
Relations Among Notions of Plaintext
Awareness

James Birkett and Alexander W. Dent

Information Security Group,
Royal Holloway, University of London,

Egham, TW20 0EX, UK.
{j.m.birkett,a.dent}@rhul.ac.uk

Abstract. We introduce a new notion of plaintext awareness in the
standard model (PA2I), and prove relations between various security and
plaintext awareness properties. In particular, we show that for schemes
which are IND-CPA, our new notion is equivalent to the standard notion.
Teranishi and Ogata show [10] that a scheme which is OW-CPA and PA2
is IND-CCA2. We show that the analagous result about PA2I does not
hold, and will extend their result to show that any scheme which is OW-
CPA and PA2 hides the length of a message, and thus must have a finite
message space. We also give a formal proof of the conjecture of Dent [6]
that if a scheme is PA2 then it is PA1+. Finally, using Dent’s ideas [6]
we show that the Kurosawa-Desmedt scheme is PA2.

1 Introduction

Plaintext awareness was first defined in the random oracle model by Bellare
and Rogaway in [3] as a device to prove the IND-CCA2 security of the RSA-
OAEP scheme. The idea behind plaintext awareness is that if an adversary A
(known as a ciphertext creator) can create a valid ciphertext, it must “know”
the underlying plaintext.

In their model, A takes a public key and returns a ciphertext C. They require
that there is a “plaintext extractor” K which takes as input C and the list of
random oracle queries made by A, and returns the correct decryption of C when
given C and the list of random oracle queries made by A.

It was discovered by Shoup [8] that the definition used was too weak to
prove the IND-CCA2 security of a scheme, as it did not take into account the
adversary’s ability to obtain ciphertexts which it did not generate, and thus had
never queried the random oracle on the corresponding message. In particular, an
IND-CCA2 adversary always gets access to one ciphertext it did not generate –
namely the challenge ciphertext.

A stronger notion (still relying on the random oracle model) was introduced
by Bellare, Desai, Pointcheval and Rogaway in [1], which added an encryption
oracle. This allowed them to prove that a scheme which is IND-CPA and PA is
IND-CCA2.

More recently, Bellare and Palacio introduced a notion of plaintext awareness
in the standard model [2]. If the original RO model definition was naievely
applied in the standard model, a ciphertext extractor could be used to break the
IND-CPA security of the scheme. This is because there are no random oracle
queries to give it, so the ciphertext extractor would have to decrypt a ciphertext
using no information other than the ciphertext itself. Instead, the random coins
of the ciphertext creator are given to the ciphertext extractor, allowing it to see
how the ciphertext was generated. It is this definition we consider here.

The Bellare-Palacio definition differs from the BDPR defintion in a few other
ways. Firstly, the plaintext extractor A∗ is allowed to depend on A. Secondly,
instead of simply outputting a ciphertext to be decrypted, the ciphertext cre-
ator A submit ciphertexts to a decryption oracle. The result returned is either
the output of the decryption algorithm D (the real game), or the plaintext ex-
tractor A∗ (the fake game). The plaintext returned by A∗ is not required to be
identical to the real decryption, only that the output of A is computationally
indistinguishable in the real and fake games.

Thirdly, the encryption oracle was made more powerful. Instead of simply
taking a message and encrypting it under the public key, it makes use of a
stateful algorithm P, called a plaintext creator. When A makes an encryption
query on some auxiliary information aux, the encryption oracle runs P(aux),
encrypts the result and returns it. This models the idea that an adversary may
have partial information about ciphertexts it obtains from a third party, or even
partial control over them. In particular, a plaintext creator which we will call
PI is of particular interest. It takes two messages and outputs one of them at
random. This particular plaintext creator is necessary to model the challenge
ciphertext in the IND game in the proof that IND-CPA + PA2 implies IND-
CCA2.

1.1 Our Contributions

This paper is divided into two parts. In the first part, we investigate the power
of the plaintext creator P. We define a modified version of PA2, which we call
PA2I, in which the plaintext creator is fixed as PI , rather than being an arbitrary
polynomial-time algorithm. This definition is sufficient to prove that IND-CPA
+ PA2I implies IND-CCA2, but lacks the generality of PA2. We will show that
if a scheme is IND-CPA and PA2I, then it is also PA2. PA2I is conceptually
simpler than the full PA2 model and we feel it is sufficient to replace PA2 in
most situations.

We also investigate the role of randomness in plaintext awareness. In [6],
Dent defined the notion PA1+, in which the ciphertext creator A may request
new random bits. The plaintext extractor A∗ may see all of the random bits
used by A prior to a decryption query being made, but may not see the result
of future randomness queries. This prevents A∗ from predicting the output of
A. Dent gave evidence that PA2 implies PA1+, but stopped short of a formal
proof. We will give a formal proof of this.

Finally, we consider the role of the message space of the encryption scheme.
We will show, using the ideas of Teranishi and Ogata [10] that an IND-CPA
secure encryption scheme with an infinite message space cannot be PA2 plaintext
aware. We note that this proof does not hold for PA2I, but do not prove that
there is a secure encryption scheme with an infinite message space which is PA2I.

In the second part, we will prove that the hash proof system variant of
the Kurosawa-Desmedt encryption scheme is PA2 plaintext aware, following the
strategy that Dent used in [6] to prove the Cramer-Shoup scheme [4] is plaintext
aware. Hash proof systems were introduced by Cramer and Shoup in [5] to gen-
eralise the Cramer-Shoup encryption scheme of [4], and Kurosawa and Desmedt
showed how their scheme can also generalised to use an arbitrary hash proof
system.

In order to generalise Dent’s the result to the more general framework of
hash proof systems based on subset membership problems, we introduce a new
extractor assumption, which we call the subset witness knowledge (SWK) as-
sumption. Briefly, a subset membership problem can be thought of as a set X
with a subset L. The problem is hard if it is difficult to distinguish a random
element of L from a random element of X \L. Informally, the SWK assumption
states that the only way an algorithm can compute values x ∈ L is if it also
computes a corresponding witness that x ∈ L. We note that the Diffie-Hellman
knowledge assumption is simply a special case of the SWK assumption for the
Diffie-Hellman problem.

2 Definitions

2.1 Notation

We will use the following notation in this paper. x
R← S means x is sampled

uniformly at random from the set S. For an algorithm A, we write x← AO(y, z)
to mean that x is assigned the output of running A on inputs y and z, with access
to oracle O. If A is a probabilistic algorithm, we may write x ← A(y, z;R) to
mean the output of A when run on input y using the random coins R. If we do
not specify R then we implicitly assume that the coins are selected uniformly at
random from {0, 1}∞.

2.2 Statistical and Computational indistinguishability

We will need the statistical distance between two random variables, which we
will define as follows: Let x and y be random variables taking values on a finite
set S. We define the statistical distance between x and y as

∆[x, y] =
1
2

∑
s∈S

|Pr[x = s]− Pr[y = s]| .

We note the following properties of statistical distance:

Let x and y be random variables taking values on a finite set X, and w be a
random variable taking values on a set W which is independent of both x and
y. Let f : X →W be a function on X. Let S(x) be a predicate on x. Then

∆[(x,w), (y, w)] = ∆[x, y] (1)
∆[f(x), f(y)] ≤ ∆[x, y] (2)

|Pr[S(x)]− Pr[S(y)]| ≤ ∆[x, y] (3)

Suppose S, x and y depend on a size parameter λ. We that x and y are
statistically indistinguishable if ∆[x, y] is negligible as a function of λ.

We say two random variables x and y which depend on a size parameter λ
are computationally indistinguishable if for any polynomial time algorithm D,
|Pr[D(x) = 1]− Pr[D(y) = 1]| is negligible as a function of λ. D is known as a
distinguishing algorithm.

2.3 Indistinguishability of ciphertexts

We first describe the IND-ATK (where ATK is either CPA or CCA2) game for
an adversary A = (A1,A2), where A1 and A2 are probabilistic polynomial-time
algorithms:

(pk, sk)← G(1k)
(m0,m1, state)← AO1 (pk)
b

R← {0, 1}
C∗ ← E(pk, mb)
b′ ← AO2 (C∗, state)

In the above, A1 outputs two messages (m0,m1) such that |m0| = |m1| and
some state information. The challenger chooses a bit b at random and encrypts
mb to give a challenge ciphertext C∗. A2 takes C∗ and the state information as
input and outputs a guess for b.

We consider two attack models. In the chosen plaintext attack (CPA) model,
A does not have access to any oracles. In the adaptive chosen ciphertext attack
(CCA2) model, A may query a decryption oracle D, which takes a ciphertext C
as input and returns D(sk, C). The only restriction is that A2 may not query
the decryption oracle on C∗.

We define the advantage of A as

AdvIND-ATK
A = |Pr[b′ = b]− 1

2
| .

Definition 1 (IND-CPA). A public key encryption scheme Π = (G, E ,D) is
secure in the sense of indistinguishability under chosen plaintext attack if for
any IND-CPA adversary A, the advantage AdvIND-CPA

A is negligible as a function
of k.

Definition 2 (IND-CCA2). A public key encryption scheme Π = (G, E ,D)
is secure in the sense of indistinguishability under chosen ciphertext attack if
for any IND-CCA2 adversary A, the advantage AdvIND-CCA

A is negligible as a
function of k.

