sum of (0, ¢) and P, so (0, c)
is a neutral element of the addition law; the only neutral element is (0, ¢); (0, ¢) is the sum of
P and —P = (—z1,y1); in particular, (0, —c) has order 2; (¢,0) and (—c, 0) have order 4.

The next theorem states that the output of the Edwards addition law is on the curve
when the output is defined, i.e., when the denominators 1 4+ dziz2y1ys are nonzero.

Theorem 3.1. Let k be a field in which 2 # 0. Let ¢, d be nonzero elements of k with de* # 1.
Let w1, y1, T2, y2 be elements of k such that 22 +y3 = 2(1+dz?y?) and 23 +y2 = 2(1+dz3y3).
Assume that dxizoy1y2 ¢ {—1,1}. Define x3 = (x1y2 + yixe)/c(l + driz2y1y2) and y3 =
(y1y2 — x122) /(1 — dx122Y1Y2). Then ﬂsg + y% =c*(1+ d:cgy%)

The next theorem states that the output of the Edwards addition law corresponds to the
output of the standard addition law on a birationally equivalent elliptic curve E. One can
therefore perform group operations on E' (or on any other birationally equivalent elliptic curve)
by performing the corresponding group operations on the Edwards curve, at the expense of
evaluating and inverting the correspondence once for each series of computations.

Theorem 3.2. In the situation of Theorem 3.1, let e = 1 —dc?* and let E be the elliptic curve
(1/e)v? = u+ (4/e —2)u +u. For each i € {1,2,3} define P; as follows: P; = oo if (x4, ;) =
(0,¢); P, =(0,0) if (xi,yi) = (0, —c); and P; = (u;,v;) if x; # 0, where u; = (¢ +vy;)/(c — ;)
and v; = 2c¢(c+ y;)/(c — yi)x;. Then P; € E(k) and P; + P, = Ps.

Here P, + P» means the sum of P; and P» in the standard addition law on E(k). Note
that x; # 0 implies y; # c.

The group operations could encounter exceptional points where the Edwards addition law
is not defined. One can, in many applications, rely on randomization to avoid the exceptional
points, or one can switch from the Edwards curve back to F when exceptional points occur.
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The next theorem states that, when d is not a square, there are no exceptional points:
the denominators in the Edwards addition law cannot be zero. In other words, when d is not
a square, the Edwards addition law is complete: it is defined for all pairs of input points on
the Edwards curve over k. The set E(k), with the standard addition law, is isomorphic as a
group to the set of points (x1,y1) € k X k on the Edwards curve, with the Edwards addition
law. Any sequence of group operations can be carried out by the Edwards addition law, with
no risk of failure.

Theorem 3.3. Let k be a field in which 2 # 0. Let c,d,e be nonzero elements of k with
e =1—dc*. Assume that d is not a square in k. Let x1,y1,x2,y2 be elements of k such that
22 +y? = A(1+dx2y?) and 23+y3 = 2(1+dx3y3). Then drimay1y2 # 1 and dr1xoy1ye # —1.

Example: d = 121665/121666 is not a square in the field k = Z/(2%5 —19). The Edwards
addition law is defined for all (x1,v1), (22,%2) on the Edwards curve z2 + 32 = 1 + dz?y?
over k, and corresponds to the standard addition law on “Curve25519,” the elliptic curve
v? = u? + 486662u? 4+ u over k. The point at oo on Curve25519 corresponds to the point
(0,1) on the Edwards curve; the point (0,0) on Curve25519 corresponds to (0, —1); any other
point (u,v) on Curve25519 corresponds to (v/486664u/v, (v — 1)/(u + 1)); a sum of points
on Curve25519 corresponds to a sum of points on the Edwards curve. One can therefore
perform a sequence of group operations on points of the elliptic curve v? = u? + 486662u? + u
by performing the same sequence of group operations on the corresponding points of the
Edwards curve.

The reader might wonder why [10, Theorem 1] (“The smallest cardinality of a complete
system of addition laws on E equals two”) does not force exceptional cases in the addition
law for the curve x2 + y? = (1 + dx?y?). The simplest answer is that [10, Theorem 1] is
concerned with exceptional cases in the algebraic closure of k, whereas we are concerned with
exceptional cases in k itself.

The reader might also wonder why we ignore the two projective points (0 : 1 : 0) and
(1:0:0) on the Edwards curve. The answer is that, although these points might at first
glance appear to be defined over k, they are actually singularities of the curve, and resolving
the singularities produces four points that are defined over k(v/d), not over k.

Proof (of Theorem 3.1). The special case d = 1 is equivalent to [24, Theorem 8.1]. We could
deduce the general case from the special case, but to keep this paper self-contained we instead
give a direct proof.

The first ingredient in the proof is a mechanically verifiable polynomial identity. Define T' =
(192 +y122)? (1 —dz12231Y2) 2 + (Y192 — 2122)? (1 + dr122y1 Y2) 2 — d(21y2 + Y1 72)* (Y12 — T122) 2.
The identity says that T' = (23 + y} — (23 + y3)da?y?) (23 + y3 — (23 + y})dz3y3).

The second ingredient is the curve equation, i.e., the hypotheses on (z1,y1) and (z2,ya2).
Subtract the equation (23 + y3)dziy? = c*(1 + dx3y3)dz?y? from the equation 23 + yf =
(1 + dx3y?) to see that 23 + y§ — (23 + y3)d23y? = (1 — d*x3x3yfy3). Similarly 23 + y3 —
(2% +yi)dadys = (1 — dPatajyiy3). Thus T = (1 — Patadyiy3)”.
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The third ingredient is the Edwards addition law, i.e., the definition of (x3,ys3) in terms
of 1,22, y1,y2. We have

2,.2 92:99
x5+ y3 — c"dr3y;

_ (w2 +ya)’? (ny2 —m122)®  Ad(@ys + y122) (Y1y2 — 2129)°
(1 +drizayiye)?  A(1 —drizayiy2)? (1 + drizayiy2)?(1 — driray1y2)?
T T ,
= =c°.

- (1 + dzizoyny2)?(1 — dzizoyiye)? (1 — d?aiz3yiy3)?
Thus 23 + y3 = ¢*(1 + dz3y3) as claimed. O

Proof (of Theorem 3.2). First we show that each P; is in E(k). If (x;,y;) = (0,¢) then
P, =00 € E(k). If (xi,y;) = (0, —c) then P; = (0,0) € E(k). Otherwise P; = (u;,v;) € E(k)
by essentially the same calculations as in Theorem 2.1, omitted here.

