
Strengthening the Tree-Based Hash Protocols

against Compromise of some Tags

Julien Bringer1, Hervé Chabanne1 and Thomas Icart1,2

1Sagem Sécurité
2Université du Luxembourg

Abstract. In 2004, Molnar and Wagner introduced in [6] a very appeal-
ing scheme dedicated to the identification of RFID tags. Their protocol
relies on a binary tree of secrets which are shared – for all nodes except
the leaves – amongst the tags. Hence the compromise of one tag also has
implications on the other tags with whom it shares keys. We introduce
a modification of the initial scheme to allow us to strengthen RFID tags
by implementing secrets with Physical Obfuscated Keys (POK). This
doing, we augment tags and tree resistance against physical threats.

Keywords. RFID tags, Tree-Based Hash Protocol, POK.

1 Introduction

Radio Frequency Identification (RFID) tags are made of a small chip
containing an unique identification number. They communicate over the
air with the system via a reader. One of their main application is to track
objects on which they are attached.

RFID systems have to deal with the scarcity of tags resources as well
with the privacy needed for the tags identification. In [6,7], a protocol
which seems well suited to handle these two constraints is introduced.
Indeed, the identification protocol of Molnar et al. requires only limited
cryptographic functionality and has some nice properties such as the del-
egation of some identifications from a Trusted Center to readers. This
protocol relies on a binary tree of secrets. The secret corresponding to
a leaf is uniquely associated to one tag, but all other secrets in the tree
are shared between different tags. Thus, as it is studied in [9,3,8], the
compromise of the keying material of some tag leads to know the shared
keys with some other tags. In case of compromise of many tags, this could
allow to track some non-compromised tags. This can be considered as a
main threat to the privacy of the system. More generally, secrets closer to

the root are shared between more tags than those placed near the leaves.
Even in a recent publication [1], where an improvement of the protocol
of Molnar et al. is proposed to reduce this problem, the compromise of
tags still leaks information about the keying material of the whole keying
material of the system.

To thwart this, we want to augment the resistance of tags against
physical threats. Physical Obfuscated Keys (POK) have been introduced
by Gassend [4] as a mean to securely store a secret inside a chip. They are
strongly related to Physical Unclonable Functions (PUF). Indeed, PUFs
and POKs were introduced as a proposition to implement keys in a more
secure manner. They are built such that their observation by an adversary
will corrupt the chip and then destroy them. Note that the use of PUF
inside RFID tags has already been considered in [10,2].

The main achievement of this paper is to describe how to replace each
secret by two POKs during the Tree-Based Hash protocol. Each one taken
separately does not reveal anything on the secret. And they are turned on
alternately. Cryptographic computations are carried out with two steps.
During a step, only one POK is activated. An adversary can access – by
sacrificing the chip – to one POK. By construction the underlying key is
thus safe from this compromise of one POK.

Our paper is as follows. In Sect. 2, we recall the principles of the Tree-
Based Hash Protocols [7] and those of the POK. In Sect. 3, we describe
our modification of the protocol. Section 4 examines the security of our
proposition. Section 5 concludes.

2 Notations and definitions

2.1 The Hash-Tree protocol [7] in a nutshell

We here only describe the general principles of the Hash-Tree protocol
and invite the readers to go through [7] to get full details.

During system initialization, the Trusted Center generates a tree of
secrets (keys), for instance a binary one. Each leaf is associated to a tag. A
tag knows all keys K1, . . . ,Ks along the path from the root to its leaf. Let
F denotes an appropriate public pseudo-random function. When a tag is
interrogated by a reader which sends to it a random value r, it responds
by generating a new pseudonym each time –FK1(r, r

′), FK2(r, r
′), . . .,

FKs(r, r
′)– where r′ is another random value generated and transmitted

by the tag. The Trusted Center can easily check to which key corresponds
the received pseudonym in its tree of secrets by verifying for a given (r, r ′):

1. to which node corresponds FK1(r, r
′),

2. between the 2 children of this node, which whom is associated with
FK2(r, r

′),

3. repeat this verification, level after level from the root to the leaves,

4. and then identify which leaf (tag) comes with FKs(r, r
′).

