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Abstract. We present an improved security analysis of OMAC, the
construction is widely used as a candidate of MAC or Pseudo Random
Function (or PRF). In this direction, the first result was given in Crypto-
05 where an improved security analysis of CBC (for fixed length or for
arbitrary length prefix-free messages) had provided. Followed by this
work, improved bounds for XCBC, TMAC and PMAC were found. The

improved bounds are of the form O(Lq2

2n ) where the original bounds are

O( σ2

2n ) which is roughly O(L2q2

2n ). Here, a distinguisher can make at most
q queries having at most σ many blocks with L as the maximum block

size. The original bound for OMAC was roughly 5L2q2

2n shown in FSE-03

and the next improved bound was 4σ2

2n shown in Indocrypt-03. In this
paper we have provided an improved bound (a similar form as provided

for others) for OMAC and the bound we show is roughly 4qσ
2n = O(Lq2

2n ).

1 Introduction

CBC or Cipher-Block-Chaining [2] is an way to obtain an pseudo random
function of PRF given an underlying block cipher such as AES [6] which
is usually modeled as Pseudo random permutation or PRP. There are
different variants of CBC constructions [4, 7, 10]. Among all these con-
structions, OMAC [7] or One-Key MAC is the most widely used MAC or
PRF. This is mainly because of the key-size (a single key is sufficient). It
is also efficient when we have sequential invocations of block-ciphers. All
the CBC constructions are sequential and hence OMAC is one of the best
choice among the class. Besides the CBC family there are other construc-
tions of PRF such as PMAC [5] which is parallelizable and DAG-based
PRF [9, 15].

Recently there are some results on finding improved security analy-
sis on some of the above constructions. The security analysis means for
PRF-security analysis. Intuitively, the advantage of a distinguisher A for
a construction D is the success probability to distinguish D with the ideal
random function (which responses randomly and uniformly from the out-
put space). We denote the advantage by Advprf

D (A). A PRF-construction



is secure if for any distinguisher A, which is making at most q queries hav-
ing at most σ many blocks with maximum block size L, the advantage
Advprf

D (A) is small or negligible. We denote the maximum possible ad-
vantage by Insecprf

D (q, σ, L) and call it by prf-insecurity. Thus, the main
research in this direction is devoted to get a better bound for given a
secure construction.

The first result was in Crypto-05 [1] where an improved security analy-
sis of CBC (for fixed length or for arbitrary length prefix-free messages)
had provided. They have shown that Insecprf

CBC(q, σ, L) ≤ 12Lq2

2n + 64L4

22n .
The second term becomes negligible or in the order of the first term if max-
imum block size is small compare to 2n. For example, if L < 2n/3 then we
have Insecprf

CBC(q, σ, L) ≤ 20Lq2

2n [1]. After this work, the improved analysis
for other constructions have got attentions by the researchers. In [11], im-
proved bound for XCBC, TMAC and PAMC have been provided. Again,
their bounds of the prf-insecurity are of form O(Lq2

2n )+O(L4q2

22n ). In [12] an
improved bound for PAMC was shown and the bound was O( qσ

2n ). In that
paper [12], it was mentioned that this form of bound is truly improved
bound. The original bounds are of the form O(σ2

2n ) and these can be much
better than the new bound O(Lq2

2n )+O(L4q2

22n ) (if the maximum block size
becomes significant). This problem is not present in case of the bound of
the form O( qσ

2n ).
The above research are motivating to obtain an improved bound for

OMAC. It is more likely to obtain this for OMAC as most of the others
constructions from CBC family have got improved bounds. Only difficulty
in the case of OMAC is the presence of a fixed input 0 and a single PRP is
used trough out the constructions. In this context, we would like to make
a note that improved analysis of TMAC and XCBC are mainly based on
the presence of a second key which is being used just before the getting
final output. In case of OMAC, we use different approach than the above.
But some of ideas are very similar from the ideas provided in [1]. We
mainly use the counting approach and the counting is based on finding
solutions of some matrix-equations. In this paper, we have provided a
prf-insecurity bound for OMAC as

Advprf
OMAC(A) ≤ 4qσ

N
+

∑
1≤i<j≤q(`i + `j)4

N2

where N = 2n. Thus, we can write the bound as

1. 4qσ
N + 8q(q−1)L4

N2 .
2. 10qσ

N if L < N1/3.



