
The Effectiveness of Receipt-Based Attacks on

ThreeBallot

Kevin Henry∗, Douglas R. Stinson†, Jiayuan Sui

David R. Cheriton School of Computer Science
University of Waterloo

Waterloo, ON, N2L 3G1, Canada
{k2henry, dstinson, jsui}@uwaterloo.ca

Abstract

The ThreeBallot voting system is an end-to-end (E2E) voter-verifiable
voting system. Each voter fills out three ballots according to a few simple
rules and takes a copy of one of them home as a receipt for verification
purposes. All ballots are posted on a public bulletin board so that any
voter may verify the result. In this paper we investigate the effectiveness
of attacks using the voter’s receipt and the bulletin board. We determine
thresholds for when the voter’s vote can be reconstructed from a receipt,
and when a coercer can effectively verify if a voter followed instructions
by looking for prespecified patterns on the bulletin board. Combining
these two results allows us to determine safe ballot sizes that resist known
attacks. We also generalize a previous observation that an individual
receipt can leak information about a voter’s choices.

1 Introduction

The ThreeBallot voting system was introduced by Rivest [6] as an end-to-end
(E2E) voter-verifiable election system that does not rely on any cryptography
to achieve privacy. As the name implies, in the ThreeBallot system each voter
completes not one, but three separate ballots (called a multi-ballot) in such
a way that no single ballot should reveal information about the vote, but all
three together allow the vote to be counted correctly. All completed ballots are
posted on a bulletin board and the voter is allowed to take home a copy one of

∗Supported by the Natural Sciences and Engineering Research Council of Canada (NSERC)
through a CGS Scholarship

†Supported by the Natural Sciences and Engineering Research Council of Canada (NSERC)
through the grant NSERC-RGPIN #203114-06

1



the three receipts to verify her vote was counted correctly. An overview of the
system is given later in this section.

Since its introduction, ThreeBallot has been the subject of some criticisms.
It was quickly pointed out by Strauss [8] that in many realistic settings the
exponentially many ways a multi-ballot may be filled out, combined with the
constraints imposed on a properly formed multi-ballot, make it possible to recon-
struct the original multi-ballot from a voter’s receipt. The exponential number
of possible ballots can also be exploited by a coercer who realizes that, for large
ballot sizes, the possibility of a fixed pattern of ballots occurring is small. Oth-
ers have pointed out that a single receipt may also leak information about a
voter’s choices [3] without any reliance on the bulletin board.

In this paper we generalize previous results on so-called “leaky-receipts”, as
well as provide a theoretical analysis of the effectiveness of vote reconstruction
and pattern requesting attacks. In the case of reconstruction and pattern at-
tacks, we provide simulated results that back up our theoretical predictions. The
most recent ThreeBallot proposal introduces the short ballot assumption (SBA)
and calls for the process of “debundling”, or breaking a ballot into smaller pieces
to reduce the effectiveness of known attacks. If the SBA holds, then known at-
tacks should not be practical. Using our results, we can compute definite cut-off
points where the SBA holds against reconstruction and pattern attacks. Our
results focus on two-candidate races, as many ballots contain a large number of
yes/no issues.

1.1 Overview of ThreeBallot

A multi-ballot consists of three individual ballots, each with a unique random
ID number at the bottom. If the individual ballots are attached to each other,
there is a perforated edge which allows them to be separated before being placed
in the ballot box. Below is a sample multi-ballot with three candidates. We
omit the candidate names on the second and third ballots; however, they would
appear on all three in practice.

