Linearization Attacks Against Syndrome Based Hashes
(Draft Version of August 12, 2007)

Markku-Juhani O. Saarinen

Information Security Group
Royal Holloway, University of London
Egham, Surrey TW20 OEX, UK.

m.saarinen@rhul.ac.uk

Abstract. In MyCrypt 2005, Augot, Finiasz, and Sendrier proposed FSB, a fam-
ily of cryptographic hash functions. The security claim of the FSB hashes is based
on a coding theory problem with hard average-case complexity. In ECRYPT 2007
Hash Function Workshop, new versions with essentially the same compression
function but radically different security parameters and an additional final trans-
formation were presented. We show that hardness of average-case complexity of
the underlying problem is irrelevant in collision search by presenting a lineariza-
tion method that can be used to produce collisions in a matter of seconds on a
desktop PC for the variant of FSB with claimed 2'%® security.

1 Introduction

A number of hash functions have been proposed that are based on “hard problems” from
various branches of computer science. Recent proposals in this genre of hash function
design include VSH (factoring) [3], LASH (lattice problems) [2], and the topic of this
paper, Fast Syndrome Based Hash (FSB), which is based on decoding problems in the
theory of error-correcting codes [1, 6].

In comparison to dedicated hash functions designed using symmetric cryptanalysis
techniques, “provably secure” hash functions tend to be relatively slow and do not al-
ways meet all of criteria traditionally expected of cryptographic hashes. An example of
this is VSH, where only collision resistance is claimed, leaving the hash open to various
other attacks [8].

Another feature of “provably secure” hash functions is that the proof is often a re-
duction to a problem with asymptotically hard worst-case or average-case complexity.
Worst-case complexity measures the difficulty of solving pathological cases rather than
typical cases of the underlying problem. Even a reduction to a problem with hard av-
erage complexity, as is the case with FSB, offers only limited security assurance as
there still can be an algorithm that easily solves the problem for a subset of the problem
space.

This common pitfall of provably secure cryptographic primitives is clearly demon-
strated in this paper for FSB — it is shown that the hash function offers minimal pre-
image or collision resistance when the message space is chosen in a specific way.

2 The FSB Compression Function

The FSB compression function can be described as follows [1, 6].

Definition 1. Let H be an v x n binary matrix. The FSB compression function is a
mapping from message vector s that contains w words, each satisfying 0 < s; < =, to
an r bit result as follows:

w

FSB(s) = @H(i—l)%—ksﬁ-l)

i=1
where H; denotes column i of the matrix.

The FSB compression function is operated in Merkle-Damgérd mode to process a
large message [7, 5]. The exact details of padding and chaining of internal state across
compression function iterations are not specified. !

With most proposed variants of FSB, the word size 7 is chosen to be 28, so that
s can be treated as an array of as bytes for practical implementation purposes. See
Appendix A for an implementation example.

For the purposes of this paper, we shall concentrate on finding collisions and pre-
images in the compression function. These techniques can be easily applied for finding
full collisions of the hash function. The choice of H is taken to be a random binary bi-
nary matrix in this paper, although quasi-cyclic matrices are considered in [6] to reduce
memory usage.

The final transformation proposed in the [6] does not affect the complexity of find-
ing collisions or second pre-images, although it makes first pre-image search difficult
(equal to inverting Whirlpool [9]). Second pre-images can be easily found despite a
strong final transform.

The security parameter selection in the current versions of FSB is based primarily
on Wagner’s generalized birthday attack [10,4]. The security claims are summarized in
Table 1.

3 Basic Linearization Attack

To illustrate our main attack technique, we shall first consider hashes of messages where
the words in the message only have binary values: s; € {0, 1} for all i. This is a small
subset of all possible messages. Let s be a binary vector representing the message.

We define a constant vector c,

w
Cc = @H(ifl)%qtla
i=1

! Ambiguous definitions of algorithms makes experimental cryptanalytic work depend on guess-
work on algorithm details. However, the attacks outlined in this paper should work, regardless
of the particular details of chaining and padding.