Very recently a generalization of our approach has been provided [14]. In
that paper, the improved security analysis of a wide class termed as affine
domain extension is given. This class includes many other constructions
such as DAG-based PRF.

Organization of the paper We first provide the definition of PRF and
the measurement of PRF-insecurity in Section 2. In same section we state
an important and useful theorem called as strong interpolation theorem.
Then in Section 3 we provide the definition of OMAC with known security
analysis of it. Then we provide our improved security analysis in Section
4. Finally we conclude with possible future work.

2 Pseudo random function and measurement of
Insecurity

Random function. Random function is one of the common example
of a random variable in cryptography. We first note that the random
function defined in this paper is not same as what is defined classically.
Like random variable, random function is a general object and uniform
random function (which is classical random function) is actually a special
random function which has uniform distribution on some set (similar to
the uniform random variable). We denote Func(A,B) for the set of all
functions from A to B and Perm(A) is the set of all permutations on A.

Definition 1. A random function F from A to B is a random variable
taking values on Func(A,B). It is called a random permutation on A if
the random function has support on Perm(A) ⊂ Func(A,A). Thus, F is a
random permutation if Pr[F ∈ Perm(A)] = 1.

An Uniform random function or URF (the classical random func-
tion) is the uniform random variable on Func(A,B) for some finite sets
A and B. That is, Pr[F = f ] = 1

|B||A| . Similarly we define uniform ran-
dom permutation or URP (the classical random permutation) on A
as the uniform random variable on Perm(A) ⊂ Func(A,A). Given q dis-
tinct elements x1, · · · , xq ∈ A we can compute the joint distribution of
F(x1, · · · , xq) := (F(x1), · · · , F(xq)) where F is either uniform random
function or uniform random permutation on A. We denote P(a, b) :=
a(a− 1) · · · (a− b + 1) for two integers 0 < b ≤ a. We also define P(a, 0)
as 1. The following result is based on simple counting of functions.



Proposition 1. Interpolation probability for URF or URP
Let x1, · · · , xq be q distinct elements. If F is an uniform random function
then we have

Pr[F(x1, · · · , xq) = (y1, · · · , yq)] =
1
|A|q

.

If F is an uniform random permutation then the above probability is
1

P(|A|,q) if y1, · · · , yq are distinct, otherwise the probability is zero.

Random function based on domain extension. A domain ex-
tension D is a mapping from Func(A,B) to Func(A,B) with A ⊂ Ã.
Now, any random function F on Func(Ã, B) induces a random function
D(F) := DF on Func(Ã, B). In this paper we study OMACF where the
underlying random function F is an uniform random permutation. Thus,
we have A = B = {0, 1}n and Ã = {0, 1}≤nL (sice we consider the distin-
guisher making whose block size is at most L) and for any M ∈ {0, 1}∗

we define the number of blocks of M as d |M |
n e := ||M ||.

Definition 2. Advantage and PRF-Insecurity
A distinguisher A is nothing but an oracle algorithm. It can have use
random coin R. Given a distinguisher AR (a distinguisher A with random
coin R), the advantage of AR between two random functions F and G is
defined as

AdvAR(F, G) =
∣∣PrR,F[AF

R = 1]− PrR,G[AG
R = 1]

∣∣.
Let G be an uniform random function from {0, 1}≤nL to {0, 1}n. Then for
(q, σ, L) we define,

Insecprf
F (q, σ, L) = maxAAdvA(F, G)

where maximum is taken over all distinguishers making exactly q queries
having altogether at most σ many blocks with the maximum block size at
most L.

Strong interpolation Theorem

Definition 3. A q-tuple message M = (M1, · · · ,Mq) ∈ Cq is called
block-wise distinct if all Mi’s are distinct where Mi ∈ C.