All that remains is to show that P; + P, = P5. There are several cases in the standard
addition law for E(k); the proof is correspondingly forced to split into several cases.

If (z1,y1) = (0,¢) then (x3,y3) = (x2,y2). Now P; is the point at infinity and P, = P, so
P, + Py = 00 + P, = P, = P3. Similar comments apply if (z2,y2) = (0, ¢). Assume from now
on that (z1,y1) # (0,¢) and (z2,y2) # (0, ¢).

If (x3,y3) = (0, ¢) then (2, y2) = (—z1,y1). If (x1,y1) = (0, —¢) then also (z2,y2) = (0, —¢)
and P; = (0,0) = P»; otherwise x1,x2 are nonzero so u; = (¢ + y1)/(c — y1) = u2 and
v] = 2cuy/x] = —2cug/x9 = —vg 80 P; = —Ps. In both cases P, + P» = oo = P3. Assume
from now on that (z3,y3) # (0, ¢).

If (z1,y1) = (0, —c) then (x3,y3) = (—z2,—y2). Now (z2,y2) # (0, —c) (since otherwise
(z3,y3) = (0,¢)) and (z2,y2) # (0,¢) so x2 # 0. Thus P; = (0,0) and Py = (ug,ve) with
ug = (c+y2)/(c—y2) and vy = 2cuz/x2. The standard addition law says that (0, 0)+ (ug, vy) =
(r3,53) where 13 = (1/e)(va/us)® — (4/e — 2) —uz = 1/ug and s3 = (v2/uz)(—r3) = —va/us.
Furthermore P35 = (us,v3) with us = (¢ +y3)/(c —y3) = (¢ — y2)/(c + y2) = 1/ug = r3 and
v3 = 2cu3/r3 = —2c/usry = —v3/u3 = s3. Thus P, + P, = Ps. Similar comments apply if
(x27y2) = (07 —C).

Assume from now on that 1 # 0 and z9 # 0. Then P; = (ug,v1) with u; = (c+y1)/(c—y1)
and v1 = 2cuy/x1, and Py = (ug,ve) with ug = (¢ + y2)/(c — y2) and v = 2cus/xs.

If (x3,y3) = (0, —¢) then (z1,y1) = (w2, —y2) so u1 = (c+y1)/(c—uy1) = (c—y2)/(c+y2) =
1/ug and vy = 2cuy/z1 = va/u3. Furthermore P3 = (0,0) so the standard addition law says
as above that —Ps + P» = (0,0) + Py = (1/ug, —vg/u%) = (u1,—v1) = —P,ie, PL+ P = Ps.

Assume from now on that x3 # 0. Then P3 = (ug,v3) with uz = (¢ + y3)/(c — y3) and
v3 = 2cus/x3.

If P, = —P; then uy = u; and v9 = —wvy, 80 k9 = —x1 and yo = c(ug — 1)/(ug + 1) =
clup —1)/(ur + 1) = y1, so (z3,y3) = (0,c), which is already handled above. Assume from
now on that P, # —P;.

If ug = uy and v9 # —wvp then the standard addition law says that (u1,v1) + (ug,v2) =
(r3,s3) where A = (3u? + 2(4/e — 2)us + 1)/((2/e)v1), 13 = (1/e)A? — (4/e — 2) — 2uq, and
s3 = M(u1 —ug) —v1. The following commands for the Magma computer-algebra system check
that (rs,s3) = (us,vs):

K<c,d,x1>:=Field0fFractions(PolynomialRing(Rationals(),3));
e:=1-d*xc"4;
R<y1>:=PolynomialRing(K,1);
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S:=quo<R|x172+y172-c 2% (1+d*x1"2%y172)>;

x2:=x1; y2:=y1;

x3:=(x1*y2+y1xx2) / (cx (1+d*x1*x2xy1xy2) ) ;
y3:=(yl*xy2-x1*x2) / (cx (1-d*x1*x2xyl*y2) ) ;

ul:=(c+y1)/(c-y1); vi:=2*c*ul/x1; S!((1/e)*v1~2-ul~3-(4/e-2)*ul"2-ul);
u2:=(c+y2)/(c-y2); v2:=2*c*xu2/x2; S!((1/e)*v272-u2"3-(4/e-2)*u2"2-u2);
u3:=(c+y3)/(c-y3); v3:=2*xc*u3d/x3; S!((1/e)*v3"2-u3"3-(4/e-2)*u3"2-u3);
lambda:=(3*ul"~2+2*%(4/e-2)*ul+1)/((2/e)*vl);
r3:=(1/e)*lambda~2-(4/e-2)-2%ul; s3:=lambdax(ul-u3)-vi;

S!(u3-r3); S!(v3-s83);

The only remaining case is that uy # uy. The standard addition law says that (u1,v1) +
(u2,v2) = (r3,53) where A = (vg — v1)/(uz — u1), r3 = (1/€)A? — (4/e — 2) — u3 — uz, and
s3 = Mug —ug) —v1. The following commands for the Magma computer-algebra system check
that (rs,s3) = (us,vs):

K<c,d,x1,x2>:=Field0fFractions(PolynomialRing(Rationals(),4));
e:=1-d*c”4;

R<y1l,y2>:=PolynomialRing(K,2);
S:=quo<R|x172+y172-c 2% (1+d*x1"2%y172) ,x272+y2"2-c 2% (1+d*x2"2%y272) >;
x3:=(x1*xy2+y1*x2) / (cx (1+d*x1*x2%y1*y2) ) ;
y3:=(y1lxy2-x1*x2) / (c* (1-d*x1*x2*%y1*xy2)) ;

ul:=(c+y1)/(c-y1); vi:=2xc*ul/x1; S!((1/e)*v1~2-ul~3-(4/e-2)*ul"2-ul);
u2:=(c+y2)/(c-y2); v2:=2%c*xu2/x2; S!((1/e)*v2°2-u2"3-(4/e-2)*u2°2-u2);
u3:=(c+y3)/(c-y3); v3:=2*c*u3d/x3; S!((1/e)*v3"2-u3"3-(4/e-2)*u3"2-u3);
lambda:=(v2-v1)/(u2-ul);

r3:=(1/e)*lambda~2-(4/e-2)-ul-u2; s3:=lambdax(ul-u3)-vil;

S!1(u3-r3); S!(v3-s3);

Conclusion: P3 = P; + P» in every case. O

Proof (of Theorem 3.3). Write € = dz1x2y1y2. Suppose that € € {—1,1}. Then z1, 22, y1,y2 #
0, Furthermore daty?(04 +13) = (drtof + atfadd) = ldaty? + ) = 1 + o) =
x7 +y1 so

(x1 + €y1)2 = l”% + y% + 2er1y1 = dﬂﬁ%y%(ﬂﬁ% + y%) + 2z1y1dT1 229192
= dzlyi (73 + 222y2 + y3) = daiyi (z2 + yo2)°.