Security r w n s [n/w ‘
64-bit 512 512 [131072] 4096 256
512 450 | 230400 | 4050 512
1024 217 2% 220 256
80-bit 512 170 | 43520 | 1360 256
512 144 | 73728 | 1296 512
128-bit | 1024 | 1024 | 262144 | 8192 256
1024 904 | 462848 | 8136 512
1024 816 | 835584 | 8160 1024

Table 1. Parameterizations of FSB, as given in [6]. Line 6 (in bold) with claimed Q128 security

was proposed for practical use. Pre-images and collisions can be found for this variant in a matter
of seconds on a desktop PC.

and an auxiliary r X w binary matrix A, whose columns A;, 1 < ¢ < w are given by
Ai=Hi-1)241 D Hi-1)n 42

By considering how the XOR operations cancel each other out, it is easy to see that
for messages of this particular type the FSB compression function is entirely linear:

FSB(s) = A -s®c.

Note that in this paper s and c¢ and other vectors are column vectors unless otherwise
stated.

Furthermore, let us consider the case where » = w, and therefore A is a square
matrix. If det A # 0 the inverse exists and we are able to find a pre-image s from the
Hash h = F'SB(s) simply as

s=A""' (haoc).

If r is greater than w, the technique can still be applied to force given w bits of
the final hash to some predefined value. Since the order of the rows is not relevant, we
can simply construct a matrix that contains only the given w rows (i.e.. bits of the hash
function result) of A that we are are interested in.

4 The Selection of Alphabet

We note that the selection of {0,1} as the set of allowable message words (“the al-
phabet”) is arbitrary. We can simply choose any pair of word values for each ¢ so that
s; € {x;,y;} and map each x; to 0 and each y; to 1, thus creating a binary vector for
the attack.

The constant is then given by

w
c= @H(i—l)%—&-xm
=1

and columns of the A matrix are given by
Ai=Hi-1)24a+1 D Hii—1)2 1y, 41
To invert a hash h we first compute
b=A"'hoc)

and then apply the mapping s; = x; + b;(y; — x;) on the binary result b to obtain the
correct message s (in the given alphabet) that produces h.

The binary matrices are essentially random for each arbitrarily chosen alphabet.
Since the success of a pre-image attack depends upon the invertibility of the binary
matrix A, we note that the probability that an n x n random binary matrix has non-zero
determinant and is therefore invertible in GF(2) is given by

p=]J(—27") ~ 028879
i=1

when 7 is even moderately large.
Two trials with two distinct alphabets are on the average enough to find an invertible
matrix (total probability for 2 trials is 1 — (1 — p)? ~ 0.49418).

5 Finding collisions when r = 2w

We shall expand our approach for producing collisions in 2w bits of the hash function
result by controlling w message words. This is twice the number compared to pre-image
attack. The complexity of the attack remains essentially the same.

Assume that (by selection of alphabets) there are two distinct linear presentations
for FSB, one containing the matrix A and constant ¢ and the other one A’ and ¢’
correspondingly. To find a pair of messages s, s’ that produces a collision we must find
a solution to the equation

A-sdc=A"-dac.

It is easy to see that this can be manipulated to form

w10 (3)-)

The solution of the inverse (A | A’)~! will allow us to compute the message pair
(s | s")T that yields the same hash in 2w different message bits (since 7 = 2w yields a
square matrix in this case).

Collisions for all “128-bit security” variants in Table 1 can be easily produced in
this way, despite the details of chaining and final transformation.

6 Larger alphabets

Consider an alphabet of cardinality three, {x;, y;, z; }. We can construct a linear equa-

tion in GF(2) that computes the FSB compression function in this message space by us-

ing two columns for each message word s;. The linear matrix therefore has size r X 2w.
The constant ¢ is computed as before as:

c= @H(i—l)ﬁ—&-mm
i=1
and the odd and even columns are given by

Asici =Hi—1)24a41 O Hiim1) 2 441,

w

Asi = Hii—1)n o401 O H(i—1)n 42,41

The message s must also be transformed into a binary vector ss of length 2w via a
selection function v:
S; ’U(Sz‘)
ZT; (O 0)
Yi (17 0)
We simply set
ss = (v(s1) [v(s2) || - [lv(sw)”

We again arrive at a linear equation for the FSB compression function:
FSB(s) = A -ss®c.