Now we state our useful theorem which has actually been proven
in [15]. This is a general version of a theorem stated in [3]. Thus we
skip the proof detail.



Theorem 1. Strong Interpolation Theorem
Suppose for any block-wise distinct x ∈ ({0, 1}≤L)q, block-wise distinct
y ∈ ({0, 1}n)q and ε (depending on N, q, σ and L) we have

Pr[F(x) = y] ≥ (1− ε)
N q

.

Then we have Insecprf
F (q, σ, L) ≤ ε + q(q−1)

2N .

Thus the computation of interpolation probability Pr[F(x) = y] is im-
portant. Later we define OMAC construction and we compute the interpo-
lation probability for it. For uniform random function G, we have already
computed the interpolation probability which is Pr[G(x) = y] = 1

Nq .

3 One-Key MAC or OMAC

3.1 Definition of OMAC construction

In this paper, we identify F2n (the Galois field of size 2n) and {0, 1}n. We
denote 0 and 1 for the additive and multiplicative identity respectively.
Let π ∈ Perm(F2n). Then we can define π+ : F+

2n → F2n as

π+(m1, · · · ,m`) = π(· · · (π(x1) + x2) · · ·+ m`).

The above function is also known as CBC function. Now we define OMAC
function for arbitrary length. So we need to define a padding rule. Given
a message M ∈ {0, 1}∗, we define pad(M) = M ∈ ({0, 1}n)+ as

M = M∗ if n - |M |
= M otherwise

}
where M∗ = M ‖ 10i and i = n · d |M |+1

n e − |M | − 1 (this is the smallest
non-negative integer such that |M10i| is a multiple of n). We also define

δM = 1 if n - |M |
= 0 if n | |M |

}
Now given π ∈ Perm(F2n) we define the OMAC function as

OMACπ(M) = π
(
π+(m1, · · · ,m`−1) + m` + cδ · π(0)

)
where M = (m1, · · · ,m`) ∈ F`

2n , δ = δM ∈ {0, 1} and c0,c1 are non-zero,
non-1 distinct constants such that c0 + c1 6= 1 (which is indeed true for
the original choices of these constant [7]).



Fig. 1. OMAC: Keyi = ci.f(0). Here ci’s are distinct non-0 and non-1 constant such
that c0 + c1 6= 1. The function f is the underlying block cipher and v3 is the final
output of OMAC.

3.2 Known Security analysis of OMAC

In [7], the OMAC is proposed and there it had been shown that

Insecprf
OMAC(q, σ, L) ≤ (5L2 + 1)q2 + 1

2n
.

Later, in [8], the bound was improved to 4σ2+1
2n .

4 Improved security analysis of OMAC

We can define the OMAC function in the following equivalent way for
` ≥ 2.

1. u0 = 0, v0 = π(u0).
2. u1 = m1 and v1 = π(u1).
3. ui = vi−1 + mi, vi = π(ui) for 2 ≤ i ≤ `− 1.
4. u` = v`−1 + cδ · v0 + m` and v` = π(u`).
5. OMACπ(M) = v` = OMACπ(M).

For ` = 1, we have

1. u0 = 0, v0 = π(u0).
2. u1 = cδ · v0 + m1 and v1 = π(u1).
3. OMACπ(M) = v1.

Definition 4. The values ui’s (including u0 = 0) are known as inter-
mediate input, 0 ≤ i ≤ ` and u` is known as the final input. Similarly,
vi’s are known as intermediate output and v` is known as the final
output, 0 ≤ i ≤ ` .



We denote vM,π = (v0, v1, · · · , v`) and uM,π = (u0, u1, · · · , u`) for
the intermediate output vector and intermediate input vector respec-
tively. Now we represent the above relation between intermediate in-
puts and intermediate outputs by a matrix known as coefficient ma-

trix AM
(`+1)×(`+2) as AM · vM,π = uM,π where vM,π =

(
1

vM,π

)
and the

coefficient matrix is

1. if ` = 1 :

AM =
(

0 0 0
m1 cδ 0

)
.