If 22 + y2 # 0 then d = ((z1 + ey1)/m1y1(x2 + y2))? so d is a square, contradiction. Similarly,
if 79 — 32 # 0 then d = ((w1 — ey1)/z1y1 (22 — y2))? so d is a square, contradiction. If both
T2 + yo and x3 — yo are 0 then x5 = 0 and yo = 0, contradiction. O

4 Efficient group operations in Edwards form

This section presents fast explicit formulas and register allocations for doubling, mixed addi-
tion, etc. on Edwards curves with arbitrary parameters c, d.

As usual we count the number of operations in the underlying field. We keep separate
tallies of the number of general multiplications (each costing M), squarings (each costing
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S), multiplications by ¢ (each costing C), multiplications by d (each costing D), and addi-
tions/subtractions (each costing a). The costs M, S, C, D, a depend on the choice of platform,
on the choice of finite field, and on the choice of ¢ and d.

Every Edwards curve can easily be transformed to an isomorphic Edwards curve over
the same field having ¢ = 1 and thus C = 0; see “Notes on isomorphisms” in Section 2. In
subsequent sections we assume that ¢ = 1. However, we can imagine applications in which
¢ # 1 (for example, a curve with a fairly small ¢ and with d = 1 could have smaller C + D
than an isomorphic curve with ¢ = 1 and d = ¢*), so we allow arbitrary (c,d) in our explicit
formulas.

Addition. To avoid the inversions in the original addition formulas

T1Y2 + Y122 Y1Y2 — T1X2 )

X1, y (L2, = ’
(1, 51), (22, 92) <C(1+dx1;p2yly2) (1 — dx1z2y192)

we homogenize the curve equation to (X2 +Y?)Z2 = c2(Z* +dX?Y?). A point (X1 : Y7 : Z1)
satisfying (X? + Y2)Z2 = c2(Z{ + dX?Y#) and Z; # 0 corresponds to the affine point
(X1/Z1,Y1/Z1). The neutral element is (0 : ¢ : 1), and the inverse of (X1 : Y7 : Z7) is
(—Xl : Y1 : Zl)

The following formulas, given (X7 : Y7 : Z1) and (X2 : Yy : Z3), compute the sum
(Xg:){g:Zgg):(Xl:Y1:21)+(X2:}/§:ZQ)Z

A=71-Zy B=A% C=X1-Xg; D=Y;-Yy;
EFE=d-C-D; F=B—-—F, G=B+ E,;
Xzg=A-F-(Xi+Y1) (Xo+Y2) - C—D);
Ys=A-G-(D-C); Zy=c-F-G.

One readily counts 10M + 1S + 1C + 1D + 7a. We have saved operations here by rewriting
x1y2 + x2y1 as (1 + y1)(z2 + y2) — x122 — y1y2 and by exploiting common subexpressions.

The following specific sequence of operations starts with registers R, Ra, R3 containing
X1,Y1, 77 and registers Ry, Rs, Rg containing Xo, Y5, Z>, uses just two temporary registers
R7, Rg and constants ¢, d, ends with registers Ry, Ro, R3 containing X3, Y3, Z3 and untouched
registers Ry, Rs5, Rg containing Xs, Ys, Zs, and uses 10M + 1S + 1C + 1D + 7a:

R3 < R3 - Re; R7 < R1+ Rg; Rg < R4+ Rs; R1 < Ry Ry;
Ry < Ry - Rs; Ry < R7- Rg; Ry — Ry — Ri; Ry < R7 — Ry;
R7 «— R7 - R3; Rs < R1- Rg; Rg < d- Rg; Ry «— Ro — Ry;
Ry« Ry Ry; Ry« R3; Ry «— Ry — Rs; Ry« Ry + Rg;
Ry — Ry - R3; R3 < R3- Ri; Ry — Ry Ry; Ry < ¢ Rs.

We emphasize that these formulas work whether or not (X; : Y7 : Z1) = (X2 : Y2 : Z»).
There is no need to go to extra effort to unify the addition formulas with separate doubling
formulas; the addition formulas are already unified. See Section 3 for further discussion of the
scope of validity of the addition formulas. In particular, we emphasize that the addition law
works for all pairs of input points if d is not a square.

As an alternative, one can obtain A(B — E) and A(B+ E) and (B — E)(B + E) as linear
combinations of A2, B2 E? (A+ B)?, (A+ E)?. This change replaces 10M + 1S by 7M + 58S,
presumably saving time on platforms where S/M < 0.75. Note that S/M = 0.67 in [7].
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Mixed addition. “Mixed addition” refers to the case that Z5 is known to be 1. In this case the
multiplication A = Z1-Z5 can be eliminated, reducing the total costs to 9IM+1S+1C+1D+T7a:

B=27% C=X,-Xo; D=Y;-Yo;
EF=d-C-D; F=B—-F; G=B+ E,;
Xsg=2Z1-F-(Xi+Y1)  (Xo+Y2) —C—D);
Ys=2,-G-(D-C); Zy=c-F-QG.

Doubling. “Doubling” refers to the case that (X; : Y7 : Z1) and (X2 : Y2 : Z3) are known
to be equal. In this case the following formulas (with 2H computed as H + H) use only
3M + 4S + 3C + 6a:

B=(X1+YV)% C=X}; D=Y% E=C+D; H=(c-Z1)%
J=E-2H; Xs=c-(B-E)-J; Y3=c-E-(C-D); Z3y=FE - J.

We have saved operations here by rewriting c(1+dx?y?) as (3 +y?)/c using the curve equation,
by rewriting c¢(1 — dz?y?) as (2¢® — (23 + y})) /¢, by rewriting 2x1y; as (1 +y1)% — 23 — 3,
and by exploiting common subexpressions. Thanks to Marc Joye for suggesting rewriting
c(1+dafy?) as (af + y7)/c.

The following specific sequence of operations, starting with registers Ry, Ro, R3 containing
X1,Y1, Z1, changes registers R1, Ro, R3 to contain X3, Y3, Z3, using 3M + 4S 4 3C + 6a and
using just two temporary registers Ry, Rs:

R4 — R1 + Ro; R3 < c- Rs; R1<—R%; R2<—R%;

Ry — R3; Ry — R}; R3 — R3+ Rs; Rs — Ry + Ry;

Ry +— Ry — Ro; Ry +— Ry — R5; R3 < Rs — R3; Ry < R3- Ry;
Rs «— Rs-Rs; Ro«— Rs-Rs; Ry «—c-Ry; Ry« c- Ra.