Fig. 1 below illustrates this scheme.

PSfrag replacements

Tag
1

Tag
2

K1

K2

K
s−1

Ks

Fig. 1. One descent in a binary tree of secrets

A practical example. To get a better idea of the involved figures, we
take back the example given in [7]. They have 220 tags. The binary tree
is replaced by a tree with a branching factor of Q = 210 and is made of 2
levels. Each tag stores two 64-bit secrets. Using tree-based authentication
protocol enables to reduce the number of try a Trusted Center needs to do.
In this example, a Trusted Center needs to compute only 2∗210 times the
function F, 210 for each round, instead of 220 without this protocol. This
is a really interesting improvement, because if the system’s size is S, the
numbers of computation for the Trusted Center is always in O(logQ(S)Q)
computation.

2.2 Physical Unclonable Function (PUF)

Gassend in [4] introduces the concept of PUF which has very interesting
properties:

1. easy to evaluate,

2. hard to characterize, from physical observation or from chosen challenge-
response pairs,

3. hard to reproduce.

For a given challenge, a PUF always gives the same answer. The hardness
of characterization and the reproduction is stronger than polynomial; i.e.
it is impossible to reproduce or to characterize the PUF thanks to a poly-
nomial amount of resources (time, money ...). And PUF can be viewed
as pseudo-random function where the randomness is insured thanks to
physical properties.
One example of PUF, as mentioned in [10] as I-PUF for Integrated Phys-
ical Unclonable Function, has another interesting properties:

1. The I-PUF is inseparably bound to a chip. This means that any at-
tempt to remove the PUF from the chip leads to the destruction of
the PUF and therefore of the chip.

2. It is impossible to tamper with the communication (measurement
data) between the chip and the PUF.

3. The output of the PUF is inaccessible to an attacker.

These properties insure the impossibility to analyse physically a PUF
without changing its output. Hence, physical attacks corrupt the PUF
and the chip leaving the attacker without any information about the
PUF. Silicon PUF have been already described in [5] and can be taken as
relevant examples of I-PUF, they are based on delay comparison among
signals running through random wires. Moreover, they only require a few
resources to be implemented.

In this paper, we suppose the output of a PUF will not contain any
errors, whatever the external conditions are. As of today, it is still diffi-
cult to get experimentally this result but in [10], it is explained how to
handle this problem thanks to error correcting codes. The analysis of such
technique is beyond the scope of this paper.

2.3 Physicaly Obfuscated Key (POK)

In [4], it is shown how to implement a key with a PUF in a physically
obfuscated manner, i.e. how to get a POK from a PUF:

Fig. 2. First example of POK

Suppose you have a key K, and you want to use it in different tags,
but with different PUF in each tag. To create a POK, one solution is
to hardwire the PUF with a challenge. That response is combined with
the contents of some fuses via an exclusive-or operation to produce K as
shown in Fig. 2.
In a tag, it would not be reasonable to have a lot of different PUFs,
firstly for a matter of space, and secondly for a matter of security. If there
are a multitude of PUF, the possibility to attack some of them without
destroying the others is unclear. Fortunately, it is easy to generalize the
idea of one POK, as illustrated in Fig. 3.

Fig. 3. Multiple POKs with a unique PUFs

To get the key K ′′
i , the ith challenge is switched on, and the results is

an exclusive-or between the output of the PUF and some fuses. The fuses
have to be set during the fabrication of the tag.