Candidate A O O O
Candidate B O O O
Candidate C O O O

937856 485620 128748

The ID numbers at the bottom of each ballot are generated independently and
randomly as there should be no link between the voter or the individual ballots.
If the voter wishes to cast a vote for Candidate A, then, as a first step, the voter
places an X exactly once for each candidate randomly across the three ballots.
Next, the voter randomly marks an additional circle for Candidate A in one of
the two remaining positions. A possible multi-ballot voting for Candidate A
could be:

2



Candidate A X O X
Candidate B O X O
Candidate C O O X

937856 485620 128748

The voter chooses a single ballot to take home as a receipt, and has a copy of
that ballot made before placing all three separated ballots into the ballot box.
Once the election is over, all ballots are placed onto a public bulletin board. If
there are 3n ballots posted on the bulletin board, then each candidate will have
n+k votes on the bulletin board, where k is the actual number of votes for that
candidate.

To verify that her vote was counted correctly, the voter may look up her
receipt via the ID number to check that it has not been altered. Because one
third of the ballots on the bulletin board have been selected as receipts, an
attacker has a 2

3 chance of succeeding in modifying a single ballot. Thus, the
probability of success rapidly becomes negligible as the number of modified votes
increases. A voter’s receipt also does not state who the voter voted for, so it
cannot be used to prove how she voted with absolute certainty.

1.2 Previous Work

ThreeBallot was proposed by Rivest in October 2006 [6] in a paper calling
for comments and suggestions. The system was later refined with some variants
(called VAV and Twin) being suggested by Rivest and Smith [7]. In the interim,
several issues have been raised with ThreeBallot.

Clark, Essex, and Adams [3] considered security requirements for receipts in
E2E voter-verifiable voting systems, focusing on ThreeBallot, PunchScan [4, 5],
and Prêt-à-Voter [2]. They propose that:

1. A receipt should contain no information that increases the ability of a
coercer to determine the voter’s choices, and,

2. A receipt should not increase an adversary’s chance of modifying ballots
without detection.

All three systems were found to satisfy the second property; however, Three-
Ballot failed to satisfy the first. Section 2.1 contains more details and a gener-
alization of their findings.

Strauss [8] and Appel [1] have each pointed out usability flaws and potential
receipt buying attacks against ThreeBallot. In addition, Strauss also showed
that, in many settings, it is possible to reconstruct a vote from a single receipt
using the bulletin board [9]. We refer to this as a reconstruction attack and
present Strauss’ results alongside our own in Section 3.

3



2 Two-Candidate Races

Two-candidate races are of particular interest. Not only do many real world
elections contain several two-candidate races, but some attacks, such as the
two-candidate attack presented in Section 2.1, are most effective when applied
to two-candidate races. As the results in Section 3 and 4 rely on the probabilities
of certain receipts occurring, we now present a basic analysis of two-candidate
races.

The following table demonstrates the eighteen different ways a two-candidate
multi-ballot can be completed.

A

B

X X O

X O O

X O X

X O O

X X O

O X O

A

B

X O O

X X O

X O O

X O X

O X O

X X O

A

B

X O X

O O X

O X X

O X O

O X X

O O X

A

B

O O X

X O X

O X O

O X X

O O X

O X X

A

B

X X O

O O X

X O X

O X O

O X X

X O O

A

B

O O X

X X O

O X O

X O X

X O O

O X X

Votes for Candidate A Votes for Candidate B

In general, the number of ways a multi-ballot with r races, where race i has ci

candidates, can be filled out is given by

r∏
i=1

(3cici) .

The eighteen possible valid two-candidate multi-ballots yield 54 possible receipts
a voter may choose from. Of these receipts, 12 of them contain two votes, 12
of them contain no votes, and the remaining 30 contain exactly one vote. If
we assume the voter fills out her multi-ballot and chooses her receipt randomly,
then the probability of each of the four possible receipts being chosen is as
follows:

X
X

O
O

X
O

O
X

Pr(·) = 2
9 Pr(·) = 2

9 Pr(·) = 5
18 Pr(·) = 5

18

2.1 Generalized Two-Candidate Attack

Consider the table of possible two-candidate multi-ballots from the previous
section. There are 9 ballots voting for A, yielding 27 possible receipts. Of these

27 receipts, 12 of them are
X

O
. From the 9 ballots voting for B, only 3 of

4



them are
X

O
. Hence, 12 of 15, or 80% of these receipts correspond to a vote

for A. Symmetrically, we can use the opposite receipt to infer a vote for B with
the same confidence. We call this imbalance in receipt distribution the two-
candidate attack, although the same idea may be applied to larger races, albeit
with less effectiveness.