The following alternate sequence of operations uses one more addition, totalling 3M + 4S +
3C + 7a, but uses just one additional register Ry:

R3 «— ¢ Rs; R4<—R%; R «— R1 + Ry; R1<—R%; R2<—R§;
R3 — R3; Rz — Rz + R3; Ry — Ro+ Ry; Ry — Ry + Ry;
Ry« Ry — Ry; R1 <~ R1 — Ry; Ry < Ro- Ry; R3 < Ry — Rs;
Ry — R1-Rs; R3 < R3-R4; Ri < c-Ry; Ry« c- Ry,

Another option is to scale (X3 : Y3 : Z3) to (X3/c: Y3/c: Z3/c), replacing two multiplications
by ¢ with one multiplication by 1/¢; typically 1/c can be precomputed. Of course, all three
multiplications by ¢ can be skipped if ¢ = 1.

5 Comparison to previous addition speeds

This section compares the speeds of the algorithms in Section 4 to the speeds of previous
algorithms for elliptic-curve doubling, elliptic-curve mixed addition, etc. The next three sec-
tions perform similar comparisons for higher-level elliptic-curve operations relevant to various
cryptographic applications.
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Level of detail of the comparison. We follow most of the literature in ignoring the costs
of additions, subtractions, and multiplications by small constants. We recognize that these
costs (and the costs of non-arithmetic operations) can be quite noticeable in practice, and we
plan a more detailed cost evaluation of the Edwards form along the lines of [7], but for this
paper we ignore the costs.

Consider, for example, the usual doubling algorithm for Jacobian coordinates in the case
aq = —3: there are 4 squarings, 4 general multiplications, 5 additions and subtractions, and
5 multiplications by the small constants 2, 3,4, 8, 8. We summarize these costs as 4M + 48S.

Some algorithms involve multiplications by curve parameters, such as the parameter d in
Edwards curves. Some applications can take advantage of multiplying by a constant d, and
some applications can choose curves where d is small, but other applications cannot. To cover
both situations we separately tally the cost D of multiplying by a curve parameter; the reader
can substitute D = 0, D = M, or anything in between.

Each of our tables includes a column “(1,1)” that substitutes (S,D) ~ (M, M), a column
“(0.8,0.5)” that substitutes (S,D) ~ (0.8M, 0.5M), and a column “(0.8,0)” that substitutes
(S,D) ~ (0.8M,0M). We sort each table using the standard, but debatable, approximations
(S,D) =~ (0.8M,0M). We do not claim that these approximations are valid for most applica-
tions. The order of entries in our tables can easily be affected by small changes in the S/M
ratio, the D/M ratio, etc.

Algorithms in the literature. We have built an “Explicit-Formulas Database” contain-
ing, in computer-readable format, various algorithms for operations on elliptic curves. The
database is publicly available at http://www.hyperelliptic.org/EFD. It currently consists
of 96 scripts for the Magma computer-algebra system checking the correctness of algorithms
for elliptic curves in the following forms:

e Projective: A point (z,y) on an elliptic curve y?> = 2% + ax + b, with neutral element
at infinity, is represented as (X : Y : Z) satisfying Y?Z = X3 + aXZ% + bZ3. Here
(X:Y:Z)=(AX:\Y : \Z) for all nonzero A.

e Jacobian: A point (z,y) on an elliptic curve y? = 23 + az + b, with neutral element at
infinity, is represented as (X : Y : Z) satisfying Y2 = X3 + aXZ* + bZ5. Here (X : Y :
Z) = (N2X : M3Y : \Z) for all nonzero \.

e Jacobi quartic (with leading and trailing coefficients 1): A point (x,y) on an elliptic
curve y? = z* 4+ 2ax? + 1, with neutral element (0,1), is represented as (X : Y : Z)
satisfying Y2 = X* 4+ 2aX22% + Z* Here (X : Y : Z) = (AX : A2Y : \Z) for all nonzero
A

e Jacobi intersection: A point (s,c,d) on an elliptic curve s 4+ ¢ = 1, as® + d? = 1,
with neutral element (0,1,1), is represented as (S : C : D : Z) satisfying S% + C? = Z2,
aS? + D? =72 Here (S:C:D:Z)=(AS:AC:AD: \Z) for all nonzero \.

e Hessian: A point (z,y) on an elliptic curve 23 + y® + 1 = 3axy, with neutral element
at infinity, is represented as (X : Y : Z) satisfying X3 4+ Y3 4+ Z3 = 3aXY Z. Here
(X:Y:2Z)=(AX: Y : \Z) for all nonzero A.

e Doche/Icart/Kohel: A point (z,y) on an elliptic curve y? = 2% + az? + 16az, with
neutral element at infinity, is represented as (X : Y : Z : Z?) satisfying Y? = ZX3 +
aZ?X? +16aZ3X. Here (X : Y : Z: Z%) = (AX : A2Y : AZ : \2Z?) for all nonzero ).

e Edwards (with ¢ = 1): A point (z,y) on an elliptic curve 224 y? = 1+dx?y?, with neutral
element (0, 1), is represented as (X : Y : Z) satisfying (X2 +Y?2)Z? = Z* + dX2Y?2. Here
(X:Y :Z)=(AX: )Y : \Z) for all nonzero .
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We copied formulas from several sources in the literature; see [23] for an overview. One par-
ticularly noteworthy source is the 1986 paper [15] by Chudnovsky and Chudnovsky, containing
formulas and operation counts for several forms of elliptic curves: projective, Jacobian, Jacobi
quartic, Jacobi intersection, and Hessian. Liardet and Smart in [33] presented faster algorithms
for Jacobi intersections. Billet and Joye in [8] presented faster algorithms for Jacobi quartics.
Joye and Quisquater in [27] pointed out that the Hessian addition formulas (dating back to
Sylvester) could also be used for doublings after a permutation of input coordinates, providing
a weak form of unification: specifically, 2(Xy : Y1 : Z1) = (Z1 : X5 : Y1)+ (Y1 : Z1 : X1). Brier
and Joye in [12] presented unified addition formulas for projective (and affine) coordinates;
see also [11]. Of course, we also include our own algorithms for Edwards curves.