The main difference is that the message space is much larger, 3% ~ 2!:585%_This
construction is easy to generalize for alphabets of any size: r x (k — 1)w size linear
matrix is required for an alphabet of size k. However, we have not found cryptanalytic
advantages in mapping hashes back to message spaces with alphabets larger than three.

6.1 Pre-image search

It is easy to see that even if A is invertible, not all hash results are in this case as ss
may contain v(s;) = (1, 1) entries. These do not map back to the message space in the
selection function.

Given a random binary ss, the fraction of valid messages in the message space
(alphabet of size 3) is given by (3/4)” = 279415 We will illustrate the advantage of
using a larger alphabet with an example.

Example. FSB parameters with w = 64, n = 256 * 64 = 16384 and r = 128 is being
used; 64 input bytes are processed into a 128 bit result. What is the complexity of a
pre-image attack ? 2

% The complexity of a collision attack in this case is negligible, as r = 2w and the technique
from Section 5 can be used.

Solution. We’ll use an alphabet of size 3. The probability of successfully mapping
the hash back to the alphabet is (3/4)%* = 2726-6, We can precompute 227 inverses
A1 for various message spaces offline, hence speeding up the time required to find an
individual pre-image. There are also early-abort strategies that can be used to speed up
the search.

Using these techniques, the pre-image search requires roughly 227 steps in this case,
compared to the theoretical 2128,

7 Conclusions

We have shown that Fast Syndrome Based Hashes (FSB) are not secure against pre-
image or collision attacks under the proposed security parameters. Collisions for a vari-
ant with claimed 128-bit security can be found in less than a second on a low-end PC.

We feel that the claim of “provable security” is hollow in the case of FSB, where
the security proof is based on a problem with hard average-case complexity, but which
is almost trivially solvable for special classes of messages.

References

1. D. AUGOT, M. FINIASZ, AND N. SENDRIER. “A family of fast syndrome based crypto-
graphic hash functions.” In E. Dawson and S. Vaudenay (Eds.), Mycrypt 2005, Springer-
Verlag LNCS 3615, pp. 64-83, 2005.

2. K. BENTAHAR, D. PAGE, M.-J.O. SAARINEN, J.H. SILVERMAN, AND N. SMART.
“LASH.” Proc. 2nd NIST Cryptographic Hash Workshop. 2006.

3. S. CoNTINI, A.K. LENSTRA, AND R. STEINFELD. “VSH, an efficient and provably
collision-resistant hash function.” IN S. vaudenay (Ed.), Eurocrypt 2006, LNCS 4004, pp.
165-182, Springer, 2006.

4. J.-S. CORON AND A. JoUX. “Cryptanalysis of a Provably Secure Cryptographic Hash
Function.” IACR ePrint 2004 / 013. Available from http://www.iacr.org/eprint

5. 1.B. DAMGARD. “A design principle for hash functions.” In G. Brassard (Ed.), Advances in
Cryptology — CRYPTO 89, LNCS 435, pp. 416-427, Springer-Verlag, 1990.

6. M. FINIASZ, P. GABORIT, AND N. SENDRIER. “Improved fast syndrome based crypto-
graphic hash functions.” ECRYPT Hash Function Workshop 2007, 2007.

7. R.C. MERKLE. “A fast software one-way hash function.” Journal of Cryptology, 3, 43-58,
1990.

8. M.-J.O. SAARINEN. “Security of VSH in the real world.” In R. Barua and T. Lange (Eds.):
INDOCRYPT 2006, LNCS 4329, pp. 95-103, Springer, 2006.

9. V. RUMEN AND P. BARRETO. “Whirlpool.” Seventh hash function of ISO/IEC 10118-
3:2004, 2004.

10. D. WAGNER. “A generalized birthday problem.” In M. Yung (Ed.), Advances in Cryptology
— Crypto 2002, LNCS 2442, pp. 288 — 304, Springer, 2002.