Clark et al. [3] observed this two-candidate attack as a violation of one of the
desired properties of a receipt-based system, namely that a voter’s receipt should
not increase a coercer’s ability to determine the voter’s choice. Their model was
limited to information that a receipt leaks by itself without knowledge of the
bulletin board. Because the bulletin board presents additional information to
an adversary, it can be utilized to strengthen the two-candidate attack. Instead
of assuming that the voter has chosen her candidate randomly, we need only
consider that the pattern used on the multi-ballot is random with respect to the
voter’s choice, as well as which receipt was the receipt taken.

Let XA be the number of multi-ballots voting for A and let XB be the
number of multi-ballots voting for B. These values can easily be computed from
the bulletin board. We now determine the expected number of occurrences of
X

O
.

Of the nine possible multi-ballots voting for A, six of them contain a single

copy of
X

O
and three of them contain two copies of

X

O
. Thus, the expected

number of
X

O
receipts taken by voters who chose A is

XA

(
6
9
· 1 +

3
9
· 2

)
=

4XA

3
.

Similarly, from the multi-ballots voting for B we have six containing no copies

and three contains a single copy of
X

O
. The expected number of

X

O
receipts

taken by voters who chose B is then

XB

(
6
9
· 0 +

3
9
· 1

)
=

XB

3
.

Using these values, we can now solve for the probability that a voter who takes

5



receipt
X

O
has voted for A:

Pr
[
vote for A | X

O

]
=

Pr
[
vote for A ∩ X

O

]
Pr

[
X

O

]
=

4XA

3
4XA

3 + XB

3

=
4XA

4XA + XB
.

We can similarly solve for the probability that a voter who takes receipt
O

X

has voted for B as

Pr
[
vote for B | O

X

]
=

4XB

XA + 4XB
.

Setting XA = XB yields the expected 4
5 = 80% probability in the original two-

candidate attack. Intuitively, this result is exactly as one would expect. If more

people vote for candidate A, then it is more likely that the receipt
X

O
came

from a vote for A.

3 Reconstruction of Ballots

Shortly after ThreeBallot was proposed, Strauss [9] observed that, given a single
receipt and the bulletin board, it is possible to reconstruct the original Three-
Ballot in many realistic election settings. This was accomplished through the
use of simulated elections on a computer. In this section we recreate Strauss’
work and provide a theoretical basis for when reconstruction is possible with
high probability.

3.1 Theoretical Results

The latest revision of ThreeBallot calls for the process of “debundling”, or break-
ing a large ballot into several smaller pieces, each posted separately, so as to
minimize the effectiveness of the reconstruction attack. In this section we de-
velop a formula that can be used to compute the maximum number of voters
or the maximum number of two candidate races a multi-ballot may contain be-
fore the reconstruction attack becomes feasible. The derived formula compares
favorably with simulated results presented in the next section.

A set of three ballots forms a valid triple if there are exactly two votes for
one of the candidates and a single vote for the other. This can occur in one of

6



two ways: Each ballot contains a single vote (two for the same candidate, one
for the other), or each receipt contains a different number of votes.

Recall from Section 2 the probability for each individual receipt to occur.
Strictly speaking, the ballots on the bulletin board are not totally independent;
however, when the number of voters is large, the inter-dependency is minimal
and we assume independence to make an approximation. Thus, the probability
that a randomly chosen triple will be valid is estimated to be:

6 ·
(

5
18

)3

+ 6 ·
(

2
9
· 2
9
· 5
9

)
=

95
324

.