Chudnovsky and Chudnovsky also pointed out, in the case of Jacobian coordinates, that
readdition of a point is less expensive than the first addition. The addition formulas for
(X1:Y1:21)+ (Xa:Ya: Zo) use IM + 1S to compute Z5 and Z3; by caching Z2 and Z3
one can save 1M + 1S in computing any (X’ : Y’ : Z’) + (X2 : Yo : Z3). We comment that
similar savings are possible for Jacobi intersections and Jacobi quartics.

(Rather than distinguishing readditions from initial additions, Chudnovsky and Chud-
novsky reported speeds for addition and doubling of points represented as (X : Y : Z : Z2:
Z3). But this representation is wasteful, as pointed out by Cohen, Miyaji, and Ono in [17]:
if (X1 :Y7:Zy) is used only for a doubling and not for a general addition then there is no
need to compute Z3. Sometimes coordinates (X : Y : Z : Z% : Z3) are called “Chudnovsky
coordinates” or “Chudnovsky-Jacobian coordinates,” and computing Z2? and Z2 only when
they are needed is called “mixing Chudnovsky coordinates with Jacobian coordinates.” We
prefer to describe the same speedup using the simpler concept of readditions.)

Our operation counts for previous systems are often better than the operation counts
reported in the literature. One reason is that a multiplication can often be replaced with
a squaring, saving M — S. For example, as pointed out in [5, pages 16-17], Jacobian dou-
bling with a = —3 uses 3M + 5S rather than the usual 4M + 4S. As another example,
Doche/Icart/Kohel doubling uses 2M + 58 + 2D rather than 3M + 4S + 2D. The Explicit-
Formulas Database contains full justification for each of our operation counts.

Comparison charts. The following table reports speeds for addition of two points:

System ADD (1,1) | (0.8,0.5) | (0.8,0)
Doche/Icart/Kohel | 12M +5S+1D | 18M | 16.5M 16M
Jacobian 11M + 58 16M | 15M 15M
Jacobi intersection | 13M +2S + 1D | 16M | 15.1M 14.6M
Projective 12M + 28 14M | 13.6M 13.6M
Jacobi quartic 10M +3S+1D | 14M | 12.9M 12.4M
Hessian 12M 12M | 12M 12M
Edwards 1I0OM+ 1S+ 1D | 12M | 11.3M 10.8M
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Readdition of a point already used in an addition:

Doubling:

Unified addition:

System reADD (1,1) | (0.8,0.5) | (0.8,0)
Doche/Icart/Kohel | 12M + 58S + 1D | 18M | 16.5M 16M
Projective 12M + 28 14M | 13.6M 13.6M
Jacobian 10M + 48 14M | 13.2M 13.2M
Jacobi intersection | 11IM +2S + 1D | 14M | 13.1M 12.6M
Hessian 12M 12M | 12M 12M
Jacobi quartic 9IM + 3S + 1D 13M | 11.9M 11.4M
Edwards 10M+ 1S+ 1D | 12M | 11.3M 10.8M
Mixed addition (i.e., addition assuming that Z; = 1):

System mADD (1,1) | (0.8,0.5) | (0.8,0)
Jacobi intersection | 11M +2S + 1D | 14M | 13.1M 12.6M
Doche/Icart/Kohel | SM +4S+1D | 13M | 11.7M 11.2M
Projective 9M + 2S 11M | 10.6M 10.6M
Jacobi quartic SM+3S+1D 12M | 10.9M 10.4M
Jacobian ™™ + 48 11IM | 10.2M 10.2M
Hessian 10M 10M | 10M 10M
Edwards IM + 1S+ 1D 11M | 10.3M 9.8M
System DBL (1,1) | (0.8,0.5) | (0.8,0)
Projective 5M+6S+1D | 12M | 10.3M 9.8M
Projective if a = =3 | TM + 3S 10M 9.4M 9.4M
Hessian 6M + 3S IM 8.4M 8.4M
Jacobi quartic IM+9S+1D | 11M 8.TM 8.2M
Jacobian 1IM+8S+1D | 10M 7.9M 7.4M
Jacobian if a = —3 3M + 58 SM ™ ™
Jacobi intersection 3M + 48 ™ 6.2M 6.2M
Edwards 3M + 48 ™ 6.2M 6.2M
Doche/Icart/Kohel | 2M +5S+2D | 9M | ™™ 6M
System UNI (1,1) | (0.8,0.5) | (0.8,0)
Projective 11IM+6S+1D | 18M | 16.3M 15.8M
Projective if a = —1 | 13M + 3S 16M | 15.4M 15.4M
Jacobi intersection 13M +2S+ 1D | 16M | 15.1M 14.6M
Jacobi quartic 10M +3S+1D | 14M | 12.9M 12.4M
Hessian 12M 12M | 12M 12M
Edwards 1IOM +1S+1D | 12M | 11.3M 10.8M

Most of the addition formulas in this last table are strongly unified: they work without change
for doublings. The Hessian addition algorithm is an exception: it works for doublings only after
a permutation of input coordinates. As mentioned earlier, the addition algorithm for Edwards
curves with non-square d has the stronger feature of being complete: it works without change

for all inputs.

13
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6 Single-scalar variable-point multiplication

This section compares Edwards curves to previous curve forms for single-scalar variable-point
multiplication: computing nP given an integer n and a curve point P. This is one of the
critical computations in elliptic-curve cryptography; for example, if n is a secret key and
P is another user’s public key then nP is a Diffie-Hellman secret shared between the two
users. The next section considers variations of the same problem: fixed points P (allowing
precomputation of, e.g., 2'?8 P), more scalars and points, etc.

See [2] and [21] for surveys of the classic algorithms for scalar multiplication. We focus
on “signed sliding window” algorithms, specifically with “window width 1”7 (also known as
“non-adjacent form” or “NAF”) or “window width 4.” We also discuss the “Montgomery
ladder.”

We make the standard assumption that the input point P has Z = 1. All additions of P
can thus be computed as mixed additions. By scaling other points to have Z = 1 one can
create more mixed additions at the expense of extra field inversions; for the sake of simplicity
we ignore this option in our comparison.

