
Optimizing Multiprecision Multiplication for
Public Key Cryptography

Michael Scott1 and Piotr Szczechowiak2

1 School of Computing
mike@computing.dcu.ie

2 School of Electronic Engineering
Dublin City University

Ballymun, Dublin 9, Ireland.
piotr@eeng.dcu.ie

Abstract. In this paper we recall the hybrid method of Gura et al. for
multi-precision multiplication [4] which is an improvement on the basic
Comba method and which exploits the increased number of registers
available on modern architectures in order to avoid duplicated loads from
memory. We then show how to improve and generalise the method for
application across a wide range of processor types, setting some new
records in the process.
Keywords: Multi-precision arithmetic.

1 Introduction

Multiprecision multiplication is the time-critical requirement in the great major-
ity of number-theoretic based methods for public key cryptography. For example
the RSA method [8], the El Gamal method [8], methods based on elliptic curves
[5], and the new methods of pairing-based cryptography [10] are all dependent
on it. In fact at a higher level the requirement is actually for modular arithmetic,
where multiplications are typically carried out modulo a certain fixed modulus.
A typical calculation in the context of implementing the RSA algorithm might
be y = a · b mod p, where p is a fixed 512-bit prime number. However using
Montgomery’s method [9] the modular reduction can be carried out without
using division, and hence it is the multi-precision multiplication (or squaring)
which is significant. Sometimes it is advantageous to integrate the multiplication
and reduction steps into a single algorithm [6]. Alternatively, and particularly
in elliptic curve cryptography, the modulus may have a special simple form that
can be exploited for fast modular reduction. Since the modulus is of a fixed size
in bits, the code for the multiplication (and squaring) and for the modular re-
duction can be written in assembly language, and the loops completely unrolled
for maximum speed. Then the cryptographic system of choice can be built on
top of these efficient primitives.

Most efficient implementations use the method of Comba [1], which is a
column-wise implementation of the basic school-boy method for long multiplica-
tion (also known as the “product scanning” method). This is a little awkward to

program as the columns are of different lengths, although this is not a concern
if we unroll the code. The alternative row-wise method (also known as “operand
scanning”) is also often used, as it is much easier to implement as a short looped
program – an n digit by n digit multiplication can be carried out using a simple
pair of nested “for” loops. For more details see Chapter 14 of [8].

Recently [4] it has been suggested that a hybrid method which combines
features of both methods might be preferable, particularly in a setting where
the processor has many available general purpose registers, which is the case
with most modern architectures which often have at least 16 (for example x86-
64 architectures), and perhaps as many as 128 registers (e.g. the IBM/Sony Cell
architecture). This method was first described in the context of the ATmega-
128L 8-bit processor, which has 32 registers. In this same setting Uhsadel et al.
[12] have recently obtained improved results.

In this paper we simplify and generalise the method and show its applica-
tion to a wide range of processors. We also demonstrate the superiority of our
modified scheme to the earlier proposals.

2 Improved Hybrid Method

Consider a processor with a natural word length of w bits, and hence equipped
with r registers of w bits. Typically r will be 8, 16 or 32. Typically w will be
8, 16, 32 or 64. Assume that the computer architecture supports simple indexed
memory load and store instructions, an integer multiply instruction which from
an input of two registers produces their product in a pair of registers, and finally
a simple add-with-carry instruction.

We accept that all of the r registers may not be available to us. Indeed some
will certainly be required to store the memory addresses of the operands and of
the result. It is also sometimes helpful if a register fixed with the constant value
of zero is available to us.

The basic column-wise algorithm for multi-precision multiplication, also
known as the “Comba” method, is illustrated for n = 4 in Figure 1 (i). As
each w-bit pair of digits are multiplied together to create one 2w bit partial
product in a pair of registers, this partial product is accumulated in a triple
register (which we will sometimes refer to as the “column registers”). The third
register (here called a “carry-catcher”) is required to catch the carries that can
arise as the full column is added up. The diagram shows the addition of a partic-
ular partial product, and the arrows indicate the possible carries that will arise.
Note that the maximum number that can arise in the third and most significant
register is bounded by n, the number of digits in the multi-precision multiplica-
tion. This is likely to be much smaller than 2w − 1, the maximum number that
can be stored in a register, and so sometimes a smaller register (if available, for
example the 8-bit cl register in the 32-bit x86 architecture) can be used here.