2.4 Plaintext Awareness

Definition 3 (PA1). A public key encryption scheme Π = (G, E ,D) is PA1
plaintext aware if for all polynomial-time ciphertext creators A, there exists a
polynomial-time plaintext extractor A∗ such that the output x of A in the real
and fake games described below is computationally indistinguishable.

In both games, the challenger generates a fresh key pair (pk, sk). It then
runs x← AO(pk). A has access to a decryption oracle which takes a ciphertext
C. In the real game, it returns m ← D(sk, C). In the fake game, it computes
(m, state)← A∗(C, pk, R[A], state) and returns m.

For a given distinguishing algorithm D, We define the advantage

AdvPA1

A,A∗,D = |Pr[D(xReal) = 1]− Pr[D(xFake) = 1]|

where xReal is the output of A in the Real game and xFake is the output of A in
the Fake game.

Definition 4 (PA2). A public key encryption scheme Π = (G, E ,D) is PA2
plaintext aware if for all polynomial-time ciphertext creators A, there exists a
polynomial-time plaintext extractor A∗ such that for all polynomial-time plaintext
creators P, the output x of A in the real and fake games described below is
computationally indistinguishable.

In both games, the challenger generates a fresh key pair (pk, sk) and string
R[A] of random coins for A. It then runs x← A(pk;R[A]). A has access to an
encryption oracle and a decryption oracle. The encryption oracle takes input s,
and runs as follows:

(m, stateP)← P(s, stateP)
C ← E(pk, m)
Append C to Clist
Returns C

The decryption oracle takes a ciphertext C not in Clist. In the real game,
it returns m ← D(sk, C), while in the fake game, it computes (m, stateA∗) ←
A∗(pk, C, R[A],Clist, stateA∗) and returns m.

For a given distinguishing algorithm D, We define the advantage

AdvPA2

A,A∗,P,D = |Pr[D(xReal) = 1]− Pr[D(xFake) = 1]|

where xReal is the output of A in the Real game and xFake is the output of A in
the Fake game.

Definition 5 (PA2I). A public key encryption scheme (G, E ,D) is PA2 plain-
text aware if for all polynomial-time ciphertext creators A, there exists a polynomial-
time plaintext extractor A∗, the output x of A in the real and fake games de-
scribed below is computationally indistinguishable.

In both, the challenger generates a fresh key pair (pk, sk) and random string
R[A]. It then runs x ← A(pk;R[A]). A has access to an encryption oracle and
a decryption oracle.

The encryption oracle takes input s = (m0,m1).The challenger responds to
decryption queries as in the case of PA2, and responds to encryption queries as
follows:

b
R← 0, 1

C ← E(pk, m0)
Append C to Clist
Returns C

For a given distinguishing algorithm D, We define the advantage

AdvPA2I

A,A∗,D = |Pr[D(xReal) = 1]− Pr[D(xFake) = 1]|

where xReal is the output of A in the Real game and xFake is the output of A in
the Fake game.

Essentially, the difference between the definitions of PA2 and PA2I is that
we restrict to a plaintext creator PI which takes two messages, chooses one of
them at random and returns it. Note that this is sufficient to prove the theorem
IND-CPA + PA2I =⇒ IND-CCA2.

Definition 6 (PA+). For any plaintext awareness definition PA (PA1, PA2I,
PA2), we define a new condition PA+ (PA1+, PA2I+, PA2+) by adding a
randomness oracle, which takes no input and returns a random bit. The plaintext
extractor is altered so that it takes a list Rlist of all such bits queried so far as
one of its inputs, i.e. A∗(pk, C, R[A],Rlist,Clist, state). Note that any such
PA+ definition implies the corresponding PA definition, since an adversary may
simply not use the randomness oracle.

3 Theoretical results about Plaintext Awareness

In this section of the paper, we present our theoretical results about plaintext
awareness.

3.1 Connection between PA2 and PA2+

Clearly, a scheme which is PA2+ must necessarily be PA2, since an adversary
may simply not use its randomness oracle, but the converse is not obviously true.
We now show that it is true for a sufficiently randomized encryption scheme,
since an adversary may use randomness inherant in a ciphertext generated by
the encryption oracle to simulate a randomness oracle. This in turn implies the
scheme is PA1+, thus giving a formal proof of a result conjectured in [6].

Definition 7 (γ-Uniformity). An encryption scheme is γ-uniform if for all
messages m and ciphertexts C, Pr[E(m) = C] ≤ γ, where the probability is taken
over the choice of random coins used by the E algorithm.

Definition 8 (Universal2 Hash Family). A family H = (H,K,A, B) of func-
tions (Hk)k∈K where each Hk maps A to B is universal2 if for all x 6= y in A,
Pr[Hk(x) = Hk(y)|k R← K] ≤ 1/|B|.

Theorem 1. Suppose a public key encryption scheme Π is γ-uniform and PA2
(resp. PA2I). Then it is PA2+ (resp PA2I+).

We will use a universal2 function family H = (Hk)k∈K where Hk is a function
from {0, 1}∗ → {0, 1} for all k ∈ K. For simplicity, we will assume K = {0, 1}n.
Such families are known to exist without any computational assumptions [11].

Lemma 1. Fix a message m ∈M, a public key pk. Let k
R← {0, 1}n. Then

|Pr[Hk(E(pk, m)) = 1]− 1
2
| ≤

√
2γ ,

where the probability is taken over the choice of k and the random coins used by
E.

Proof. We will use the Leftover Hash Lemma, as proved in Theorem 6.21 of [9].
Let C be the distribution of C ← E(pk, m). Let

κ(C) =
∑

v∈{0,1}∗
Pr[C = v]2 .

κ is known as the collision probability, because it is equal to the probability that
two random values sampled independently from C are equal, i.e. they collide.

Note that by the γ-uniformity property of the scheme,

max
v∈{0,1}∗

Pr[C = v] ≤ γ

So

κ(C) ≤
∑

v∈{0,1}∗
Pr[C = v]γ

= γ
∑

v∈{0,1}∗
Pr[C = v]

= γ

then the Leftover Hash Lemma states that the statistical distance

∆[(Hk(x), k), (z, k)] ≤
√

2κ/2 ,

where z
R← {0, 1}. Since κ ≤ γ, this implies

1
2
|Pr[Hk(x) = 1]− 1/2| ≤

√
2γ/2 ,

so |Pr[Hk(x) = 1]− 1/2] ≤
√

2γ.

Proof of Theorem 1. Let H be as above.
LetA be a PA2+ ciphertext creator. We construct a PA2 ciphertext creator B

as follows: B takes input pk. We designate the first qr n-bit chunks of the random
tape of B as (k1, . . . , kqr) and the rest R[A]. B runs A(pk;R[A]). It answers
A’s encryption and decryption queries by passing them to its own oracle and
returning the result. To answer the ith randomness query, it queries the encrypt
oracle on input 0 and receives a ciphertext C. It then computes bi ← Hki(C)
and returns bi.

Since B is a valid PA2 ciphertext creator, there is a plaintext extractor B∗.
We use B∗ to construct a plaintext extractor A∗ for A.
A∗ takes input (pk, C, R[A],Clist,Rlist, state). and runs as follows: If state

is the empty string, it chooses (k1, . . . , kqr)
R← ({0, 1}n)qr . Otherwise parses state

as ((k1, . . . , kqr), stateB, nR,Clist′). Let n′R = |Rlist| If n′R > nR, then there
are new random bits bi in Rlist, so for each random bit bi after the nth

R , it and
generates a ciphertext Ci by running E(pk,P(0)) repeatedly until it finds one
such that Hki(Ci) = bi. We limit the number of ciphertexts it generates to λ,
where λ is the security parameter. For each trial, |Pr[Hki(Ci) = bi]− 1

2 | ≤
√

2γ
by lemma 1. Thus A∗ fails to find such a Ci with proability at most (1

2 +
√

2γ)λ,
which is negligible as a function of the security parameter λ as required. (This
is because γ(λ) is negligible, so there is a constant c such that γ(λ) ≤ 1/32
for all λ > c. Thus

√
2γ(λ) ≤ 1/4 for λ > c. Thus (1

2 +
√

2γ)λ ≤ (3
4)λ which

is negligible). This ensures that the running time is polynomial, but it fails
with negligible probability. It then appends (CnR+1, . . . , Cn′

R
, C) to Clist′ and

computes (m, stateB) ← B∗(pk, C, k1|| . . . ||kqd
||R[A],Clist′, stateB). Finally, it

returns (m, ((k1, . . . , kqd
), stateB,n′

R,Clist′)).

We now show that A∗ is a valid plaintext extractor for A, i.e. the output
x← AO(pk) is computationally indistinguishable in the real and fake game. To
that end, we fix a plaintext creator P and a distinguishing algorithm D and let
Si be the event that D(x) = 1 in game i.

Game 0: Let game 0 be the real game for A, i.e:

(pk, sk)← G(1k)
x← AO(pk)
d← D(x)

A has access to encryption, decryption and randomness oracles. The en-
cryption oracle takes input s, computes (m, stateP) ← P(s, stateP), computes
C ← E(pk, m), adds C to Clist, and returns C. The decryption oracle D takes a
ciphertext C not in Clist as input and returns m← D(sk, C). The randomness
oracle R takes no input and returns a random bit b.