The NAF algorithm, for an average b-bit scalar n, uses approximately b doublings and
approximately (1/3)b mixed additions. So we tally the cost of 1 doubling and 1/3 mixed
additions:

System 1 DBL, 1/3 mADD (1,1) | (0.8,0.5) | (0.8,0)
Projective 8M + 6.67S + 1D 15.7M | 13.8M 13.3M
Projective if a = —3 | 10M + 3.67S 13.7M | 12.9M 12.9M
Hessian 9.33M + 3S 12.3M | 11.7TM 11.7M
Jacobi quartic 3.67M + 10S + 1.33D 15M 12.3M 11.7M
Jacobian 3.33M + 9.33S + 1D 13.7M | 11.3M 10.8M
Jacobian if a = —3 5.33M + 6.33S 11.7M | 10.4M 10.4M
Jacobi intersection 6.67M + 4.67S 4+ 0.333D | 11.7M | 10.6M 10.4M
Doche/Icart/Kohel | 4.67M + 6.33S + 2.33D 13.3M | 10.9M 9.73M
Edwards 6M + 4.33S + 0.333D 10.7M 9.63M 9.47TM

The “signed width-4 sliding windows” algorithm involves, on average, approximately b—4.5
doublings, 7b/48 + 5.2 readditions, b/48 4+ 0.9 mixed additions, and 0.9 non-mixed additions;
e.g., approximately 251.5 doublings, 42.5 readditions, 6.3 mixed additions, and 0.9 non-mixed
additions for b = 256. (Different variants of the algorithm have slightly different costs; we
chose one variant and measured it for 10000 uniform random 256-bit integers n.) So we tally
the cost of 251.5/256 ~ 0.98 doublings, 42.5/256 ~ 0.17 readditions, 6.3/256 ~ 0.025 mixed
additions, and 0.9/256 ~ 0.0035 non-mixed additions:

System 0.98 DBL, 0.17 reADD, etc. | (1,1) (0.8,0.5) | (0.8,0)
Projective 7.17TM + 6.28S + 0.982D 14.4M 12.7M 12.2M
Projective if a = —3 | 9.13M + 3.34S 12.5M 11.8M 11.8M
Hessian 8.18M + 2.95S 11.1M 10.5M 10.5M
Jacobi quartic 2.71IM + 9.42S 4+ 1.18D 13.3M 10.8M 10.2M
Jacobian 2.85M + 8.64S + 0.982D 12.5M 10.3M 9.7T™M
Jacobian if a = —3 4.82M + 5.69S 10.56M 9.37TM 9.37TM
Doche/Icart/Kohel | 4.2M + 5.86S + 2.16D 12.2M 9.96M 8.88M
Jacobi intersection 5.09M + 4.32S + 0.194D 9.6M 8.64M 8.54M
Edwards 4.86M + 4.12S + 0.194D 9.18M 8.26M 8.16M
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Another approach to high-speed single-scalar multiplication is Montgomery’s algorithm
in [36] for z-coordinate operations on curves in Montgomery form y? = x3 + az? + x. This
algorithm does not support fast addition P,Q — P + @, does not support arbitrary addition
chains, and does not fit into our previous tables; but it does support fast “differential addition”
P—-Q,P,Q — P+ @, and therefore fast computation of “differential addition-subtraction
chains.”

In particular, the “Montgomery ladder” uses 5M + 4S + 1D per bit of n to compute
P — nP. For comparison, the NAF algorithm for Edwards curves with our formulas takes
6M + 4.33S 4 0.333D per bit of n, clearly slower than 5M + 4S + 1D per bit. But signed
width-4 sliding windows take only 4.86M + 4.12S + 0.194D per bit for b = 256, saving
0.14M — 0.12S + 0.806D per bit. Note that Edwards form is less sensitive to a large D than
Montgomery form. Larger b’s favor larger window widths, reducing the number of additions
per bit and making Edwards curves even more attractive.

7 Multiple scalars, fixed points, etc.

General multi-scalar multiplication means computing > n;P; given integers n; and curve
points P;. Specific tasks are obtained by specifying the number of points, by specifying which
points are known in advance, by specifying which integers are known in advance, etc. See
generally [2] and [21].

We focus on four specific algorithms: the popular “joint sparse form” (“JSF”) algorithm for
computing ni Py + no P, given b-bit integers ni,ng and curve points Pj, P»; the accelerated
ECDSA verification algorithm in [1, page 9]; batch verification of elliptic-curve signatures,
using the “Small Exponents Test” from [4, Section 3.3] and the multi-scalar multiplication
algorithm that de Rooij in [19, Section 4] credits to Bos and Coster; and computation of nP
for a fixed point P, using a standard “comb” table containing 90 precomputed multiples of P,
essentially 2{0:1:2:3.4510/6(10 1} P 4 {0, 1}2%24P + {0,1}22%/24P 4 {0,1}2%%/2* P), normalized
to have Z = 1.

The JSF algorithm uses about b doublings, about (1/4)b mixed additions (for average
ni,n2), and about (1/4)b readditions. So we tally the cost of 1 doubling, 1/4 mixed additions,
and 1/4 readditions:

System 1 DBL, 1/4 mADD, 1/4 reADD | (1,1) (0.8,0.5) | (0.8,0)
Projective 10.2M + 7S + 1D 18.2M | 16.4M 15.8M
Projective if a = —3 | 12.2M + 4S 16.2M | 15.4M 15.4M
Hessian 11.5M + 3S 14.5M | 13.9M 13.9M
Jacobi quartic 5.25M + 10.5S + 1.5D 17.2M | 14.4M 13.7M
Jacobian 5.25M + 10S + 1D 16.2M | 13.8M 13.2M
Jacobian if a = —3 7.25M + 7S 14.2M | 12.8M 12.8M
Doche/Icart /Kohel T™ + 7.258 + 2.5D 16.8M | 14.1M 12.8M
Jacobi intersection 8.5M + 5S + 0.5D 14M 12.8M 12.5M
Edwards 7.75M + 4.5S 4+ 0.5D 12.8M | 11.6M 11.3M

The accelerated ECDSA verification algorithm uses about (1/3)b doublings, about (1/4)b
mixed additions, and about (1/4)b readditions. So we tally the cost of 1/3 doublings, 1/4
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mixed additions, and 1/4 readditions:

System 1/3 DBL, 1/4 mADD, 1/4 reADD | (1,1) (0.8,0.5) | (0.8,0)

Projective 6.92M + 3S + 0.333D 10.2M 9.48M 9.32M
Projective if a = —3 | 7.58M + 2S 9.58M 9.18M 9.18M
Doche/Icart/Kohel | 5.67M + 3.92S + 1.17D 10.7M 9.38M 8.8M

Jacobi intersection 6.5M + 2.33S + 0.5D 9.33M 8.62M 8.3TM
Jacobian 4.58M + 4.67S + 0.333D 9.58M 8.48M 8.32M
Hessian 7.5M + 1S 8.5M 8.3M 8.3M