3 Our Proposition

3.1 POKs used

Whatever is the use of the tag, the key has to be stored digitally when
involved in some computations. Consequently, it could be possible to get
dump of the volatile memory and then to obtain the value of the key. This
type of attack has been described in [2] with a general line of defense: split
the computations with the key in two steps. Of course, the difficulty we
here encounter is to cope with cryptographic computations and to find a
way to split them.
A key K of the tree would be hard-coded thanks to two POKs K ′ and K ′′

such that K = K ′⊕K ′′. More precisely, K ′ will be the result of the PUF
to a challenge, K ′′ is also the result of another challenge combined with a
fuse by an exclusive-or to get the desired K (cf. Fig. 3). Consequently, K ′

and K ′′ will be different for each tag. Therefore, the non-volatile mem-
ory needed to store one key as two POKs is just a fuse and some small
challenges. This is about the same amount of memory as the one needed
to store one key in the usual case.
Note that challenges used to stimulate the PUF to generate keys are
stored in the tag. Because the equality K = K ′ ⊕ K ′′ stands for all tags
in the same branch, neither K ′ and K ′′ need to be known from the outside,
nor pairs of input/output from the PUF do.

3.2 The Protocol

In Fig. 4 is the description of one stage i of our new protocol in a tree
with branching factor Q, where H is a pseudo-random function and K̂

j
i

is the jth key in the current branch of the system tree at the ith level.

Tag TC

r, a random value
←−−−−−−−−−−−−−−−−−−

Generate
r′, a random value

Compute
H(r, r′)

H(r,r′)
−−−−−−−−−−−−−−−−−−−→

The first POK is switched
on to get K′

A1 = r′ ⊕K′

The second POK is switched
on to get K′′

A2 = A1 ⊕K′′

= r′ ⊕K

r′
⊕K

−−−−−−−−−−−−−−−−−−−−→

for j = 1 to Q

r′′ = K̂
j
i ⊕A2

check ifH(r, r′) = H(r, r′′)
then go to the next stage

end for

Fig. 4. One stage of the Authentication protocol

We here describe the protocol to authenticate a tag from a trusted
center. Suppose the system is composed of 220 tags, and the tree of secret
has a branching factor of 210.

The authentication begins when the tag is brought near a reader which
supplies power by electromagnetic field. Then the TC sends to the tag a
challenge r, which is a random value. The tag then computes a random
value r′ and sends H(r, r′). This is equivalent to a signature of r with
the key r′. Then the tag switches on the first POK to get K ′

1
and then

computes A1 = r′ ⊕ K ′
1
. This operation will erase in volatile memory r ′.

Then the second POK is switched on to get K ′′
1
, and this erases K ′

1
. Fi-

nally the tag computes A2 = A1⊕K ′′
1

and sends A2. Then the TC will try
amongst all the key K̂1 in the tree’s first level whether it gets the equality
H(r,A2 ⊕ K̂1) = H(r, r′). If he finds one correct key, the protocol will
continue in the branch of our tree under the node marked by the found
key. Then the computation are made once more but the tag switches on
two other POKs to get K ′

2
and K ′′

2
and the TC will make another ex-

haustive search amongst keys in the current branch. If this time again,
the TC is able to determine a key, then the tag will be authenticated.

This protocol has all the advantages of the tree based authentication,
it allows delegation and to have less computation for the TC but with an
increased time of computation for the tag. In fact, a trade-off has to be
found:

– with a small branching factor in the above protocol, tags will be used
an important numbers of times which leads, because of the cpu power
of tags, to a long computation,

– with a big branching factor, tags will just be used a small number of
times, but the TC will have to compute more try for each stage.

The best trade-off for the branching factor is reached when the time taken
by tags and the one taken by the TC during the protocol are equals.
Concerning memory aspect, our proposal does not change anything for
the TC, as the different PUF challenges and split keys are only used on
tag’s side.

3.3 Size of the parameters

We propose for our protocol, as an example, the following parameters:

– the size of r′ is 100 bits and r is 64 bits,

– K ′ and K ′′ are 100 bits’ keys,

– H(r, r′) will be the first 42 bits of AESr||r′1..64
(r1..28||r

′).