2. if ` ≥ 2 :

AM =



0 0 0 · · · 0 0 0
m1 0 0 · · · 0 0 0
m2 0 1 · · · 0 0 0
...

...
...

...
...

...
m`−1 0 0 · · · 1 0 0
m` cδ 0 · · · 0 1 0


We can combine these linear relationship for two distinct messages

M,M ′ also. Since the first row (corresponding to the intermediate input
0) is always zero, we ignore the first row for the second message. For
example, if M = (m1,m2,m3) and M ′ = (m′

1,m
′
2) then the coefficient

matrix for the pair M = (M,M ′) is

AM =



0 0 0 0 0 0 0
m1 0 0 0 0 0 0
m2 0 1 0 0 0 0
m3 cδ 0 1 0 0 0
m′

1 0 0 0 0 0 0
m′

2 cδ′ 0 0 0 1 0

.

Similarly, we define u = uM,π = (u0, u1, · · · , u`, u
′
1, · · · , u′`′) = (u0, u1, · · · , u`+`′)

and v = vM,π = (v0, v1, · · · , v`, v
′
1, · · · , v′`′) = (v0, v1, · · · , v`+`′) and we

have the following relationship

AM
t×(t+1) · v

M,π = uM,π and π(u) = v (1)

where t = ` + `′ + 1. In general, for the tuple of q distinct messages M =
(M1, · · · ,Mq) we have coefficient matrix AM

t×(t+1) and the intermediate

input and output vectors as uM,π
t×1 and vM,π

t×1 where t = `1 + · · · `q + 1 and
Mi ∈ F`i

2n , 1 ≤ i ≤ q. We also have the relationship as in Equation 1.



Interpolation of OMAC. Let J = {i1, · · · , is} ⊂ [0, t] be a subset
of indices such that i1 < · · · < is and x = (x0, · · · , xt) be a (t + 1)-
tuple. Now we define a sub-tuple xJ = (xi1 , · · · , xis). Let F = {`1, `1 +
`2, · · · ,

∑q
i=1 `i = t − 1} be a subset of indices known as the set of the

final input indices. Now it is easy to check that

(OMAC(M1), · · · ,OMAC(Mq)) = vM,π
F

where AM
t×(t+1) · v

M,π = uM,π and π(u) = v.

One can easily observe that for each tj =
∑j

i=1 `j , A·tj = 0t where
AM = (αM AM

·0 · · ·A·t−1). That is the final outputs have no effect on
the intermediate inputs. We rewrite the Equation 1 as

u = A′ · vI and π(uI) = vI (2)

where A′ is the matrix obtained after removing the columns A·tj , 1 ≤
j ≤ q from the coefficient matrix A and I = [0, t− 1] \ F .

Definition 5. Given π ∈ Perm(F2n) we can define an induced equiv-
alence relation R = Rπ on [0, t− 1] as (i, j) ∈ R if and only if ui = uj

(equivalently vi = vj). We also say that u (equivalently v) satisfies R. An
equivalence relation R is also called induced equivalence relation if there
is a permutation π such that Rπ = R.

Note that, any equivalence relation may not be an induced equivalence
relation. A tuple (i1, · · · , is) is called the tuple of representatives of R on
[0, t − 1] if 0 = i1 < is ≤ t − 1 and R has s distinct equivalence classes
[ij ]’s such that ij is minimum in the class [ij ]. Given that the induced
relation is R, we can modify the equation A · v = u into AR · vR = u
where the matrix AR and the vector vR are defined as follows.

Definition 6. Suppose (i1, · · · , is) is the tuple of representatives of R

on [0, t − 1]. Now we define a new t × (s + 1) matrix B := AR =
(αM B·1 · · ·B·s) where B·j =

∑
i∈[ij ]

A·i. If v satisfies R, we consider
a new s-vector (w1, · · · , ws) = w = vR such that wj = vij .

We also say that B (or AR) is obtained by merging A w.r.t. R. In
this new terminology, B ·w = u where w is block-wise distinct.