The column-wise algorithm is to be preferred as memory writes only occur at
the foot of each column. Here the least significant register of the triple register
is written to memory, and the other two registers shifted down, representing the

2

carry to the next column. On a computer with only 8 registers like most of the
early x86 family, Comba [1] found that there were just enough registers available
to implement this method successfully

The alternative row-wise algorithm requires more memory writes, but less
memory reads of the operands. A disadvantage of the column-wise algorithm is
that it will reload the same data many times as it is required in the calculation
of more than one partial product. This is clearly a little foolish if there are
enough registers available to store some of these values for later use. So it is not
surprising to observe that we could do better.

The hybrid method [4] keeps the advantages of the column-wise method,
while exploiting any extra registers to avoid unnecessary reloads of data. The
idea is conceptually a simple one – basically perform the multiplication as if
the word length of the computer were actually m · w, and perform the m ×m
multiplication that arises in the calculation of the larger partial product using
the row-wise algorithm. In Figure 1 (ii) we see an illustration of the hybrid
method for the case m = 2. As each large 2 × 2 partial product is calculated
(represented by the large outer boxes), it must be accumulated into registers. As
before the diagram illustrates the acccumulation of a particular partial product,
and the arrows indicate the carries. A naive implementation would then require
5 registers in this case to store this sum. However in the worst case this might
require up to 5 add-with-carry instructions, as in integer addition a carry-out is
always a possibility that must be catered for.

The original hybrid method [4], and the improved variant described in [12],
use a rather complex method to deal with this carry propagation problem, based
on the fact that the product of two words, plus two words, cannot overflow a
double-word-sized register.

(2w − 1)(2w − 1) + (2w − 1) + (2w − 1) = 22w − 1 < 22w

In contrast our main idea is to simply employ even more registers to sup-
press the carry propagation. As well as using 2m column registers to hold the
sum of each now wider column, an extra 2m− 1 registers are deployed as “carry
catchers”. These registers are initialised to zero at the top of the column and
catch any carries that may arise without the possibility of further carry propa-
gation. Then when the column is finished, these carry catchers are simply added
with carry to the main set of column registers. The case for m = 2 is shown in
Figure 1 (iii). Observe that the most significant carry-catcher register performs
exactly the same role as the fifth register in the naive implementation.

The m ×m row-wise multiplication requires m + 1 registers, m registers to
hold the entire row, each element of which is then multiplied by another register
(which stores the current multiplier) to create m partial products. There are 2m
column registers and 2m−1 carry-catchers, for a total of 5m registers. Note that
for m = 1 this is the original Comba method, which requires 5 registers, just
about possible if r = 8. The choice m = 2 requiring 10 registers is a good fit for
a processor with a total of r = 16 registers, and m = 4 will take 20 registers for

3

the case r = 32. These figures are approximate and may require modification for
a particular architecture.

We remark that the use of the hybrid method as described here and also in
[4] and [12], rather conflicts with the instruction set and architectural enhance-
ments as proposed by Großschädl and Savas [2], and as implemented in the
SmartMIPSTM variant of the popular RISC MIPS32 architecture [11]. Those
enhancements, incorporating as they do a special 72-bit “triple register” are
specific to the original Comba method, and cannot easily be modified to sup-
port the hybrid method. It may be that good performance can be achieved at
lower cost by simply incorporating more registers into the architecture, or per-
haps fully using the registers that are already there, rather than by including
specialised instruction set extensions.