Extending this result to a multi-ballot containing r two-candidate races, the
probability a triple of votes is valid for all r races is estimated to be:(

95
324

)r

and the probability that a triple of votes is not valid for at least one of the races
is estimated to be:

1−
(

95
324

)r

.

Given a receipt, we can reconstruct the original multi-ballot if there is a
unique valid triple containing the given receipt. If there are n voters, then
there are

(
3n−1

2

)
possible pairs of votes that can form a triple with the given

receipt. The probability that all but one of these pairs do not form a valid triple
(at least one valid triple must exist if the original multi-ballot was constructed
appropriately) is estimated by

(
1−

(
95
324

)r)(3n−1
2 )−1

.

Using this formula, we can plot the probability of reconstruction for a fixed
value of r or n.

Figure 1 is a plot of the reconstruction probability for varying values of r
when n =100, 1000, 10000.

3.2 Simulated Results

Strauss’ results were generated by querying a dozen random ballots over several
elections to determine the probability that the original multi-ballot could be re-
constructed. The query process involved matching every possible pair of ballots
on the bulletin board to the query receipt, adding any compatible matches to
a “query set”. If the set contains only a single pair, then the multi-ballot has
been reconstructed. If not, the same process is repeated recursively on each

7



1 3 5 7 9 11 13 15 17 19 21 23 25

Races

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro
b
a
b
ili
ty

!""#$%&'()

!"""#$%&'()

!""""#$%&'()

Figure 1: Probability of reconstruction success for n = 100, 1000, 10000.

ballot in the query set, removing any ballot from the current query that leads
to a unique match. As noted by Strauss, it may be possible to find additional
matches using a more complicated approach; however, this simple approach is
still very effective.

To generate our results, we use two variants of Strauss’ approach. The first is
a simple “single-pass” approach, so named because we simply query each ballot
on the bulletin board once to see if it leads to a unique query set.

Algorithm 1: Single-Pass Reconstruction

for each ballot b on the bulletin board do
for each remaining ballot pair p on the bulletin board do

if b and p form a valid triple then
add p to the query set

end
end
if query set is unique then

remove b and p from the bulletin board
add b and p to the set of reconstructed ballots

end
end

8



A more effective version of this is the “multi-pass” approach. Each time a
ballot is reconstructed and removed from the bulletin board, it is possible that
we have now made the query set for some previously queried ballot unique.
Thus, we simply re-run the algorithm repeatedly until no new ballots can be
reconstructed. This is similar to Strauss’ recursive queries.

Algorithm 2: Multi-Pass Reconstruction

run Algorithm 1
while at least one new multi-ballot was reconstructed do

run Algorithm 1 again
end

1 3 5 7 9 11 13 15 17 19 21 23 25

Races

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro
b
a
b
ili
ty

!""#$%&'()

!"""#$%&'()

!""""#$%&'()

Figure 2: Effectiveness of the single-pass approach on two-candidate races for
n = 100, 1000, 10000.

Figure 2 demonstrates the results of the single-pass algorithm for 100, 1000,
10000 voters on varying numbers of two-candidate races. The simulated elec-
tions assumed that each multi-ballot was filled out randomly, but correctly, by
the voter. Figure 3 shows corresponding results for the multi-pass approach.
The two graphs are similar; however, the single-pass approach grows from near
0% to 90% over 2-3 races, while the multi-pass approach grows over just a
single race. This suggests that once a small amount of multi-ballots can be
reconstructed after a single pass, we will be able to reconstruct most of the
multi-ballots with subsequent passes. The simulated single-pass approach is

9



very similar to the theoretical prediction from the previous section, as can be
seen by comparing Figures 1 and 2.

1 3 5 7 9 11 13 15 17 19 21 23 25

Races

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
P
ro
b
a
b
ili
ty

!""#$%&'()

!"""#$%&'()

!""""#$%&'()

Figure 3: Effectiveness of the multi-pass approach on two-candidate races for
n = 100, 1000, 10000.