A Appendix: A Collision and Pre-Image Example

For parameter selection r = 1024, w = 1024, n = 262144, s = 8192, n/w = 256, the
FSB compression function can be implemented in C as follows.

typedef unsigned char u8; // u8 = single byte
typedef unsigned long long u64; // u6d = 64-bit word

void fsb(u64 h[0x40000][0x10], // "random" matrix
u8 s[0x4007, // 1k message block
u6d4 r[0x101]) // result

int i, j, idx;

for (i = 0; i < 0x10; i++) // zeroise result
r(i] = 0;
for (i = 0; 1 < 0x400; i++) // process a block
{
idx = (i << 8) + s[i]; // index in H
for (3 = 0; j < 0x10; J++)
r[{j] *= hlidx][3]; // xor over result

}

Since the FSB specification does not offer any standard way of defining the “ran-
dom” matrix H (or h[] [] above), we will do so here using the Data Encryption
Standard. Each 64-bit word h[1] [j] is created by encrypting the 64-bit input value
(1 << 4) »~ 7 under an all-zero 56-bit key (00 00 00 00 00 00 00 00).
The input and output values are handled in big-endian fashion. Some of the values
are: 3

Input to DES Table Index Value

0x0000000000000000 h[0x00000][0x0] = Ox8CA64DESC1B123A7
0x0000000000000001 h[0x00000][0x1] = 0x166B40B44ABA4BD6
0x0000000000000002 h[0x00000][0x2] = O0xO06E7EA22CE92708F
0x0000000000000010 h[0x00001][0x0] = 0x5B711BCA4CEEBF2EE
0x0000000000000011 h[0x00001]1([0x1] = 0x799A09FB40DF6019
0x0000000000000012 h[0x00001][0x2] = OxAFFAQ05C77CBE3C45
0x00000000003FFFFD h[Ox3FFFF][0xD] = 0x313C4BDBE2F7156A
0x00000000003FFFFE h[0x3FFFF] [0xXE] = 0x19F32D6B2D9B57F5
0x00000000003FFFFF h[0x3FFFF] [0xF] = 0x804DB568319F4F8B

We shall define two 1024-byte message blocks that produce the same 1024-bit chosen
output value in the FSB compression function, hence demonstrating the ease of pre-
image and collision search on a variant with claimed 228 security. They were found in
less than a second on an iBook G4 laptop.

3 Please note that x86 platforms are little-endian. Bi-endian gcc source code for producing pre-
images can be downloaded from: http://www.m-js.com/misc/fsb_test.tar.gz

The first message block uses the ASCII alphabet {A, C} or {0x41, 0x42}:

CAACACACCACAACACACACCACAACCCCCCACCAACACCAAACAAACACCAACACCACACCAA
ACACACCCCCAACCCAAAAAACCCACCACCCACCAAACACACCCCCCAACCACACCCAACACCA
AACCCACCCCCAACCCAAACAAAAACCCACAAAACACACCACCACCCCCACAACCCCACACAAA
AACCCCACCCCAACAACAAAAACAAAACCACACACACACCCCCAAACCCCCAAAAACCCACAAC
CAAACAACCCAAACACCAACCCCACACCCCAAAACCCAAAAAACACAAACCCCAACAAAACCAA
ACACCCCCCCCCAACAAAAACACCCACCCAACAAAAAAACACACCCCCCCAACCCACCCCAACA
AAAACCAACAACACCACCCCACCCCCACCACAAACACCCACCACCCAACCCCACCCAACAAAAC
ACCACCCCAACCCACAACCACCCAACACCAACACCAAAACACACCAAAACACCCAACACACCCC
CAAACACACACCACCACCACCCAAAAAAACCACACACCCCAAAAAAACCCAAACCACCACCCCA
CACAAACCCCAACCCAACCCAACCAACCACCAAAACCCAACCCCCAAAAAACAACCAAACCCCA
AACACCCACAAACACCACCACAACAAAAACCAAACCCAAAAACCCACCACACCCACACACAAAA
CCACCCCAACCCCCAACAACCCCACACAACACAAACCACCCAACCCCAACCACAAAAACCCACC
ACAACCCAAACACACCCCAACAAACCAAACCCCACACCCAAAACCCCACACCACACACAAACAC
CACCCAAAAAACAACAACCACACACAACAAACCAAACAAAAAAAAAACCAAAAAACCCCCAACC
CACCCACCCACAAACAAAACCAAAAAAAACCCAAAAAAACCCAAAACCACAACCACCCCAACCA
CCCACCAAACAACAACCACACAAAAACACCCCACACCCCCCCACCAACACAAAACCAAAAACCA