Game 1: We modify the randomness oracle so that on the ith query it chooses
bi ← Hki(E(pk,P(0))).
|Pr[bi = 1] − 1

2 | ≤
√

2γ The statistical distance ∆[(ki, bi), (ki, b) ≤
√

2γ

(where b
R← {0, 1}) by lemma 1. We consider the event S1,j that {D(x) = 1|x R←

AO(pk) in a game where the first j randomness queries are handled as in game
1 and queries after the jth are handled as in game 0. Then

1
2
|Pr[S1,j+1]− Pr[S1,j]| ≤

√
2γ ,

since ∆[b, bj+1] ≤
√

2γ. Thus by a hybrid argument,

|Pr[S1]− Pr[S0]| ≤ 2qR

√
2γ ,

Game 2: We modify the randomness oracle so that it adds each ciphertext it
generates to Clist. Since A does not have access to Clist, the view of A is
identical in the two games unless it generates one of these ciphertext indepen-
dently, and queries the D oracle. Since the ciphertexts in Clist were generated
properly, the chance that any given decryption query matches a particular ci-
phertext in the list is at most γ by the γ-uniformity property. Since there are
qR such ciphertexts and it makes at most qd decryption queries,

|Pr[S2]− Pr[S1]| ≤ qRqdγ

Game 3: We modify the decryption oracle so that it uses A∗ to answer de-
cryption queries. Game 3 exactly simulates the environment of B∗, so if D is an
arbitrary distinguishing algorithm for B,

|Pr[S3]− Pr[S2]| ≤ AdvPA2
B,B∗,P,D

Game 3 is the fake game for A, so

AdvPA2+
A,A∗,P,D = |S3 − S0|

≤ AdvPA2
B,B∗,P,D + qRqeγ + qR

√
2γ

which is negligible as required.

3.2 Connection between PA2I and PA2

We note that PA2 trivially implies PA2I, as one may simply choose the plaintext
creator to be PI which takes two messages as input and returns one of them at
random. We will now prove that for schemes which are IND-CPA, the reverse
implication holds.

Theorem 2. If an encryption scheme with finite message space M = {0, 1}`
for some ` is IND-CPA and PA2I then it is PA2. Note that we could have
equivalently chosen the message space to be {0, 1}<`, i.e. the set of bitstrings of
length less than `, as we can trivially map one set onto the other. Note also that
` may depend on the security parameter λ.

Proof. Consider an arbitrary plaintext creator P ′. We first present 4 diagrams:

R[A] A∗
P ′

Enc

Enc

pk A x0

R[A] A∗ PI

Enc

Enc

pk A x1

sk Decrypt PI

Enc

pk A x2

sk Decrypt P ′

Enc

pk A x3

The diagrams show the games Game 0 to Game 3 respectively. We let xi be the
output of A in Game i. We now describe the games fully. We fix a distinguishing
algorithm D and let Si be the event that D(xi) = 1.

Game 0: Let Game 0 be the fake game with plaintext creator P ′.
Game 1: We replace P ′ with the PI . Since A expects to be interacting with
P ′, and will not explicitly format its queries as (m0,m1), we will define PI so
that it truncates or pads s with zeros to 2` bits if necessary, and then splits the
result into two ` bit messages, chooses one of them at random and returns it.
The game then encrypts it and returns it to A and adds it to Clist.

Pr[S1] − Pr[S0]| is non-negligible, then we will construct an adversary B
against the IND-CPA security of the scheme as follows:

Let q be an upper bound on the number of E queries made by A. We consider
a sequence of games (1, 0), . . . , (1, q) such that in game (1, i) the first qe − i
encryption queries are handled as in game 0 and all subsequent queries are
handled as in game 1. The reason for doing it this way around is so that the
state of P ′ is the same for the jth query in all games for j < qe − i. We let x1,i

be the output of game (1, i), and S1,i be the event that D(x1,i) = 1.

Let
|Pr(S1,i = 1]− Pr[S1,i+1 = 1]| = εi .

We construct an IND-CPA adversary as follows:
B1(pk)

R[A] R← {0, 1}k

R[A∗] R← {0, 1}k

R[P ′] R← {0, 1}k
Clist← ()
stateA∗ ← ε
stateP ← ε
Run A(pk;R[A]) until ith encryption query on input si.
m0 ← P ′(si, stateP)
m1 ← PI(si)
Return (m0,m1, (pk, R[A], R[A∗], R[P ′]))

B1 answers D(C) queries as follows:

(m, stateA∗)← A∗(pk, C, R[A],Clist, stateA∗ ;R[A∗])
Return m

For the first qe − i encryption queries, (on input s) B1 answers as follows:

(m, stateP)← P ′(s, stateP ;R[P])
C ← E(pk, m)
Return m

B2 takes a challenge ciphertext C∗ and state = (pk, R[A], R[A∗], R[P]). It
runs A again using the same randomness for each algorithm as before, so the
exact state of A is restored to as it was when A1 terminated, and responds
to the current encryption query with C∗. From that point on it responds to
all encryption queries using PI instead of P ′, but answers all other queries as
before.

B2(C∗, state)
Parse state as (pk, R[A], R[A∗], R[P ′]))
Clist← ()
stateA∗ ← ε
stateP ← ε
x← A(pk;R[A])
b← D(x)
Return b

B responds to decryption queries and the first qe − i encryption queries as
before. It responds to the ith encryption query with C∗. It responds to all sub-
sequent encryption queries as follows:

m← PI(s)
C ← E(pk, m)
Return m

If the challenger chooses bit message m0, then B exactly simulates Game
(1, i). If it chooses m1, then B exactly simulates Game (1, i+1). By assumption,
D distinguishes between the outputs of these games with advantage εi, so B has
advantage εi against the IND-CPA security of the scheme, and |Pr[S1]−Pr[S0]| ≤
qeAdvIND-CPA

B

Game 2: We replace A∗ with a real decryption oracle. By definition:

|Pr[S2]− Pr[S1]| ≤ AdvPA2I
A,A∗,D

Game 3: We replace PI by P ′. We can prove that
|Pr[S3 − Pr[S2]| is negligible by much the same argument, except that this

time, we construct an IND-CCA2 adversary C, which uses its own decryption
oracle to answer decryption queries. We note that since Π = (G, E ,D) is IND-
CPA and PA2I, it is necessarily IND-CCA2 secure. The only difference is that
in Game (3, i) the first i encryption queries are handled as in game 3, using P ′,
while subsequent queries are handled using PI , again to ensure that the state of
P ′ is the same for the jth query in all games j > i, thus

|Pr[D(x3) = 0]− Pr[D(x2) = 0]| ≤ qeAdvIND-CCA
C

Since the scheme is PA2I and IND-CPA secure, there is an IND-CPA ad-
versary F and tuple (G,G∗, D′) (where G is a PA2I ciphertext creator, G∗ is a
plaintext extractor and D′ a distinguishing algorithm) such that AdvIND-CCA

C ≤
AdvIND-CPA

F + qeAdvPA2I
G,G∗,D′ . Thus the advantage

AdvPA2
A,A∗,P′,D ≤ qeAdvIND-CPA

B + AdvPA2I
A,A∗,D + qeAdvIND-CCA

C

≤ qeAdvIND-CPA
B + AdvPA2I

A,A∗,D + qe(qeAdvIND-CPA
F + AdvPA2I

G,G∗,D′)

is negligible as required.

3.3 Length hiding properties

In the above we restricted to a finite message spaceM. We now show that this
is necessary, not only for this result but to achieve PA2 in general.

Theorem 3. Let Π = (G, E ,D) be an encryption scheme. If Π is OW-CPA and
has an infinite message space, then it is not PA2.

Proof (Sketch Proof).
We will prove the equivalent condition that if A is PA2 and has an infinite

message space, then it is not OW-CPA.
We use Teranishi and Ogata’s result of [10] which states that if an encryption

scheme is OW-CPA and PA2 then it is IND-CPA, and note that the proof
actually shows that the scheme satisfies the stronger property that no adversary
can win the IND-CPA game even if the restriction that |m0| = |m1| is lifted.
This is not possible if the message space is not finite, since the adversary may
simply choose a one bit message m0 and a message m1 longer than the running
time of E(pk, m0). The bit b may then be determined simply by looking at the
length of the ciphertext.

Briefly, Teranishi and Ogata’s proof works by assuming that a scheme Π
is PA2 but not IND-CPA. They break the OW property of the scheme by con-
structing a plaintext creator P which sends the ciphertext creator A a ciphertext
for which it does not “know” the decryption. This is done by having A pass the
public key pk to P. P chooses a random message and encrypts it itself to get
a ciphertext C. A then makes many encryption queries to P which allows P
to send C to A one bit at a time using he fact that the scheme is not IND-
CPA secure. We simply note that in particular, P may do this by sending short
messages to represent a 0 and long messages to represent a 1.
A may then query its decryption oracle on this ciphertext, since it does not

appear in Clist. Any plaintext extractor for this scheme then allows us to break
the OW-CPA property.

Proof (Full Proof).
We will show the equivalent condition that if Π = (G, E ,D) is PA2 and has

the infinite message space M = {0, 1}∗, and prove that Π is not OW-CPA
secure.

The length of a ciphertext is bounded by a polynomial f(λ, |m|) in the se-
curity parameter λ and length of the corresponding plaintext. An upper bound
for f is simply the running time of E . Let l0 = 1, l1 = f(λ, 1) + λ + 1, and
l2 = f(λ, l1) + λ + 1.