They have been chosen to minimize the non-volatile memory inside the
tag and the communication between tags and readers, but they should
lead to a sufficient security to insure the secrecy of the keys and the im-
possibility to authenticate without the knowledge of the keys.

The parameters have been chosen to get a security of 264 AES (cf.
Sec. 4) but they can be augmented to reach standard security of 280 AES.
This could be done with the following parameters:

– the size of r′ is 116 bits and r is 64 bits,

– K ′ and K ′′ are 116 bits’ keys,

– H(r, r′) will be the first 50 bits of AESr||r′1..64
(r1..12||r

′).

The two tables Tab. 1 and Tab. 2 summarize the concrete resources
used in our scheme in the two previous cases for some example parameters.
We use a branching factor of 210 in all cases.

Tag Tag → TC TC

numbers non-volatile computation communication computation
memory

220 200 bits 2 AES and 2 random 284 bits 2 × 210

230 300 bits 3 AES and 3 random 426 bits 3 × 210

Table 1. Resources needed in the first case

Tag Tag → TC TC

numbers non-volatile computation communication computation
memory

220 232 bits 2 AES and 2 random 332 bits 2 × 210

230 348 bits 3 AES and 3 random 498 bits 3 × 210

Table 2. Resources needed in the second case

4 Security Analysis

4.1 Opening a tag will leak no information about the keying
material

If we propose to use POK in tags, it is because it is quite easy to steal an
unprotected key inside one, and then to authenticate using its key. Here
we prove such a thing is not possible using our implementation and the
usual model for PUFs, particularly because inside each tag, the keys K ′

and K ′′ are different.

First of all, it is interesting to notice that the output of a tag is
indistinguishable from a random output. Because of the randomness of
r′, r′ ⊕ K is indistinguishable from a random value, and because H is a
hash function, this property is also true for H(r, r ′). This leads to the fact
that an observer could not retrieve keys only with tags’s outputs, without
inverting the hash function by brute force search.
During the computation of the tag, an attacker by opening a tag, and
therefore destroying it, could only get by reading the versatile memory
one of the following couples:

– r′ and H(r, r′),
– r′ and K ′,
– A1 and K ′′.

We can suppose the attacker knows H(r, r ′) in all the cases because it
is sent in clear during the protocol. In the two first cases, he only gets
random informations. In the last case, the problem to find K ′ thanks to
A1 and H(r, r′) is as difficult as the problem to recover K from A2 and
H(r, r′), which are indistinguishable from a random value, consequently,
in our model of PUF, it is useless to open tags to get information about
keys.

4.2 Classical Security Analysis

We will here study the difficulty for an attacker to authenticate without
the key in a first part. In a second part, we will study the difficulty for a
simulator to discover the keys inside a tag just by interrogate it.

To study the security, we will suppose that the attacker is able to get
215 tags. We assume that a tag support at most 220 executions of the

protocol. Our tree has a branching factor of Q = 210 and the total system
is composed with 220 tags, which means that a tag has exactly two keys.
The total number of keys in our system is 220 + 210, 210 in the first stage
of the tree, and 220 in the second stage. It is also important to notice
that between two tags, there is no hint to distinguish whether or not they
have one common key.

Authentication without keys An adversary who wants to manufac-
ture forged tags will encounter difficulty. Firstly, he would not be able to
duplicate an existing tag because of the PUF inside. Secondly, without
keys inside a tag, he will have a probability Q × 2−42 to authenticate at
each step. Therefore, the forger tag will have a probability to authenticate
in 2−64.
An attacker could try to store answers of tags for different r in our proto-
col. He could thus get 220 answers from a key. The probability to get one
of these r from the TC at the same stage is 2−42, so this leads to a to-
tal probability 2−84 to achieve a complete authentication. It is noticeable
that with a probability Q× 2−42, a genuine tag could fail in the protocol,
in the case where the equality H(r, r ′) = H(r, r′⊕K⊕K ′) is true with K ′

another key in the tree. The probability that a genuine tag authenticates
with a wrong ID is (Q× 2−42)d where d is the depth of our tree, which is
2−64 in our case.