The second message block uses ASCII alphabet {A, H} or {0x41, 0x48}:

AHHHHAAAAAHAAAHAHAAAHAHHAHHAAHAAHHAHHHAAAAAHHAAHHHAHAHAAHAAAHHAA
AAAAHAHHAAAHAHHAHAAAHAAHAHAAAAHHHHHHHAAHAHAAAAAHAHHHHHAAHHHHAHAH
AAHAAAHAHAHHHHHAHHAHAHAAAHAHAAHAHHAAAAHAAHAAAHAAHHHHHAHAAHHAAHAH
HHAHAAHHHAAHAAAHHHHAHHHHAAHAAHAAAAAHAAHHAAAHAAHHHAAHAHAHHHAHAAHA
AHHAAAHHAAAAAHHAHAAAAAHAHAHHAHHAHAAHHAHAHAAHHHHAAHAHHHAAHHAHAAHH
AAHAHAAAHAHAAAHHAAAHAHHAHAHHAAAAAHHHHAAHAHAHHAHHHHHAAHHAAHHHHAHH
HHHAAAAAAAHHHAHAAAAHAAAHAAAAAAAHAAHHAHHAHHAHHAHHHAAAAAAAHAHAAAHH
HAHHHHHHAHAAAHHAHAAHHHHAAHHAHHAHHAAHHHAHHAHHHAAHHAAAHHAHAAHAHHHA
AAHAHAAAHAAHAAAAHHHHAHHHHHAAHHHAAHHHAHHAAAHHHAHHAHAHHHHAAHAHHAHH
AAHAHAAHHAHHAAAAHHAHAHHHHHAAHHHAAHAAAHAAAHAAHHAHHAHHHAHHHHHAHHHA
AHAHAAAAHHAAAAHHAAHHHHHAAHAAHAAHHAAAHAHHAAAAAHHAAHAHHAHHHAAHHHAA
HHHAHHAAHAAHAAHAAHHHHHAAHAHHAHHAAHAAAAHHAHHHHHAHAHHHHHAHHHHHAAAA
HHHHHAAAAHHHAHHHHAHAAAHHAHAAAHHAAAHAHAHAAAHHHHHHHAHAAHAAHAAAAHAA
HAAAHAHAHHHAHHAHHAHAAHAHHAAAAHAAAAHHAAHHHHAHHAAHHHAHAAAHAAAHHHAA
HAAHAAHAAAHAHHHAAHAHAAHAAAHAHHAHAAHHHAAHAAAAAHHAAAAHHHAHAHAAAAAH
AAAHAHAHHAAAAHHHAAHHAHAAHHHHAHAAHHAHHHAAHAHHAHHHAAAAHHHAAHAAAAHH

The 1024-bit / 128-byte result of compressing either one of these blocks blocks is:

Index Hex ASCII

00000000 5468697320697320 6120636£6c6c6973 |This is a collis]|
00000010 696£f6e20616e6420 7072652d696d6167 |ion and pre-imag]
00000020 6520666f72204661 73742053796e6472 |e for Fast Syndr|
00000030 6£f6d652042617365 6420486173682e20 |ome Based Hash. |
00000040 4172626974726172 79207072652d696d |Arbitrary pre—-im|
00000050 61676573206361l6e 20626520666f756e lages can be foun]|
00000060 6420696e20612066 72616374696f6e20 |d in a fraction |
00000070 6£f66206120736563 6f6e642120202020 |of a second! |