Jacobian if a = —3 5.256M + 3.67S 8.92M 8.18M 8.18M
Jacobi quartic 4.58M + 4.5S + 0.833D 9.92M 8.6M 8.18M
Edwards 5.75M + 1.83S + 0.5D 8.08M 7.47TM 7.22M

The batch-verification algorithm is not as well known as it should be, so we summarize it
here for one variant of the ElGamal signature system. Fix a hash function H and a base point
B on an elliptic curve over a 256-bit field. Define (R, s) as a signature of a message m under
a public key K if R, K are curve points, s is a 256-bit integer, and sB = H(R,m)R+ K. The
batch-verification algorithm is given (e.g.) 100 alleged signatures (R;, s;) of 100 messages m;
under 100 keys K;. The algorithm checks the equations s;B = H(R;, m;)R; + K; by choosing
random 128-bit integers v; and checking that the combination (Y, v;s;)B—>, v;H (Rym;)R;—
>, viK; is zero. Computing this combination — a 201-scalar multiplication with 101 256-bit
scalars and 100 128-bit scalars — takes about 0.8 - 256 mixed additions and about 24.4 - 256
readditions with the Bos-Coster algorithm. So we tally the cost of 0.8 mixed additions and

24.4 readditions:

System 0.8 mADD, 24.4 reADD | (1,1) | (0.8,0.5) | (0.8,0)
Doche/Icart/Kohel | 299M + 1258 + 25.2D 450M | 412M 399M
Jacobian 274M + 1258 399M | 374M 374M
Jacobi intersection | 326M + 50.4S + 25.2D 402M | 37T9M 366 M
Projective 300M + 50.4S 350M | 340M 340M
Jacobi quartic 250M + 75.6S + 25.2D 351M | 323M 311M
Hessian 301M 301IM | 301M 301M
Edwards 251M + 25.2S + 25.2D 302M | 284M 271M

The 90-point-comb algorithm computes a b-bit fixed-point single-scalar multiplication as
a 24-scalar multiplication with about /24 doublings and about 15b/64 = 5.625(b/24) mixed
additions. So we tally the cost of 1/24 doublings and 15/64 mixed additions:

System 1/24 DBL, 15/64 mADD (1,1) (0.8,0.5) | (0.8,0)

Jacobi intersection 2.7TM + 0.635S + 0.234D 3.57TM 3.33M 3.21M
Projective 2.32M + 0.719S + 0.0417D 3.08M 2.91M 2.89M
Projective if a = =3 | 2.4M + 0.594S 2.99M 2.88M 2.88M
Doche/Icart /Kohel 1.96M + 1.15S + 0.318D 3.42M 3.03M 2.88M
Jacobi quartic 1.92M + 1.08S + 0.276D 3.2TM 2.92M 2.78M
Jacobian 1.68M + 1.27S 4+ 0.0417D 2.99M 2.72M 2.7TM

Hessian 2.59M + 0.125S 2.72M 2.69M 2.69M
Jacobian if a = —3 1.77TM + 1.158 2.91M 2.68M 2.68M
Edwards 2.23M + 0.401S + 0.234D 2.8TM 2.67TM 2.56M
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Montgomery’s z-coordinate algorithm in [36] can also be used for multi-scalar multiplica-
tion, but does not seem to provide competitive performance as the number of scalars increases,
despite recent differential-addition-chain improvements in [6] and [13].

8 Countermeasures against side-channel attacks

The scalar-multiplication algorithms discussed in Sections 6 and 7 are often unacceptable
for cryptographic hardware and embedded systems. Many secret bits of the integers n; are
leaked, through the pattern of doublings and mixed additions and non-mixed additions, to
side-channel attacks such as simple power analysis. See generally [26] and [32].

One response is to use a fixed pattern of doublings, mixed additions, etc., independent of
the integers n;. Another response is to hide the pattern of doublings, mixed additions, etc.
Some of these responses still leak the Hamming weight in the single-scalar case, and the total
number of operations in the general case, but this information can be shielded at low cost
in other ways. Of course, at a lower level, field operations must be individually shielded. In
particular, an operation counted as M must be carried out by a multiplication unit whose
time, power consumption, etc. do not depend on the inputs. Even if the inputs happen to
be the same, and even if a faster squaring unit is available, the multiplication must not be
carried out by the squaring unit. An operation counted as S can be carried out by a faster
squaring unit whose time, power consumption, etc. do not depend on the input.

We focus on four specific side-channel countermeasures: non-sliding windows with digits
{1,2,3,4,5,6,7,8}; signed width-4 sliding windows with unified addition-or-doubling formu-
las; width-4 sliding windows with atomic blocks; and the Montgomery ladder. For concreteness
we consider two examples of primitives: first single-scalar multiplication and then triple-scalar
multiplication. Extra scalars produce extra additions, reducing the importance of doublings,
as in Section 7; in particular, extra scalars make unified formulas more attractive.

We also discuss differential attacks at the end of the section.

Single-scalar multiplication. Non-sliding windows with digits {1,2,3,4,5,6,7,8} use, on
average, approximately b — 1.9 doublings and b/3 + 6 readditions for single-scalar multi-
plication: e.g., 254.1 doublings and 91.4 readditions for b = 256. So we tally the cost of
254.1/256 ~ 0.99 doublings and 91.4/256 ~ 0.36 readditions:

System 0.99 DBL, 0.36 reADD | (1,1) (0.8,0.5) | (0.8,0)
Projective 9.27TM + 6.66S + 0.99D | 16.9M | 15.1M 14.6M
Projective if a = —3 | 11.2M + 3.69S 14.9M | 14.2M 14.2M
Hessian 10.3M + 2.97S 13.2M | 12.6M 12.6M
Jacobi quartic 4.23M +9.99S + 1.35D | 15.6M | 12.9M 12.2M
Jacobian 4.59M + 9.36S + 0.99D | 14.9M | 12.6M 12.1M
Doche/Icart/Kohel | 6.3M + 6.75S +2.34D | 15.4M | 12.9M 11.7M
Jacobian if a = —3 6.57TM + 6.39S 13M 11.7M 11.7M
Jacobi intersection 6.93M + 4.68S + 0.36D | 12M 10.9M 10.7M
Edwards 6.57M + 4.32S + 0.36D | 11.2M | 10.2M 10M

Signed width-4 sliding windows with unified addition-or-doubling formulas use, on average,
7b/6 + 2.5 unified operations for single-scalar multiplication: e.g., 301.2 unified operations for
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b = 256. So we tally the cost of 301.2/256 ~ 1.18 unified operations:

System 1.18 UNI (1,1) (0.8,0.5) | (0.8,0)
Projective 13M + 7.08S + 1.18D 21.2M | 19.2M 18.6M
Projective if a = —1 | 15.3M + 3.54S 18.9M | 18.2M 18.2M
Jacobi intersection 15.3M + 2.36S + 1.18D | 18.9M | 17.8M 17.2M
Jacobi quartic 11.8M + 3.54S + 1.18D | 16.5M | 15.2M 14.6M
Hessian 14.2M 14.2M | 14.2M 14.2M
Edwards 11.8M + 1.18S + 1.18D | 14.2M | 13.3M 12.7M

Next we consider signed width-4 sliding windows with atomic blocks. Chevallier-Mames,
Ciet, and Joye in [14] presented Jacobian-coordinate formulas using 10 atomic blocks for
doubling and 16 atomic blocks for addition. Each block costs 1M and consists of one field
multiplication, one field addition, one field negation, and another field addition; many of the
additions and negations are dummy operations. Barbosa and Page in [3] presented automatic
tools that turn arbitrary explicit formulas using mM + sS into formulas using m + s atomic
blocks, each consisting of one field multiplication and some number of field additions and
negations, thus costing 1M. So we tally the cost of 0.98 doublings, 0.17 readditions, 0.025
mixed additions, and 0.0035 non-mixed additions, as in Section 6, except that we insist on
S =M:

System 0.98 DBL, 0.17 reADD, etc., S=M | (1,1) (1,0)
Projective 13.5M + 0.982D 14.4M 13.5M
Projective if a = —3 | 12.56M 12.5M 12.56M
Jacobi quartic 12.1M + 1.18D 13.3M 12.1M
Jacobian 11.5M + 0.982D 12.5M 11.56M
Hessian 11.1M 11.1M 11.1M
Jacobian if a = —3 10.56M 10.56M 10.56M
Doche/Icart/Kohel | 10.1M + 2.16D 12.2M | 10.1M
Jacobi intersection 9.41M + 0.194D 9.6M 9.41M
Edwards 8.99M + 0.194D 9.18M 8.99M

The Montgomery ladder for single-scalar multiplication naturally uses a fixed double-add
pattern costing only 5M + 4S + 1D per bit. This combination of side-channel resistance and
high speed has already attracted interest; see, e.g., [12, Section 4], [28], and [7].

We comment that, in some situations, the dummy operations in atomic blocks can be
detected by fault attacks. Non-sliding windows (with nonzero digits), unified formulas, and
the Montgomery ladder have the virtue of avoiding dummy operations.
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Triple-scalar multiplication. Non-sliding windows with digits {1,2,3,4,5,6,7,8} use ap-
proximately 0.99 doublings and 1.08 readditions per bit for triple-scalar multiplication:

System 0.99 DBL, 1.08 reADD | (1,1) (0.8,0.5) | (0.8,0)
Projective 17.9M + 8.1S + 0.99D 2TM 24.9M 24.4M
Projective if a = =3 | 19.9M + 5.13S 25M 24M 24M

Doche/Icart/Kohel | 14.9M + 10.3S 4 3.06D | 28.4M | 24.8M 23.2M
Jacobian 11.8M + 12.2S + 0.99D | 256M 22.1M 21.6M
Hessian 18.9M + 2.97S 21.9M | 21.3M 21.3M
Jacobian if a = —3 13.8M + 9.27S 23M 21.2M 21.2M
Jacobi quartic 10.7M + 12.2S + 2.07D | 24.9M | 21.5M 20.4M
Jacobi intersection 14.9M + 6.12S + 1.08D | 22.1M | 20.3M 19.7M
Edwards 13.8M + 5.04S + 1.08D | 19.9M | 18.3M 17.8M

Signed width-4 sliding windows with unified addition-or-doubling formulas use approxi-
mately 1.54 unified operations per bit:

System 1.54 UNI (1,1) (0.8,0.5) | (0.8,0)
Projective 16.9M + 9.24S + 1.54D | 27.7M | 25.1M 24.3M
Projective if a = —1 | 20M + 4.62S 24.6M | 23.7TM 23.7TM
Jacobi intersection 20M + 3.08S + 1.54D 24.6M | 23.3M 22.5M
Jacobi quartic 15.4M + 4.62S + 1.54D | 21.6M | 19.9M 19.1M
Hessian 18.5M 18.5M | 18.56M 18.5M
Edwards 15.4M + 1.54S + 1.54D | 18.5M | 17.4M 16.6M

Signed width-4 sliding windows with atomic blocks use approximately 0.98 doublings and
0.56 readditions per bit:

System 0.98 DBL, 0.56 reADD, S=M | (1,1) (1,0)

Projective 18.6M + 0.98D 19.6M | 18.6M
Projective if a = =3 | 17.6M 17.6M | 17.6M
Jacobian 16.7M + 0.98D 17.6M | 16.7TM
Jacobi quartic 16.5M + 1.54D 18.1M | 16.56M
Doche/Icart/Kohel | 16.4M + 2.52D 18.9M | 16.4M
Jacobian if a = —3 15.7M 15.7M | 15.7TM
Hessian 15.5M 15.5M | 15.5M
Jacobi intersection 14.1M + 0.56D 14.7M | 14.1M
Edwards 13M + 0.56D 13.6M | 13M

The Montgomery ladder can be generalized to a multi-scalar multiplication method using
a fixed pattern of doublings and additions, as discussed in [6] and [13], but the performance
of the generalization degrades rapidly as the number of scalars increases, as mentioned in
Section 7.

Countermeasures against differential and correlation side-channel attacks. Curves
in Edwards form are compatible with countermeasures against differential and correlation
side-channel attacks:

e Randomized representations of scalars as addition-subtraction chains; see, e.g., [40] and
[33, Section 4]. Our point representation supports arbitrary additions and subtractions.
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e Randomized scalars; see, e.g., [18, Section 5.1].
e Randomized coordinates; see, e.g., [18, Section 5.3]. Our point representation is redundant

and can be scaled freely: (X7 :Y7: Z1) = (A X7 : A\Y7 : A7) for any A\ # 0.

Randomized points, for example computing nP as n(P + Q) — nQ); see, e.g., [18, Section
5.2]. Our point representation supports arbitrary additions and subtractions.
Randomized curves; see, e.g., [32, Section 29.2]. Using the generalized addition law involv-
ing ¢ and d one can easily transfer the computation to an isomorphic curve with é and d
satisfying dc* = dé*. As another example, one can perform computations on a 3-isogenous
curve.

We suggest using a combination of these countermeasures. In particular, point randomization
or scalar randomization appears to be vital to counteract Goubin-type attacks.
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