Getting keys of a tag A simulator to get a key K will challenge its
tags with the same r. He will get a total amount of 2 × 215 × 220 = 236

couples (H(r, r′), A2). Note that, because the tags are indistinguishable,
he can only determine more than 220 couples for one key with a negligible
probability. On one hand, he could try a brute force search on the key
K and then check the key by simulating the protocol, but to recover one
key amongst the 216 ones associated to its own tags, he would have to try
284 keys. On the other hand he could try to perform brute force search
to find one r′ pre-images of one of the H(r, r′) pre-computed. A random
r′ has a probability 2−6 = 236−42 to be a pre-image of one of the precom-
puted H(r, r′) but it will be the r′ used in the protocol with a probability
242−100 = 2−58, therefore to find one r′ and thus one key, 264 execution
of AES are needed.

5 Conclusion

We modify the Tree-Based Hash protocols to allow the integration of
POKs. Then thanks to the fact that keys inside a tag are now physically
obfuscated, we show that an adversary even with a large number of tags
is not able to obtain one key. We thus believe that our work helps to
strengthen the security of the overall protocol.

Our ideas seems to follow a general trend in inserting PUFs inside
RFIDs. As of today, to the best of our knowledge, no results are pub-
lished for tags on the ability to integrate this new physical cryptographic
primitive nor to validate the security model they imply, we propose this
topic as a possible avenue for future research.

References

1. G. Avoine, L. Buttyán, T. Holczer, and I. Vajda. Group-based private authen-
tication. In Proceedings of the International Workshop on Trust, Security, and
Privacy for Ubiquitous Computing (TSPUC 2007), IEEE., 2007.

2. Leonid Bolotnyy and Gabriel Robins. Physically unclonable function-based se-
curity and privacy in RFID systems. In International Conference on Pervasive

Computing and Communications – PerCom 2007, pages 211–220, New York, USA,
March 2007. IEEE, IEEE Computer Society Press.

3. Levente Buttyán, Tamás Holczer, and István Vajda. Optimal key-trees for tree-
based private authentication. In Privacy Enhancing Technologies, pages 332–350,
2006.

4. Blaise Gassend. Physical random functions. Master’s thesis, Computation
Structures Group, Computer Science and Artificial Intelligence Laboratory, Mas-
sachusetts Institute of Technology, 2003.

5. Blaise Gassend, Dwaine E. Clarke, Marten van Dijk, and Srinivas Devadas. Silicon
physical random functions. In Vijayalakshmi Atluri, editor, ACM Conference on

Computer and Communications Security, pages 148–160. ACM, 2002.
6. D. Molnar and D. Wagner. Privacy and security in library RFID: issues, prac-

tices, and architectures. In Proceedings of the ACMConference on Computer and

Communications Security, pages 210–219, 2004.
7. David Molnar, Andrea Soppera, and David Wagner. A scalable, delegatable

pseudonym protocol enabling ownership transfer of RFID tags. In Selected Ar-

eas in Cryptography, pages 276–290, 2005.
8. Yasunobu Nohara, Sozo Inoue, Kensube Baba, and Hiroto Yasuura. Quantitative

evaluation of unlinkable id matching systems. In Workshop on Privacy in the

Electronic Society, 2006.
9. Karsten Nohl and David Evans. Quantifying information leakage in tree-based

hash protocols (short paper). In ICICS, pages 228–237, 2006.
10. Pim Tuyls and Lejla Batina. RFID-tags for anti-counterfeiting. In David

Pointcheval, editor, CT-RSA, volume 3860 of Lecture Notes in Computer Science,
pages 115–131. Springer, 2006.