" C a r r y c a t c h e r r e g i s t e r s "

" T r i p l e R e g i s t e r "

(i) (i i) (i i i)

Fig. 1. The processing of a two word partial product using (i) The standard Column-
wise Comba implementation, (ii) A naive implementation of the hybrid method and
(iii) Our improved hybrid implementation

4

3 The Atmel AVR ATmega-128L processor

The Atmel AVR ATmega-128L is an 8-bit Risc processor, very popular for use
in Wireless Sensor Networks (WSNs). On the face of it, it is an unpromising
candidate for public key cryptography. However the authors of [4] demonstrated
that elliptic curve cryptography in particular can be implemented quite success-
fully on this platform. In particular a 160-bit point multiplication on a standard
elliptic curve can be carried out in just 0.81 seconds when the device is clocked
at 8MHz.

The processor has 32 registers, denoted r0 to r31. There are three memory
addressing registers, denoted X, Y and Z, which actually refer to the 16-bit
register pairs r26:27, r28:29 and r30:31.

Now consider the calculation of a typical single partial product on this pro-
cessor using the standard Comba method. See Figure 2. The Y and Z registers
are pointing at 8-bit digits of the multiplicand and the multiplier respectively.
The X register is pointing at the address which will eventually contain the sum
of this column. Using standard indexed addressing and the LDD instruction, the
multiplicand and multiplier are loaded into the r0 and r1 registers. The MUL
instruction always places the 16-bit result in the register pair r0:1. The “triple
register” in this case is r6:7:8 and the register r5 is kept as a constant zero. Then
an ADD and two ADC instructions are used to add the new product into the triple
register, taking care of the carries.

L D D r 0 , Y + 2
L D D r 1 , Z + 1
M U L r 1 , r 0
A D D r 6 , r 0
A D C r 7 , r 1
A D C r 8 , r 5

Fig. 2. The processing of a single partial product on the ATmega-128

Now try again, this time using our hybrid method with m = 2. In this case
4 partial products are calculated together in each step, requiring more registers.
See Figure 3. In this case the column registers are r6:7:8:9, and r10:11:12 are
used as the carry-catchers. This time r25 is used to hold the constant zero.

A simple counting exercise now reveals the advantage of the hybrid method.
To calculate 4 partial products using the simple Comba method would require 4
times the operations of figure 2, that is 8 loads, 4 multiplies, 4 additions and 8
additions-with-carry. However for the same work carried out, the hybrid method
requires 4 loads, 4 multiplies, 4 additions and 8 additions-with-carry, from figure

5

3. Clearly we have saved 4 load instructions, which is particularly significant as
the load instruction takes 2 clock cycles, the same as the multiply instruction,
but more than the addition instructions which require only 1 clock cycle each.
For this architecture at least, it can be seen that using the proposed method we
are able to take maximum advantage of the “hybrid” idea.

Furthermore we still have enough unused registers to comfortably extend the
idea to m = 4 with further savings. Using this method the number of clock
cycles for a full 160 × 160 bit multiplication is reduced to 2651 clock cycles,
which compares favourably with the 2881 clock cycles recently reported in [12],
and the 3106 clock cycles reported in [4]. This is despite the fact that these last
two papers use m = 5 rather than the m = 4 maximum that we are constrained
to use due to our extra requirement for carry-catcher registers. See Table 1.

L D D r 2 , Y + 1 0
L D D r 3 , Y + 1 1
L D D r 4 , Z
M U L r 2 , r 4
A D D r 6 , r 0
A D C r 7 , r 1
A D C r 1 0 , r 2 5
M U L r 3 , r 4
A D D r 7 , r 0
A D C r 8 , r 1
A D C r 1 1 , r 2 5
L D D r 4 , Z + 1
M U L r 2 , r 4
A D D r 7 , r 0
A D C r 8 , r 1
A D C r 1 1 , r 2 5
M U L r 3 , r 4
A D D r 8 , r 0
A D C r 9 , r 1
A D C r 1 2 , r 2 5

Fig. 3. The processing of 4 partial products using the hybrid method on the ATmega-
128

We have omitted details of the processing required at the foot of each column,
as for an n×n digit multiplication this is required just 2n times, compared with
the n2 partial products which must be calculated and accumulated. However in
the hybrid case there is admittedly some extra work involved here as the “carry-
catcher” registers must be added-with-carry to the column registers. Then m
registers are written to memory via the X register, and the carry value for the
next column calculated. For this particular architecture advantage can be taken
here of the MOVW instruction which moves two registers in a single clock cycle.