Our results differ from the results of Strauss, who found that the transition
from 0% to 90% success took place at 11, 17, and 23 races for 100, 1000, and
10000 voters respectively. Our simulation and theoretical predictions suggest
that reconstruction begins to become effective at 8, 12, and 15 races respec-
tively. A possible explanation for these differences could be the use of different
simulation techniques. Strauss randomly queried a dozen ballots for each of 30
elections, using recursive queries when a unique match was not found, whereas
we queried all 3n possible receipts for each value of n, using multiple passes
until no new matches were found.

Our theoretical analysis is very similar to the single-pass approach; however,
the theoretical approach does not account for ballots that have been recon-
structed and removed from the bulletin board in earlier queries. Calculating our
theoretical prediction from the single-pass rather than multi-pass approach is
not an issue when attempting to determine safe ballot sizes, as both approaches
become effective at the same point and only differ by the rate at which they
grow more effective. Thus, our theoretical analysis of the single-pass approach
is still useful for determining safe ballot sizes.

10



4 The ThreePattern Attack

Recall that, as the number of candidates on a multi-ballot increases, the number
of ways the multi-ballot can be filled out increases exponentially. Thus, for larger
ballot sizes, it is possible that the number of ways to fill out a multi-ballot may
be far greater than the number of voters. An attacker can exploit this fact by
offering payment to a voter if a given set of three receipts appears on the bulletin
board. Because the requested pattern may only occur with small probability,
the attacker can be reasonably certain that the coerced voter properly followed
instructions if the requested pattern can be found on the bulletin board. We
refer to this attack as the ThreePattern attack.

The goal of this section is to determine when the ThreePattern attack is
ineffective. We will call the ThreePattern attack ineffective if the chance of any
given pattern occurring is greater than some threshold, say 99%. Our analysis
is independent of this threshold and allows election officials to choose whichever
value they deem necessary. As in previous sections, we focus on two candidate
races and assume that each multi-ballot is constructed randomly, but correctly.

4.1 Theoretical Results

Assume the attacker has chosen a pattern to use for the ThreePattern attack.
Let pi, i = 1, 2, 3, be the probability that ballot i of the requested pattern occurs
on the bulletin board. If each ballot contains r races, then pi =

∏r
j=1 pij

,
where pij

is the probability that race j on receipt i matches the requested
pattern. Finally, let X be a random variable denoting the number of times
that the requested pattern occurs on the bulletin board. We now calculate
Pr[X ≥ 1] ≥ 0.99, i.e., the probability that a given pattern occurs at least once
with probability greater than or equal to 99%.

The probability that none of the 3n ballots on the bulletin board match
the requested ballot i is (1 − pi)3n. Thus, the probability that at least one of
the ballots on the bulletin board matches is given by 1 − (1 − pi)3n, and the
probability that all three ballots occur is given by

Pr[X ≥ 1] =
3∏

i=1

(
1− (1− pi)3n

)
=

3∏
i=1

1−

1−
r∏

j=1

pij

3n
 .

As in our analysis of the reconstruction attack, we assume that individual ballots
are independent to make an approximation.

Figure 4 shows a plot of this formula for a specific multi-ballot pattern with
a varying number of races for n = 100, 1000, 10000.

With just 100 voters, the ThreePattern attack is feasible if the ballot size
grows larger than two races, although the probability of the requested pattern

11



X X O
X O O
X X O
X O O
...

...
...

X X O
X O O

1 3 5 7 9 11 13 15 17 19 21 23 25

Races

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro
b
a
b
ili
ty

100 Voters

1000 Voters

10000 Voters

Figure 4: Probability that the given pattern occurs at least once on the bulletin
board.

appearing is still 80% for three races. Recall from the previous section that the
Reconstruction attack for n = 100 begins to become effective at seven races,
about the same point where the ThreePattern attack becomes effective for n =
10000. This suggests that the effectiveness of the ThreePattern attack should
be used as a guideline when determining when the short ballot assumption is
satisfied; however, this creates impractical limitations on ballot sizes, especially
when the number of voters is small.