Let Encode be an algorithm which takes input i ∈ {0, 1, 2} outputs a mes-
sage m

R← {0, 1}li . Let Decode be an algorithm which takes a ciphertext C ←
E(pk, Encode(i)) returns a guess for i as follows:

Decode(C)
If |C| ≤ f(λ, 1)

Return 0
Else if |C| ≤ f(λ, l1)

Return 1
Else

Return 2

If i = 0, Decode returns 0 with certainty, because |C| is bounded by f(λ, 1).
If i = 1, it is possible that |C| < f(λ, 1). However, there are at most 2f(λ,1)+1−1

bitstrings of length ≤ f(λ, 1) and 2l1 messages of length l1. Since each bitstring
is a valid encryption of at most one message, by a counting argument we see
that

Pr[Decode(E(pk, Encode(1))) = 0] = Pr[|C| ≤ f(λ, 1) |m R← {0, 1}l1 ;C ← E(pk, m)]

≤ 2f(λ,1)+1 − 1
2f(λ,1)+λ+1

< 2−λ

Similarly, Pr[Decode(E(pk, Encode(2))) 6= 2] ≤ 2−λ. So for all i,

Pr[Decode(E(pk, Encode(i))) = i] ≥ 1− 2−λ

We will construct a plaintext creator P and a ciphertext creator A. P gen-
erates a random message m∗ and a ciphertext C∗ ← E(pk, m∗). It then uses
Encode and Decode to send C∗ to the ciphertext creator A one bit at a time.
P uses the value 2 to indicate the end of message. Since A may fail to decode
this correctly, it terminates after f(λ, `) queries, to ensure the running time is
polynomially bounied. A then obtains m by querying the decryption oracle on
C∗. One final call to the encryption oracle allows A to check that the plaintext
m is correct. Written out in full, P and A are as follows:

P(aux, state) :
If state = ε

pk = aux

m∗ R← {0, 1}`
C∗ ← E(pk, m∗)
Parse C∗ as a string of bits (b0, . . . , bn)
phase← 0
state← (m∗, C∗, 1, phase)
Return (Encode(b0), state)

Else
Parse state as (m,C∗, i, phase)
If phase = 0

Parse C∗ as a string of bits (b0, . . . , bn)
If i ≤ n

Return (Encode(bi), (m∗, C∗, i + 1, 0))
Else

Return (Encode(2), (m∗, C∗, i + 1, 1))
Else

If aux = m∗

Return (Encode(1), ε)
Else

Return (Encode(0), ε)

A(pk) :
For i from 0 to f(λ, `)

Call encryption oracle on pk to get ciphertext Ci

bi ← Decode(Ci)
If bi−1 = 2

Break
If i ≥ f(λ, `)

Return 0
C ′ ← b0|| . . . ||bi−1

Call decryption oracle on C ′ to get a message m
Call encryption oracle on m to get ciphertext C
b← Decode(C)
Return b

Let Sreal be the event that A returns 1 in the real game, and Sfake be the
event that A returns 1 in the fake game. Decode correctly returns each bit bi

from the input Ci, and the 2 which signifies the end of string with probability at
least 1− 2−λ. Thus A decodes C ′ = b0|| . . . ||bn = C∗ correctly with probability
at least 1− (|C∗|+ 1) · 2−λ. Assuming C ′ = C∗, the decryption oracle correctly
returns m = m∗. In this case, P returns Encode(1) in response to the final query,
so A returns the bit 1 with probability 1− 2−λ. Thus

Pr[Sreal] ≥ 1− (|C∗|+ 2) · 2−λ .

On the other hand, in either game if the message m 6= m∗, A returns 0 with
certainty, since Pr[Decode(E(pk, Encode(0))) = 0] = 1.

Since the encryption scheme (G, E ,D) is PA2 plaintext aware, there exists
a plaintext extractor A∗ such that the output of A in the fake game is indis-
tinguishable from the output of A in the real game. Since A returns a sin-
gle bit, this implies |Pr[Sreal] − Pr[Sfake]| ≤ ε, for some negligible ε. Thus
Pr[Sfake] ≥ 1 − (|C∗| + 2) · 2−λ − ε This implies that A∗ returns m = m∗

correctly with probability at least 1− (|C∗|+ 2) · 2−λ − ε.
We use A∗ to construct an adversary B against the OW-CPA security of Π

as follows:

B(pk, C∗) :
Parse C∗ as a string of bits (b0, . . . , bn)
For i = 0 to n

Ci ← E(pk, Encode(bi))
Cn+1 ← E(pk, Encode(2))
Clist← (C0, . . . , Cn+1)
R[A]← ε
stateA∗ ← ε
m← A∗(pk, C∗, R[A],Clist, stateA∗)
Return m

B succedes in breaking the OW-CPA security of Π if Decode(Ci) = bi for all
0 ≤ i ≤ n and A∗ returns the correct decryption of C∗. Since B simulates the
environment of the fake game exactly,

AdvOW-CPA
B ≥ 1− (|C∗|+ 2) · 2−λ − ε

which is non-negligible as required.

3.4 Relationship between IND-CPA, OW-CPA and PA2I

The diagram below illustrates relationships between IND-CPA, OW-CPA, PA2
and PA2I. The numbered and plain arrows show implications, while the slashed
arrow shows a separation, which we will discuss later.

IND-CPA OW-CPA

PA2 •
1

•
2

PA2I •
1

3

•/

The downwards arrows in the diagram follow trivially, since PA2I is a weaker
notion than PA2. The arrows numbered 1 follow trivially if the message space
is super-polynomial sized in the security parameter, thus any scheme which is
IND-CPA is also OW-CPA.

The arrow numbered 2 indicates that a scheme which is OW-CPA and
PA2 must also be IND-CPA (and hence IND-CCA), as shown by Teranish and
Ogata [10]. The arrow numbered 3 indicates that a scheme which is IND-CPA
and PA2I is also PA2, as we showed earlier.

It does not appear to be the case that PA2I and OW-CPA is enough to show
that a scheme is IND-CPA. To prove the separation, ideally we would show
that if their is a scheme which is OW-CPA and PA2I but not PA2. Since it is
even not known that OW-CPA secure schemes even exist without computational
assumptions, it is necessary to at least assume that there is a scheme which is
OW-CPA and PA2I. Unfortunately, to attain this result we have had to make
the slightly stronger assumption that there is a scheme which is OW-CPA and
PA2I+. As shown earlier, this is implied if there is a γ-uniform encryption scheme
which is PA2I and OW-CPA.

Theorem 4. Assume there exists an encryption scheme Π = (G, E ,D) with
message space M = {0, 1}` which is OW-CPA, IND-CPA, and PA2I+. Then
there exists another encryption scheme Π ′ = (G, E ′,D′) which is OW-CPA and
PA2I+ but not IND-CPA.

Proof. We let F (m) denote the final bit of message m. We now describe a new
encryption scheme Π ′ = (G, E ′,D′), where the final bit of a message is leaked by
the encryption algorithm. In full, G is as in Π and E ′ and D′ are as follows:

E ′(pk, m):
C ′ ← E(pk, m)
b← F (m)
C ← (C ′, b)
Return C

D′(sk, C):
Parse C as (C ′, b)
m← D(sk, C ′)
If b = F (m):

Return m
Else

Return ⊥

Clearly, Π ′ is OW-CPA, since if there is an adversary against the OW-CPA
security of Π ′ with advantage ε, there is an adversary against Π with advantage
ε/2 which just guesses the final bit at random. It is also clear that Π ′ is not IND-
CPA, since an adversary may simply choose messages m0 = 0` and m1 = 0`−1||1.

We must now prove that Π ′ is PA2I. Let A be a PA2I ciphertext creator
against Π ′. We construct a PA2I+ ciphertext creator B against Π which works
as follows:
B runs A(pk;R[B]) and handles queries as follows: When A makes an encrypt

query on (m0,m1), B queries its own E oracle on (m0,m1) and receives a cipher-
text C ′. It then checks if F (m0) = F (m1). If so, B then returns (C ′, F (m0)) to
A. If not, B queries its randomness oracle to get a bit b, and returns (C ′, b).

When A makes a decryption query on C = (C ′, b), B queries its own de-
cryption oracle on C ′ to get a message m, and returns m if F (m) = b or ⊥
otherwise. Finally, when A outputs x and terminates, B does the same. By the
PA2I+ property of Π there exists a plaintext extractor B∗ for B. We use B∗ to
construct a plaintext extractor A∗ for A. A∗ will respond to B∗’s randomness
queries using the real bit bi it obtains from Clist. In order to do this, it must
work out which ciphertext queries would cause B to make a randomness query
– i.e. those for which F (m0) 6= F (m1). To do this, it simply runs A.
A∗ takes input (pk, C, R[A],Clist, state) and runs as follows:

A∗(pk, C, R[A],Clist, state)
Parse state as (i, (m1, . . . ,mi), stateB)
Parse Clist as ((C ′

1, b1), . . . , (Cj , bj))
ClistB ← (C1, . . . , Cj)
x← AO(pk) (see below for oracle queries)
(mi+1, stateB)← B∗(pk, C, R[A],Rlist,ClistB, stateB)
Return (mi+1, (i, (m1, . . . ,mi,mi+1), stateB)).

It answers A’s lth D query with ml for 1 ≤ l ≤ i. It answers the lth E query
on input (m0,m1) with (Cl, bl), for 1 ≤ l ≤ j. If F (m0) 6= F (m1), it also appends
bl to an initially empty list Rlist.