Definition 7. We define rank of a permutation π (also rank of the
induced relation Rπ) as the rank of the following set of vectors V =
{Bi −Bj : (i, j) ∈ R}.



Since u satisfies the relation R, the vector w must be a solution for V.
The number of block-wise distinct solutions1 is at most P(N, s−r) where
r := rank(V) := rank(R). Given any such solutions w (that uniquely
determine v also) there are at most (N−s)! many permutations π (check
it!) such that vM,π = v. Thus we have the following result.

Proposition 2. Given a relation R of rank r and of size s, there are at
most N !× 1

P (N−s+r,r) many permutations π such that Rπ = R.

Proposition 3. The number of relations of rank r is at most
(

t
2

)r.

Proof of Proposition 3 is given in [14]. In [1], it has been studied
in terms of graphs for CBC constructions. A very similar analysis will
work here. Now from the above propositions we can prove the following
corollary. A similar corollary is also given for CBC in [1]. But here we
have a modified bound which is obtained by applying inequality carefully.

Corollary 1. Let q = 2, M = (M1,M2) and ||M || = `, ||M ′|| = `′ such
that (`+ `′)2 ≤ N . Then, the number of permutations of rank at least two
is at most N !× (`+`′)4

N2 .

An element i is called single in R if [i] = {i}. A set is called single
if every element is single. Now it is easy to see that for any distinct
M 6= M ′ and the induced relation R0 of rank zero (there are exactly one
such) satisfies the following property : both ` and `+`′ are single elements
in R0. In fact, one can write down the relation R0.

Proposition 4. Let M = (m1, · · · ,m`) and M ′ == (m′
1, · · · ,m′

`′). If
m1 = 0 then (0, 1) ∈ R0 and similarly, if m′

1 = 0 then (0, ` + 1) ∈ R0. If
(m1, · · · ,m`−1) and (m′

1, · · · ,m′
`′−1) have exactly p ≥ 1 common prefix

blocks then (1, ` + 1), · · · (p, ` + p) ∈ R0.

Now we study the number of valid relations of rank one such that
F = {`, ` + `′} is not single. We do it by considering two cases.

Case-A : δM 6= δM ′

Suppose F is not single in a valid relation R of rank one and say (` +
`′, i′) ∈ R. Let Bi−Bj be an independent vector for V such that i, j 6∈ F
and B = AR. But, the second element in B`+`′ −Bi′ is not zero (either
1 this is a straightforward generalization of a well known linear algebra fact which

says that the number of solution is exactly Ns−r if there is one such solution.



cδ′ − cδ or cδ′ − 1 or cδ′) where as that of Bi −Bj is zero. Thus, the rank
should be more than one. Hence only possible valid relation of rank one
such that F is not single is that one with the basis (i, j) where either i
or j ∈ F . Thus, the number of such relations is at most 2(` + `′).

Case-A : δM = δM ′

Suppose we have (`+ `′, i′) ∈ R where i 6∈ F . Then by similar reason, the
basis should contain the pair whose one element is from F . So there are
at most 2(` + `′) many such relations.

Now we consider the case when (` + `′, `) ∈ R. This implies that
CBC(M) = CBC(M ′). Since δM = δM ′ , M 6= M

′. Now as in Lemma 13
of [1], we know that there are at most d(|` − `′|) many relations of rank
one containing the pair (` + 1, `′ + 1). Here, the function d(m) means the
number of factors of m. Thus, the total number of relations of rank one
such that F is not single is at most 3(` + `′).

Proposition 5. For q = 2, the number of induced relations of rank one
such that {`, ` + `′} is not single is at most 3(` + `′).

Let M 6= M ′ and let M = (m1, · · · ,m`), M ′ = (m′
1, · · · ,m′

`′), δ = δM

and δ′ = δM ′ . We denote the intermediate inputs and outputs by ui, vi,
u′i and v′i. Let New := New[M,M ′] be the event that

u` 6= u′`′ and {u`, u
′
`′} ∩ {u1, · · · , u`−1, u

′
1, · · · , u′`′−1,0} = ∅.