We now turn our attention to the probability that a given pattern occurs at
least m times. As this situation is less likely than a pattern occurring just once,
and a coercer may wish to coerce m > 1 voters at a time, a coercer may instruct
several voters to vote using the same pattern, offering payment if and only if at
least m copies of the pattern appear on the bulletin board. The probability of
at least m copies of the requested ballot i occurring is given by

Pr[X ≥ m] = 1− Pr[X = 0]− Pr[X = 1]− . . .− Pr[X = m− 1]

= 1−
m−1∑
k=0

((
3n

k

)
(1− pi)3n−kpk

i

)

= 1−
m−1∑
k=0

(
3n

k

) 1−
r∏

j=1

pij

3n−k  r∏
j=1

pij

k
 .

12



Thus, the probability of all three requested ballots occurring at least m times
is given by

Pr[X ≥ m] =
3∏

i=1

1−
m−1∑
k=0

(
3n

k

) 1−
r∏

j=1

pij

3n−k  r∏
j=1

pij

k


 .

Figure 5 shows a plot of this formula for m = 5 with varying numbers of races,
using the same pattern specified earlier. The plot is similar to Figure 4, however
the probability begins to drop around one race earlier, and the effectiveness
grows slightly faster.

1 3 5 7 9 11 13 15 17 19 21 23 25

Races

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro
b
a
b
ili
ty

100 Voters

1000 Voters

10000 Voters

Figure 5: The probability that a specific pattern occurs at least 5 times.

As a final consideration, we examine the case where a coercer may request
m different patterns from m voters. In light of the result for Pr[X ≥ 1], we can
simply take the product of this formula for each of the m patterns,

m∏
i=1

3∏
j=1

(
1− (1− (pj)i)3n

)
,

which allows us to solve for the number of voters required to render the Three-
Pattern attack ineffective.

It is interesting to note that it is more effective for the coercer to request m
copies of the same pattern, rather than requesting m different patterns. How-
ever, if a disproportionate number of ballots are repeated on the bulletin board,

13



it may catch the attention of election officials. This means the coercer must
decide between the more effective but easier-to-detect form of coercion, or the
less effective but harder-to-detect form.

4.2 Simulated Results

To verify the effectiveness of the ThreePattern attack we simulated a number
of different elections for varying numbers of voters and races, and tested how
many times a pre-specified pattern occurred. Algorithm 3 details the method
used. Given a set of m different patterns and the corresponding number of
occurrences, we simply conduct a random election and verify whether or not
each of the patterns occurred sufficiently many times.

Algorithm 3: ThreePattern Lookup
Input: The number of trials n, patterns p1, . . . , pm, and the requested

number of occurrences k1, . . . , km of each pattern

numSuccess← 0
for i = 1 . . . n do

generate a random election outcome
for j = 1 . . .m do

c← the number of occurrences of pattern pj

if c >= kj then
successj ← true

else
successj ← false

end
end
if successj = true for j = 1 . . .m then

numSuccess← numSuccess + 1
end

end
output numSuccess/n

Figure 6 demonstrates the output of Algorithm 3 for varying numbers of
races over 100 trials using a random requested pattern for each election. The
two plots are nearly identical to their corresponding theoretical predictions given
in Figures 4 and 5.