We must now show that A∗ is a valid plaintext extractor for A. We do this
by showing that A∗ almost perfectly simulates the environment of B∗, using a
sequence of games. We fix a distinguishing algorithm D and let Si be the event
that D(x) returns 1 in game i.
Game 0: Let Game 0 be the real game for A.
Game 1: We let Game 1 be as Game 0 except that for each ciphertext (Ci, bi)
returned by the encryption oracle, the bit bi is chosen in the same way that B

does – i.e. if F (m0) = F (m1) then the oracle chooses bi = F (m0), otherwise
b is chosen uniformly at random {0, 1} independently of the message that is
encrypted.

Game 1 exactly simulates the real game for B. We claim that |Pr[S1] −
Pr[S0]| ≤ qeAdvIND-CCA

C , for some adversary C, since if the outputs of A are
distinguishable in these two games, we can construct an adversary which distin-
guishes ciphertexts.
Game 2: Let Game 2 be the same as Game 1, except that A’s D queries are
handled by A∗. We note that Game 2 exactly simulates the fake game for B,
and in particular, the view of B∗ is exactly as it would be in the fake game for
B. Thus by the PA2I+ property of Π, |Pr[S2]− Pr[S1]| ≤ AdvPA2I+

B,B∗,D.
Game 3: Let Game 3 be as Game 2, except with the original behaviour of E
restored, i.e. the final bit of the ciphertext is the final bit of the message.

Game 3 is identical to the fake game for A. Furthermore, |Pr[S3]−Pr[S2]| ≤
qeAdvIND-CPA

F , for some adversary F , since if the outputs of A are distinguishable
in these two games, we can construct an adversary against the IND-CPA security
of Π.

Putting it all together, we see that

|Pr[S3]− Pr[S0]| ≤ |Pr[S1]− Pr[S0]|+ . . . + |Pr[S3]− Pr[S2]|
= qeAdvIND-CCA

C + AdvPA2I+
B,B∗,D + qeAdvIND-CPA

F

which is negligible as required.

4 Plaintext awareness of Kurosawa-Desmedt

4.1 Definitions

In this section we recall the definitions and theorems about encryption schemes
based on universal hash proof systems [5, 7]. Let X, S and Π be finite non-
empty sets and let L be a non-empty subset of X. Let (Hk)k∈K be a collection
of functions indexed by K such that Hk : X → Π, and let α : K → S be a
polynomial-time computable function. Then the tuple H = (H,K,X, L, Π, S, α)
is a projective hash family if for every k ∈ K, the value s = α(k) ∈ S uniquely
determines the action of Hk on L.

Definition 9. A projective hash family H is is ε-universal2 if for all x ∈ X \L,
for all x∗ ∈ X \ {x}, for all π, π∗ ∈ Π, for all s ∈ S and for k chosen uniformly
at random in K:

Pr[Hk(x) = π|Hk(x∗) = π∗ ∧ α(k) = s] ≤ ε

H is ε-smooth if

max
Z′⊂Z

|Pr[(x, s, π′) ∈ Z ′]− Pr[(x, s, π) ∈ Z ′]| ≤ ε

where Z = X × S ×Π, k
R← K, s← α(k), x

R← X \L, π ← Hk(x) and π′
R← Π.

For our purposes, a subset membership problem M is defined by a probabilis-
tic, polynomial-time instance sampling algorithm ISA, where Λ[X, L, W,R] R←
ISA(1`) with W and X non-empty sets, R ⊂ X ×W a relation, and L = {x ∈
X : ∃w ∈ W such that (x,w) ∈ R}, a proper, non-empty subset of X. We will
assume that there is an efficient sampling algorithm that can compute (x,w)
where x

R← L and w ∈ W is chosen at random such that (x,w) ∈ R. We will
abuse notation slightly, and write this as (x,w) R← R.

Definition 10. A subset membership problem is hard if for any probabilistic,
polynomial-time algorithm A and random instance Λ[X, L, W,R]← ISA(1`), the
advantage of A, given by:

|Pr[1← A(Λ, x) | (x,w) R← R]− Pr[1← A(Λ, x) | x R← X \ L]|

is negligible.

A hash proof system (HPS) P for a subset membership problem M associates
a projective hash family H = (H,K,X, L,Π, S, α) to each instance Λ[X, L, W,R]
of M. The HPS must also provide the following polynomial-time algorithms:

– PrivateH takes input (k, x) where k ∈ K and x ∈ X and returns Hk(x).
– PublicH takes input (s, x, w) where s = α(k) and (x,w) ∈ R, and returns

Hk(x)

Note that the output of Public is well defined, since α(k) determines the function
Hk on L, even though it may not determine the action of Hk on X \ L.

A more efficient version of the Cramer-Shoup encryption scheme [4] was de-
veloped by Kurosawa and Desmedt [7]. This scheme uses a symmetric encryption
scheme (sometimes called a DEM, or data encapsulation mechanism) to encrypt
the message with a key derived from the hash proof system via a hash function
Hash : Π → {0, 1}`.

A DEM is a pair of deterministic polynomial-time algorithms (Enc,Dec)
where Enc : {0, 1}` ×M → C and Dec : {0, 1}` × C → M. We require that
for all κ ∈ {0, 1}` and m ∈M, Dec(κ, Enc(κ, m)) = m. We will require that the
DEM is ε-rejection secure:

Definition 11 (Rejection-secure). A DEM (Enc,Dec) is ε-rejection secure if
for all χ ∈ {0, 1}∗,

Pr[Dec(κ, χ) 6= ⊥ | κ R← {0, 1}`] ≤ ε .

We will use a δ-smooth hash function to derive keys for an ε-rejection secure
DEM.

Definition 12 (Smooth hash function). A hash function Hash : A → B is
δ-smooth if ∆[Hash(a), b] ≤ δ, where b

R← B and a
R← A

We will now show that the resulting combination is ε + 2δ-rejection secure.

Lemma 2. Let (Enc,Dec) be an ε-rejection secure DEM which uses keys of
length ` and Hash : A → {0, 1}` be a δ-smooth hash function. Then for all
χ ∈ {0, 1}∗

Pr[Dec(κ, χ) 6= ⊥ | a R← A;κ← Hash(a)] ≤ ε + 2δ

Proof. Let a
R← A, κ← Hash(a) and let κ′

R← {0, 1}`. Fix χ ∈ 0, 1∗. Then by the
δ-smoothness of Hash, ∆[κ, κ′] ≤ δ, which implies that ∆[Dec(κ, χ),Dec(κ′, χ)] ≤
δ. So 1

2 |Pr[Dec(κ, χ) 6= ⊥]−Pr[Dec(κ′, χ) 6= ⊥]| ≤ δ, or equivalently, |Pr[Dec(κ, χ) 6=
⊥]− Pr[Dec(κ′, χ) 6= ⊥]| ≤ 2δ

But Pr[Dec(κ′, χ) 6= ⊥] ≤ ε by the ε-rejection secureness of the DEM. So

Pr[Dec(κ, χ) 6= ⊥ | a R← A;κ← Hash(a)] ≤ ε + 2δ

as required.

Definition 13 (Kurosowa-Desmedt). Let M be a subset membership prob-
lem and let H = (H,K,X, L,Π, S, α) be a hash proof system for M. The Kurosawa-
Desmedt universal hash proof encryption scheme is then defined as follows:

G(Λ)
sk

R← K
pk ← α(sk)
Return (pk, sk)

E(pk, m)
(x,w) R← R
π ← PublicH(pk, x, w)
κ← Hash(π)
χ← Enc(κ, m)
C ← (x, χ)
Return C

D(sk, C)
π ← PrivateH(sk, x)
κ← Hash(π)
m← Dec(κ, χ)
Return m

Theorem 5 (Kurosawa-Desmedt). If M is a hard subset membership prob-
lem, H is 1/Π-universal2, (Enc,Dec) is a DEM which is both one-time IND-CCA
secure and ε-rejection secure, and if Hash is a δ-smooth hash function, then for
negligible ε and δ the resulting scheme is IND-CCA2 secure.

4.2 The Generalised Kurosawa-Desmedt Encryption Schemes Are
Plaintext Aware

The classic example of a universal hash proof system is the basis of the Cramer-
Shoup encryption scheme [5]. This was recently shown to plaintext aware under
the non-standard DHK assumption [6] (and some standard assumptions). It is
therefore natural to ask whether other encryption schemes based on other uni-
versal hash proof systems are plaintext aware. In this section, we show that the
Kurosawa-Desmedt based on any universal hash proof system is plaintext aware
if a generalisation of the DHK assumption, the subset witness knowledge (SWK)
assumption holds. Loosely speaking, the subset witness knowledge assumption
states that it is impossible to output an element x ∈ L without also computing
a witness w ∈W such that (x,w) ∈ R.

Definition 14 (Subset Witness Knowledge Assumption). We first de-
scribe the SWK game for an adversary A and extractor A∗. First, the chal-
lenger generates an instance Λ[X, L, W,R]← ISA(1`) of the a hard problem M,
and runs AO(Λ). A has access to an oracle O which takes an element x ∈ X as
input and runs as follows:

(w, state)← A∗(x, state, R[A])
Returns w

In the above, state is a state variable, initially set to the empty string ε.
A subset membership problem M satisfies the SWK assumption if for every

probabilistic, polynomial-time algorithm A, there exists a probabilistic, polynomial-
time extractor A∗ such that for all queries x, the probability

Pr[(x,w) /∈ R | x ∈ L∧]

is negligible as a function of `. We stress that the interaction between A and A∗
may continue for multiple “rounds” and that A∗ must correctly find a witness
each time. We also note that if A outputs x /∈ L then the response of A∗ may be
arbitrary.