In this case, we also say that final inputs are new. One can similarly define
the event New for q distinct messages M1, · · · ,Mq. An easy exercise shows
that

New[M1, · · · ,Mq] = ∩1≤i<j≤qNew[Mi,Mj ].

We denote Bad1 = New[M1, · · · ,Mq] the complement of the event New.
From the above discussion and by using Corollary 1 we have the following
results.

Proposition 6. If F is an uniform random permutation then for any two
distinct messages M 6= M ′ such that M ∈ F`

2n and M ′ ∈ F`′
2n we have,

Pr[New[M,M ′]] ≤ 3(` + `′)
N

+
(` + `′)4

N2
.



Corollary 2. For q distinct messages M1, · · ·Mq with Mi ∈ F`i
2n we have,

Pr[Bad1] = Pr[New[M1, · · · ,Mq]] ≤
3(q − 1)σ

N
+

8q(q − 1)L4

N2

where L = max1≤i≤q `i. Moreover, if L ≤ N1/3 we have Pr[Bad1] ≤ 9qσ
N .

Let M1, · · · ,Mq be q distinct messages such that Mi ∈ F`i
2n and∑q

j=1 `j = σ. Let z1, · · · , zq be q distinct elements from F2n . We de-
fine an event Bad2 as vMk

j = zi for some 1 ≤ i ≤ q and 1 ≤ j < `k,
1 ≤ k ≤ q. Thus, the set of all intermediate outputs are not disjoint from
the set {z1, · · · , zq}. Finally we define Bad = Bad1 ∪ Bad2.

Proposition 7.

Pr[Bad2] ≤
(σ − q + 1)(q + 1)

N

where σ =
∑q

j=1 `j = t− 1

Proof. We define an event Ej : vFij 6∈ z, 1 ≤ j ≤ σ − q where I =
{i1, i1, · · · , iσ+1−q} and i0 < · · · < iσ+1−q. E≤j = ∪i

s=1Es. Now, it is easy
to see that Pr[Ei+1 | E≤i] ≥ N−q−i

N−i and hence Pr[E≤t−q] ≥
∏σ−q

i=0
N−q−i

N−i ≥
1− (σ−q+1)(q+1)

N . Thus, Pr[Bad2] ≤ (σ−q+1)(q+1)
N . ut

Proposition 8.

Pr[OMACF(M1) = z1, · · · ,OMACF(Mq) = zq|Bad] ≥
1

P(N, q)
.

Proof. It is easy to see that for a fixed input vector w such that Pr[Π is
good and vF

I = z] > 0 we have Pr[vF
F = z |Bad and vF

I = w] ≥ 1
P(N,q) . ut

Corollary 3. Given any q distinct messages M1, · · · ,Mq and q distinct
elements z1, · · · , zq ∈ F2n, we have,

Pr[OMACF(M1) = z1, · · · ,OMACF(Mq) = zq] ≥
1− ε

P(N, q)

where ε = 4qσ
N + 8q(q−1)L4

N2 − q(q−1)
2N .

Now by using Strong Interpolation theorem we can get our main result
of the paper.



Theorem 2. (Improved security bound for OMAC)
For any distinguisher A making at most q queries having at most σ many
blocks such that the maximum block size is at most L then the PRF-
advantage of A,

Advprf
OMAC(A) ≤ 4qσ

N
+

∑
1≤i<j≤q

(`i + `j)4

N2
≤ 4qσ

N
+

8q(q − 1)L4

N2
.

Moreover, if L ≤ N1/3, then we have

Advprf
OMAC(A) ≤ 10qσ

N
.

5 Conclusion and future work

In this paper we have provided an improved PRF-insecurity bound which
is roughly 4qσ

2n . This improved bound suggests that OMAC is a strong
design for PRF or MAC. The idea of the proof can be used for the im-
proved security analysis for generalized constructions. We also hope that
this idea is useful to obtain improved and more appealing security analysis
for other indistinguishability security notions such as online cipher [13],
PRP in modes of operation etcetera.
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