Some might argue that requiring a 99% chance of any given pattern occuring
is an unnecessarily strong requirement. In practice, we might be satisfied with
any threshold over 50%, meaning that a coercer’s chance of success is less than
50%. However, by examining both the theoretical and simulated plots, we see
that lowering the threshold to 50% will allow ballots to grow by only a single
race in most cases, if at all. This is due to the exponential growth in possible
ballot configurations as more races are added. For each case of n = 100, 1000,

14



1 3 5 7 9 11 13 15 17 19 21 23 25

Races

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro
b
a
b
ili
ty

100 Voters

1000 Voters

10000 Voters

1 3 5 7 9 11 13 15 17 19 21 23 25

Races

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro
b
a
b
ili
ty

100 Voters

1000 Voters

10000 Voters

Figure 6: 100 trials of the ThreePattern attack for 100, 1000, and 10000 voters
over varying numbers of races. The left graph shows k = 1, the probability of
a single instance occurring, while the right graph shows k = 5, the probability
that the pattern occurs 5 times.

10000, there is approximately a three-race window in which the probability of
a given pattern occuring transitions from 100% to near 0%.

5 Concluding Remarks

We have presented a detailed analysis of known receipt-based attacks against
the ThreeBallot voting system, focusing on two-candidate races. Our general-
ization of the two-candidate attack allows an adversary to take advantage of the
bulletin board to increase the probability of determining a voter’s vote, given
their receipt. In the case of reconstruction and pattern attacks, we determined
formulas that can be used to compute the number of races a multi-ballot may
contain before either type of attack may apply. The following table summarizes
the maximum safe ballot size for 100, 1000, and 10000 voters.

Voters Reconstruction ThreePattern (k = 1) ThreePattern (k = 5)
100 7 2 2
1000 11 4 3
10000 15 6 5

It appears that the ThreePattern attack is more of a concern than the re-
construction attack, as it becomes effective far earlier. Election officials must
determine which value of k (the number of repeated patterns a single coercer
may ask for) they wish to plan for in a given election. This will allow them

15



to compute the maximum ballot size that satisfies the short ballot assumption.
Ballots can then be “debundled” into appropriately sized sub-ballots that resist
known attacks. Unfortunately, the required ballot sizes to resist the Three-
Pattern attack are relatively small, and may limit the use of ThreeBallot in
situations where debundling into small enough ballots is not possible.

References

[1] A. Appel. How to defeat Rivest’s ThreeBallot Voting Sys-
tem., Princeton University, http://www.cs.princeton.edu/~appel/
papers/DefeatingThreeBallot.pdf, October, 2006.

[2] D. Chaum, P. Ryan, S. Schneider. A Practical Voter-Verifiable Election
Scheme, Technical Report of University of Newcastle, CS-TR:880, 2005.

[3] J. Clark, A. Essex, C. Adams. On the Security of Ballot Receipts in E2E
Voting Systems, Proceedings of Workshop On Trustworthy Elections
(WOTE), 2007.

[4] K. Fisher, R. Carback, A. Sherman. Punchscan: Introduction and
System Definition of a High-Integrity Election System, Proceedings of
Workshop on Trustworthy Elections (WOTE), 2006.

[5] S. Popoveniuc, B. Hosp. An Introduction to Punchscan, Proceedings of
Workshop on Trustworthy Elections (WOTE), 2006.

[6] R. Rivest. The ThreeBallot Voting System, http://theory.lcs.
mit.edu/~rivest/Rivest-TheThreeBallotVotingSystem.pdf, Oc-
tober 2006.

[7] R. Rivest, W. Smith. Three Voting Protocols: ThreeBallot, VAV, and
Twin, Proceedings of USENIX/ACCURATE Electronic Voting Tech-
nology Workshop (EVT), 2007.

[8] C. Strauss. The trouble with Triples: A critical review of
the triple ballot (3ballot) scheme. Part 1, Verified Voting
New Mexico, http://www.cs.princeton.edu/~appel/voting/
Strauss-TroubleWithTriples.pdf, October, 2006.

[9] C. Strauss. A Critical Review of the Triple Ballot Voting System.
Part2: Cracking the Triple Ballot Encryption, Draft Version 1.5, Ver-
ified Voting New Mexico, http://www.cs.princeton.edu/~appel/
voting/Strauss-ThreeBallotCritique2v1.5.pdf, October, 2006.

16