We also require that the sets X, Π and Π̂ are simulatable.

Definition 15 (Simulatable Set). A set S is simulatable if there exists polynomial-
time algorithms (f, f−1) such that

– f is a deterministic algorithm which takes input r ∈ {0, 1}n and outputs an
element s ∈ S.

– f−1 is a probabilistic algorithm which takes input s ∈ S and outputs a string
r ∈ {0, 1}n

– For all s ∈ S, f(f−1(s)) = s.
– For any probabilistic, polynomial-time algorithm A,

|Pr[1← AO1(1`)]− Pr[1← AO2(1`)]|

is negligible, where O1 takes no input and returns r
R← {0, 1}n, and O2 takes

no input and returns f−1(f(r)) where r
R← {0, 1}n.

– For any probabilistic, polynomial-time algorithm A,

|Pr[1← AO3(1`)]− Pr[1← AO4(1`)]|

is negligible, where O3 takes no input, generates r
R← {0, 1}n and returns

f(r), and O4 takes no input and returns s
R← S.

We extend the notion of a simulatable set to that of a simulatable sym-
metric encryption scheme. A symmetric encryption scheme is simulatable if the
ciphertext space of the encryption scheme is simulatable as a set and for any
probabilistic, polynomial-time algorithm A,

|Pr[1← AO3,Dec(κ,·)(1`) | κ R← {0, 1}`]− Pr[1← AO4,Dec(κ,·)(1`) | κ R← {0, 1}`]|

is negligible, where O3 takes a message m as input, generates r
R← {0, 1}n and

returns f(r), O4 takes a message m as input, computes C ← Enc(κ, m), appends
C to Clist and returns C and the Dec oracle takes a ciphertext C 6∈ Clist and
returns Dec(κ, C).

We also require the notion of simulatable public-key encryption schemes.
We say a public-key encryption scheme (G, E ,D) is simulatable if there exist
polynomial-time algorithms f, f−1 with the following properties:

– f is a deterministic algorithm which takes input (pk, r) where pk is a public
key and r ∈ {0, 1}n and outputs an element C ∈ C, the ciphertext space.
Again, we will call f the simulation function.

– f−1 is a probabilistic algorithm which takes input (pk, C) where pk is a
public key and C ∈ C and outputs a string r ∈ {0, 1}n. We will typically
write f and f−1 without the public key inputs.

– For all C ∈ C, f(f−1(C)) = C.
– For any probabilistic, polynomial-time algorithm A, and for a randomly

generated keypair (pk, sk)← G(1`)

|Pr[1← AO1(1`, pk)]− Pr[1← AO2(1`, pk)]|

is negligible, where O1 takes no input and returns r
R← {0, 1}n, and O2

returns f−1(f(r)) where r
R← {0, 1}n.

– For any probabilistic, polynomial-time algorithm A, and for a randomly
generated keypair (pk, sk)← G(1`)

|Pr[1← AE,D(1`, pk)]− Pr[1← AFE,D(1`, pl)]|

is negligible, where the decryption oracle D takes a ciphertext C and returns
m ← D(sk, C), the encryption oracle E takes a message m and returns
E(pk, m) and the FE oracle takes a message m, generates a random string
r

R← {0, 1}n and returns f(r). In either situation, A may not query the D
oracle on a ciphertext returned by the relevant encryption oracle.

It has been noted by Stam that a simulatable encryption scheme is necessarily
IND-CCA2 secure.

Theorem 6. Suppose M is a hard membership problem for which the subset
witness membership problems is hard, and that H is a hash proof system for
M as in the description of the Kurosawa-Desmedt encryption scheme. Suppose
that S and X are simulatable sets, and that H is 1/|Π|-universal2. Suppose that
the hash function Hash is δ-smooth and that the symmetric encryption scheme
(Enc,Dec) is both IND-CCA2 secure, ε-rejection secure and simulatable. Then
the Kurosawa-Desmedt encryption scheme is PA2 plaintext aware.

We use the proof strategy proposed by Dent to prove the Cramer-Shoup
encryption scheme is plaintext aware [6], namely, we first prove that the scheme
is PA1+ plaintext aware, and that it is simulatable. We then use the following
theorem proved in [6]:

Theorem 7 (Dent). If a public-key encryption scheme is PA1+ plaintext aware
and simulatable, then it is PA2 plaintext aware.

4.3 Kurosawa-Desmedt is PA1+

Theorem 8. Suppose that H is strongly universal2, that the symmetric encryp-
tion scheme (Enc,Dec) is ε-rejection secure, and that S is simulatable, with sim-
ulation function f . Assume also that the SWK assumption holds for the under-
lying subset membership problem M. Then the generalised Kurosawa-Desmedt
encryption scheme is PA1+.

Proof. Let A be a PA1+ ciphertext creator which makes at most q randomness
queries. We will construct a plaintext extractor A∗ for A by constructing an
SWK adversary B and using the existence of an SWK extractor B∗ to construct
a plaintext extractor A∗.
B takes input Λ[X, L, W,R] and works as follows:

– Let r be the first n-bit block of the random tape of B. Let R1, . . . , Rq be the
next q bits, i.e. write R[B] in the form r||R1|| . . . ||Rq||RA for some RA.

– s← f(r)
– pk ← (Λ[X, L, W,R], s)
– Run A(1`, pk) with random coins RA

B responds to the ith randomness query made by A by returning Ri. To
respond to A’s decryption queries for a ciphertext C = (x, χ), B obtains a
witness w by calling its SWK oracle on x and runs as follows:

If (x,w) 6∈ R
Return ⊥

π ← Public(s, x, w)
κ← Hash(π)
m← Dec(κ, χ)
Return m

Assume for the moment that (x, χ) is a valid ciphertext. Then x ∈ L. If the
SWK oracle returns a valid witness, this always gives the correct decryption.
On the other hand, if x 6∈ L, B will certainly reject, since there is no valid
witness. However, in this case the strongly universal2 property of H implies that
π = Hk(x) is uniformly distributed on Π. Thus by lemma 2 this ciphertext would
be rejected by the real decryption oracle with probability at least 1−(ε+2δ). Thus
B’s responses to the decryption queries are computationally indistinguishable
from those in the real game.

Since B is a valid SWK adversary, by the SWK assumption there is an ex-
tractor B∗ which correctly responds to queries with probability 1− ν where ν is
negligible. We use B∗ to construct a plaintext extractor A∗:

To respond to the j-th decryption query (xj , χj), A∗ takes input a public
key pk = (Λ[X, L, W,R], s), the ciphertext (xj , χj), the random coins R[A] of A,
a list of random bits (R1, . . . , Ri) where i is the number of randomness queries
made by A so far, and some state information in the form (x1, . . . , xj−1) and
runs as follows:

Ri+1, . . . , Rq
R← {0, 1}

r ← f−1(s)
RB = r||R1|| . . . ||Ri||Ri+1|| . . . ||Rq||R[A]
state← ε
For t from 1 to j + 1:

(wt, state)← B∗(Λ[X, L, W,R], xt, RB , state)
Decrypt the ciphertext using w in the same way that B does as described above
Return (m, (x, . . . , xj−1, xj))

It is important to exactly simulate the environment of the real SWK game,
since we only know the behaviour of B∗ in that situation. A potential problem
occurs when we consider the random tape of B, since B∗ expects to get all the
randomness used by B as input, while in the PA1+ game, A is allowed to make
randomness queries, the values of which are not known to A∗ before the queries
are made. In order to use B∗, we provide it with all the correct random bits
we know of, and make up random values using A∗’s own random tape for the
random bits that have not yet been requested. Since the distribution of these
values is identical to the distribution of the “real” random values returned by
the randomness oracle, the simulated environment is correct for the first query.
If A requests more random bits and then makes a second decryption query,
and A∗ just called B∗ on the new query x, B∗ would be able to check that the
random bits it received as input were the same as the previous time it was called
by simply storing the input it received the first time in its state variable and
comparing those values with the ones it received as input the second time it is
called.

To avoid the problem, A∗ re-initialises B∗ with an empty state and calls it
again on every previous query it has made to B∗ before, but with all of the
“correct” random bits it has available. The witnesses generated may be different
to ones generated on previous occasions, but as A only receives the decryption
m in response to its query, and m is correctly decrypted whichever witness is
used, the witnesses are independent of A’s view. This ensures that the view of
B∗ is identically distributed to its view when called in the real SWK game. As
B∗ gives a correct witness with probability 1 − ν, A rejects with probability ν

each of the
∑n

j=1 j = n2+n
2 times B∗ is called. Assuming it does not halt, then

wj+1 is a valid witness so the decryption m of C is correct. Hence A∗ is a valid
ciphertext extractor for A.

4.4 Kurosawa-Desmedt is Simulatable

Theorem 9. Assume that X is a simulatable set, that the symmetric encryp-
tion scheme is simulatable, that the subset membership problem M is hard, that
Hash is δ-smooth and that H is (1/|Π|)-universal2. Then the Kurosawa-Desmedt
scheme is simulatable.

The proof is based on the proof that Kurosawa-Desmedt is IND-CCA secure
[7].

Since X is a simulatable set, it has a simulation function Xf : {0, 1}nX →
X. Similarly, the symmetric encryption scheme has a simulation function Df :
{0, 1}nD → C. We construct a simulation function for the Kurosawa Desmedt
scheme as follows:

f : S × {0, 1}nX+nD → X × C
(pk, r) 7→ (Xf(r1), Df(r2))

where r = r1||r2 and ri is of the appropriate length. Since the ciphertext space is
X × C, this function trivially satisfies the first four conditions of simulatability,
using the corresponding conditions for Xf and Df .

We now consider an adversary A against the fifth simulation property. Let
qe (resp. qd) be an upper bound for the number of encryption (resp. decryption)
queries made by A. We prove that the advantage of A is negligible using a
sequence of games. Let Si be the event that A outputs 1 in Game i, and Si,j be
the event that A outputs 1 in Game (i, j).
Game 0: Let Game 0 be the original simulation game, assuming it has access
to the real encryption oracle. Written out in full it is as follows:

(pk, sk)← G(Λ)
b′ ← AE,D(pk)
Return b′

A has access to an encryption oracle E which takes a message m and returns
E(pk, m) and a decryption oracle D which takes a ciphertext C and returns
D(sk, C). This oracle is restricted so that A may not request the decryption of
any ciphertext which was previously returned by the encryption oracle. We will
maintain initially empty lists Clist which consists of the ciphertexts returned
by the encryption oracle, and κlist which consists of the κ values used by the
encryption oracle in their construction.
Game 1: This is a bridging step. We alter the encryption oracle so that it
responds to the ith query on input mi as follows:

(xi, wi)
R← R

πi ← PrivateH(sk, xi)
κi ← Hash(πi)
χi ← Enc(κi,mi)
Ci ← (xi, χi)
Clist← Clist ∪ {Ci}
κlist← κlist ∪ {κi}
Return Ci

This is a bridging step - since Private and Public both compute Hsk correctly
on L, the encryption oracles behave identically in game 0 and game 1. Thus
Pr[S1] = Pr[S0].

The proof now continues by induction. We make a sequence of modifica-
tions to the behaviour of the encryption oracle for the first query, answering
all subsequent queries as before, then repeat those modifications for the second
query, then the third and so on. The goal is to end up with the encryption and
decryption oracles responding as follows:

To respond to the jth encryption
query on mj (for all 1 ≤ j ≤ qe):

xj
R← X

κj
R← {0, 1}`

χj ← Enc(κj ,mj)
Cj ← (xj , χj)
Clist← Clist ∪ {Cj}
κlist← κlist ∪ {κi}
Return Cj

To respond to a decryption
query on C = (x, χ):

Parse Clist as (x1, χ1), . . . , (xn, χn)
Parse κlist as (κ1, . . . , κn)
If x = xj and χ 6= χj for some j < n

Return Dec(κj , χ)
π ← PrivateH(sk, x)
κ← Hash(π)
m← Dec(κ, χ)
Return m

We define Game (8, i) to be the game where the first i encryption queries are
handled as above and all subsequent encryption queries are handled as in game
1. A respond to a decryption query on C = (x, χ):

Parse Clist as (x1, χ1), . . . , (xn, χn)
Parse κlist as (κ1, . . . , κn)
If x = xj and χ 6= χj for some j < max{n, i}

Return Dec(κj , χ)
π ← PrivateH(sk, x)
κ← Hash(π)
m← Dec(κ, χ)
Return m

The base case, Game (8, 0), is simply Game 1 - all encryption queries are
handled as in Game 1, and the decryption oracle also behaves exactly as in
game 1, since i is 0.

Game (2, i): This is a bridging step. We alter the encryption oracle so that it
responds to the ith query on input mi as follows:

xi
R← X \ L

πi ← PrivateH(sk, xi)
κi ← Hash(πi)
χi ← Enc(κi,mi)
Ci ← (xi, χi)
Clist← Clist ∪ {Cj}
κlist← κlist ∪ {κj}
Return Ci

In this game, x is chosen at random from X \ L. By the hardness of the
subset membership problem,

|Pr[S2,i]− Pr[S8,i−1]| ≤ AdvSMP
B ,

where B is the adversary described below. B takes an element x∗ ∈ X and runs
as follows:

(pk, sk)← G(Λ)
b

R← AE,D(pk)
Return b

B responds to an encryption query on input mj before the ith as the encryp-
tion oracle in game (8, i− 1) would, i.e:

xj
R← X

κj
R← {0, 1}`

χj ← Enc(κj ,mj)
Cj ← (xj , χj)
Clist← Clist ∪ {Cj}
κlist← κlist ∪ {κj}
Return Cj

To respond to the ith query on input mi, B uses the value x∗ it was given as
input (i.e the challenge value from its SWK challenger):

πi ← PrivateH(sk, x∗)
κi ← Hash(πi)
χi ← Enc(κi,mi)
Ci ← (x∗, χi)
Clist← Clist ∪ {Cj}
κlist← κlist ∪ {κj}
Return Ci

B responds to subsequent encryption queries as the encryption oracle in game
1 would, i.e

(xi, wi)
R← R

κj
R← {0, 1}`

χj ← Enc(κj ,mj)
Cj ← (xj , χj)
Clist← Clist ∪ {Cj}
κlist← κlist ∪ {κj}
Return Cj

To respond to decrypt queries, B responds as the decryption oracle described
in game (8, i− 1) would, using the secret key sk, i.e:

Parse Clist as (x1, χ1), . . . , (xn, χn)
Parse κlist as (κ1, . . . κn)
If x = xj and χ 6= χj for some j < max{n, i− 1}

Return Dec(κj , χ)
π ← PrivateH(sk, x)
κ← Hash(π)
m← Dec(κ, χ)
Return m

It is clear that B exactly simulates the environment of Game (8, i − 1) if
x∗ ∈ L or the environment of Game (2, i) if x∗ 6∈ L.

By definition,
Pr[1← B(x∗)|x∗ R← L] = Pr[S8,i−1]

and
Pr[1← B(x∗)|x∗ R← X \ L] = Pr[S2,i] ,

so
|Pr[S8,i−1]− Pr[S2,i]| ≤ AdvSMP

B

as claimed.
Game (3, i): We now modify the decryption oracle to treat the ith ciphertext
as it would the previous i− 1, i.e,

Parse Clist as (x1, χ1), . . . , (xn, χn)
Parse κlist as (κ1, . . . κn)
If x = xj and χ 6= χj for some j < max{n, i}

Return Dec(κj , χ)
π ← PrivateH(sk, x)
κ← Hash(π)
m← Dec(κ, χ)
Return m

This is a bridging step, since if x = xi, then κi = Hash(PrivateH(sk, xi)) by
definition, so the result is the same as in Game (2, i). Thus Pr[S3,i] = Pr[S2,i].
Game (4, i): We modify the decryption oracle again so that if A submits a
ciphertext C = (x, χ) such that x 6= xj for all j ≤ i and x ∈ X\L, the decryption
oracle returns ⊥, i.e.

Parse Clist as (x1, χ1), . . . , (xn, χn)
Parse κlist as (κ1, . . . κn)
If x = xj and χ 6= χj for some j < max{n, i}

Return Dec(κj , χ)
Else If x ∈ X \ L

Return ⊥

π ← PrivateH(sk, x)
κ← Hash(π)
m← Dec(κ, χ)
Return m

Note that the check x ∈ X \ L cannot be implemented in polynomial-time,
but this is not necessary as the simulator need not be efficient.

Let F4,i be the event that a ciphertext is rejected by the decryption oracle
in Game (4, i) that would not be rejected according to the rules of Game (3, i).
We will now show that F4,i is negligible.
A may gain some information about πi = Hsk(xi) from χi, so for simplicity,

we will assume that A has access to πi. It gains no information about sk from D
queries, since if x 6∈ L, D rejects, while if x ∈ L, the value Hsk(x) is determined
by pk = α(sk), which A has. Thus in the view of A, sk is an element drawn
from the uniform distribution on {k ∈ K : Hsk(xi) = πi ∧ pk = α(sk)}. We will
use the 1/|Π|-universal2 property of H:

For all x ∈ X \ L, for all x∗ ∈ X \ {x}, for all π, π∗ ∈ Π, for all pk ∈ S and
for sk chosen uniformly at random in K:

Pr[Hsk(x) = π|sk R← K ∧Hsk(x∗) = π∗ ∧ α(sk) = pk] ≤ 1/|Π|

Thus for any given query (x, χ) to the decryption oracle such that x ∈ X \L,
in the view of A, π = Hsk(x) is uniformly distributed on Π. Thus by Lemma 2,
Pr[Dec(κ, χ) 6= ⊥] ≤ ε + 2δ. So Pr[F4,i] ≤ qd(ε + δ). Thus

|Pr[S4,i]− Pr[S3,i]| ≤ qd(ε + 2δ) .

Game (5, i): We modify the encryption oracle so that it responds to the ith

query as follows:

xi
R← X \ L

πi
R← Π

κi ← Hash(πi)
χi ← Enc(κi,mi)
Ci ← (xi, χi)
Clist← Clist ∪ {Cj}
κlist← κlist ∪ {κj}
Return Ci

Let F5,i be the event that xi is chosen such that A has already queried the
decryption oracle on C = (xi, χ). If F5,i occurs, then if A queries the decryption
oracle on C again, it may detect that it is not in the real simulation game,
because the decryption oracle will use this new value of κi to decrypt C, which
may alter the result. Pr[F5,i] ≤ qd/|X \ L| since xi is chosen at random from
X \ L and A makes at most qd decryption queries.

Assume F5,i does not occur. Then in the view of A, sk is an element drawn
from the uniform distribution on {k ∈ K : pk = α(sk)}. Since the decryption
oracle rejects any queries (x, χ) where x ∈ X \L, it gains no additional informa-
tion about sk from decryption queries, since the action of Hk is determined by
pk on L. It gets no additional information about sk from previous encryption
queries either, since the encryption oracle generates xj and κj independently at
random. Thus by the 1/|Π|-universal property of H (which is trivially implied
by the 1/|Π|-universal2 property), in A’s view of Game (4,i), π∗ is distributed
uniformly on Π. Thus the view of A is unchanged in Game (5, i). So

|Pr[S5,i]− Pr[S4,i]| ≤ Pr[F5,i] ≤ qd/|X \ L|.

Game (6, i): We modify the encryption oracle so that it responds to the ith

query as follows:

xi
R← X \ L

κi
R← {0, 1}`

χi ← Enc(κi,mi)
Ci ← (xi, χi)
Clist← Clist ∪ {Cj}
κlist← κlist ∪ {κj}
Return Ci

By the δ-smoothness of Hash, we see that if κ1
R← {0, 1}`, π

R← Π and
κ2 ← Hash(Π), the statistical distance ∆[κ1, κ2] ≤ δ. Thus 1

2 |Pr[1 ← A|κ R←
{0, 1}`]− Pr[1← A|π R← Π;κ← Hash(π)]| ≤ δ. Thus

|Pr[S6,i]− Pr[S5,i]| ≤ 2δ .

Game (7, i): We modify the decryption oracle once more so that it no longer
checks if x ∈ L, i.e. it runs as follows:

Parse Clist as (x1, χ1), . . . , (xn, χn)
Parse κlist as (κ1, . . . κn)
If x = xj and χ 6= χj for some j < max{n, i}

Return Dec(κj , χ)
π ← PrivateH(sk, x)
κ← Hash(π)
m← Dec(κ, χ)
Return m

This means it is computable in polynomial-time once more. By the same
logic as in Game (4, i),

|Pr[S7,i]− Pr[S6,i]| ≤ qd(ε + 2δ)

Game (8, i): We modify the encryption oracle so that it responds to the ith

query as follows:

xi
R← X

κi
R← {0, 1}`

χi ← Enc(κi,mi)
Ci ← (xi, χi)
Clist← Clist ∪ {Cj}
κlist← κlist ∪ {κj}
Return Ci

If the subset membership problem is hard, no polynomial-time algorithm can
distinguish X from X \ L.

Proof. Suppose x1
R← X \ L and x2

R← X, and x3
R← L. Then for any distin-

guishing adversary C, let |Pr[1← C(x1)]− Pr[1← C(x2)]| = ε,

Pr[1← C(x2)] = Pr[1← C(x2)|x2 ∈ X \ L] Pr[x2 ∈ X \ L]
+Pr[1← C(x2)|x2 ∈ L] Pr[x2 ∈ L]

= Pr[1← C(x2)|x2 ∈ X \ L] · (1− |L|
|X|

)

+Pr[1← C(x2)|x2 ∈ L] · |L|
|X|

= Pr[1← C(x1)] · (1−
|L|
|X|

) + Pr[1← C(x3)] ·
|L|
|X|

,

since the distribution of x2 conditioned on x2 ∈ X \ L is uniform on X \ L and
similarly, the distribution of x2 conditioned on x2 ∈ L is uniform on L. So

ε = |Pr[1← C(x1)]− Pr[1← C(x2)]|

= |Pr[1← C(x1)]− (Pr[1← C(x1)] · (1−
|L|
|X|

) + Pr[1← C(x3)] ·
|L|
|X|

)|

= |Pr[1← C(x1)] ·
|L|
|X|
− Pr[1← C(x3)] ·

|L|
|X|

)|

=
|L|
|X|
· |Pr[1← C(x1)]− Pr[1← C(x3)]| .

Since |Pr[1 ← C(x1)] − Pr[1 ← C(x3)]| is the advantage of C against the
subset membership problem, it is negligible by assumption, hence ε is negligible.

In particular, this implies that

|Pr[S8,i]− Pr[S7,i]| ≤
|L|
|X|

AdvSMP
C

This ends the inductive step.
Game 9:

We must return the decryption oracle to its original state. We remove the
condition that states that ciphertexts (x, χ) submitted to the decryption oracle
with x = xj are decrypted using κj . In other words, a ciphertext (x, χ) submitted
to the decryption oracle is decrypted as follows.

π ← PrivateH(sk, x)
κ← Hash(π)
m← Dec(κ, χ)
Return m

In Game (9, qe) the value κj is randomly chosen; hence, any ciphertext of the
form (xj , χ) will decrypt to ⊥ with probability 1 − ε by the ε-rejection secure
property of the DEM. In Game 10, the value of π will be randomly distributed on
Π by the (1/|Π|)-universal2 property of H. By lemma 2, the DEM rejects with
probability at least ε + 2δ. Therefore, the two games will agree with probability
at least 1− 2(ε + δ).

Hence,
|Pr[S9]− Pr[S8,qe]| ≤ 2qd(ε + δ)

We note that in Dent’s proof of plaintext awareness for the Cramer-Shoup
scheme, the decryption oracle is not returned to its proper state and the proof
is therefore incomplete.
Game 10:

This is a transition based on indistinguishability. We modify encryption or-
acle again:

xi ← Xf(r1)

χi ← Df(r2)
Ci ← (xi, χi)
Clist← Clist ∪ {Cj}
κlist← κlist ∪ {κj}
Return Ci

|Pr[S10]− Pr[S9]| is negligible by definition of a simulatable set.
We now see that Pr[S11] = Pr[1 ← AFE,FD(pk)] and Pr[S0] = Pr[1 ←

AEnc,Dec(pk)]. Thus

|Pr[1← AE,D(1`)]− Pr[1← AFE,D(1`)]|
= |Pr[S10]− Pr[S0]|
≤ |Pr[S1]− Pr[S0]|+ qe(|Pr[S2,i]− Pr[S8,i−1]|+ · · ·+ |Pr[S8,i]− Pr[S7,i]|)

+ |Pr[S9]− Pr[S8]|+ |Pr[S10]− Pr[S9]|

which is negligible as required.

5 Conclusion

We have shown

5.1 Acknowledgements

The work described in this paper has been supported in part by the Euro-
pean Commission through the IST Programme under Contract IST-2002-507932
ECRYPT. The information in this document reflects only the authors’ views, is
provided as is and no guarantee or warranty is given that the information is fit
for any particular purpose. The user thereof uses the information at its sole risk
and liability. The first author was also funded in part by the EPSRC.

References

1. Mihir Bellare, Anand Desai, David Pointcheval, and Phillip Rogaway. Relations
among notions of security for public-key encryption schemes. In CRYPTO, pages
26–45, 1998.

2. Mihir Bellare and Adriana Palacio. Towards plaintext-aware public-key encryption
without random oracles. In Pil Joong Lee, editor, ASIACRYPT, volume 3329 of
Lecture Notes in Computer Science, pages 48–62. Springer, 2004.

3. Mihir Bellare and Phillip Rogaway. Optimal asymmetric encryption. In EURO-
CRYPT, pages 92–111, 1994.

4. Ronald Cramer and Victor Shoup. A practical public key cryptosystem provably
secure against adaptive chosen ciphertext attack. In CRYPTO, pages 13–25, 1998.

5. Ronald Cramer and Victor Shoup. Universal hash proofs and a paradigm for
adaptive chosen ciphertext secure public-key encryption. In Lars R. Knudsen,
editor, EUROCRYPT, volume 2332 of Lecture Notes in Computer Science, pages
45–64. Springer, 2002.

6. Alexander W. Dent. The Cramer-Shoup encryption scheme is plaintext aware in
the standard model. In Serge Vaudenay, editor, EUROCRYPT, volume 4004 of
Lecture Notes in Computer Science, pages 289–307. Springer, 2006.

7. Kaoru Kurosawa and Yvo Desmedt. A new paradigm of hybrid encryption scheme.
In Matthew K. Franklin, editor, CRYPTO, volume 3152 of Lecture Notes in Com-
puter Science, pages 426–442. Springer, 2004.

8. Victor Shoup. Oaep reconsidered. In Joe Kilian, editor, CRYPTO, volume 2139
of Lecture Notes in Computer Science, pages 239–259. Springer, 2001.

9. Victor Shoup. A Computational Introduction to Number Theory and Algebra. Cam-
bridge University Press, 2005.

10. Isamu Teranishi and Wakaha Ogata. Relationship between standard model plain-
text awareness and message hiding. In Xuejia Lai and Kefei Chen, editors, ASI-
ACRYPT, volume 4284 of Lecture Notes in Computer Science, pages 226–240.
Springer, 2006.

11. Mark N. Wegman and Larry Carter. New classes and applications of hash functions.
In Foundations Of Computer Science, pages 175–182. IEEE, 1979.