6

When squaring advantage can be taken of the fact that the off-diagonal
partial products need only be calculated once, and then accumulated twice,
with some savings. We omit the details. We also note that an unrolled and
optimized version of the Montgomery REDC modular reduction function [9]
can also exploit the same basic hybrid method.

Table 1. Comparison of instruction counts for ATmega-128

This Work Uhsadel et al. Gura et al. Classic Comba
Instruction CPI Instructs Cycles Instructs Cycles Instructs Cycles Instructs Cycles

add/adc 1 1263 1263 986 986 1360 1360 1200 1200

mul 2 400 800 400 800 400 800 400 800

ld 2 200 400 238 476 167 334 800 1600

st 2 40 80 40 80 40 80 40 80

mov/movw 1 70 70 355 355 355 355 81 81

other 38 184 197 44 44

Totals 2651 2881 3106 3805

One major advantage of the proposed method is that it is easily extended to
other architectures.

4 The TI MSP430 processor

We choose the Texas Instruments MSP430 processor as our second architecture
on which to test the efficiency of our improved hybrid multiplication method.
The TI MSP430 like the ATmega-128L is also widely used in WSNs and many
other embedded applications. But there the similarity ends. The MSP430 is a
16-bit RISC processor with a memory-memory architecture rather than the more
classic RISC load-store architecture of the Atmel chip. The TI product offers 27
instructions in 7 addressing modes and uses a hardware multiplier for 8 and 16-
bit integer multiplication. This orthogonal architecture allows every instruction
to be used with every addressing mode. Only 12 from total number of 16 registers
are available for general use. Registers r0-3 are used for Program Counter, Stack
Pointer, Status Register and Constant Generator respectively. Registers r4-15
are general purpose and available for use at all times. A very nice feature of the
MSP430 is its ultra low power consumption which is especially important on
tiny devices in distributed environments, where battery usage is a big issue.

In order to achieve best performance for multiprecison multiplication on the
MSP430 it is important to use the hardware multiplier. This device is a pe-
ripheral and is not implemented in every member of the large MSP430 family
of microprocessors. It is accessed via memory mapped I/O registers. We used
the MSP430F1611 platform in our research, which does include this hardware
multiplier.

7

Figure 4 shows the calculation of a typical partial product on this architec-
ture using the standard Comba method. Registers r13 and r14 store the memory
addresses of the first 16-bit digits of the multiplicand and the multiplier. In-
dexed addressing mode is used to find the address of a particular 16-bit digit.
In this case the third digit of the multiplicand and the second digit of multiplier
are loaded into the hardware multiplier registers using the memory-to-memory
MOV instruction. Writing the first operand to the MPY register selects unsigned
multiply mode but does not start any operation. Loading the second operand to
OP2 initiates the multiply operation. The lower and the higher 16-bit parts of
the 32-bit result are stored in RESLO and RESHI registers respectively and can
be read by the next instruction. One ADD, one ADDC and one ADC (add carry to
destination in the MSP430 instruction set) instructions are used to add the new
product to the “triple register” which consists of r9:10:11.

M O V 4 (r 1 3) , & M P Y
M O V 2 (r 1 4) , & O P 2
A D D & R E S L O , r 9
A D D C & R E S H I , r 1 0
A D C r 1 1

Fig. 4. The processing of a single partial product on MSP430F1611

Due to the limited number of available registers we could only implement our
hybrid method with m = 2 on the MSP430. See Figure 5. Eleven registers are
required to calculate the 4 partial products in every step of this algorithm. This
time r4:5:6:7 are the column registers, and r13:14:15 are the “carry-catchers”.
Registers r10:11 are used as pointers to particular digits in the multiplicand and
multiplier. In the MSP430 instruction set the number of clock cycles per instruc-
tion depends both on the instruction mnemonic and the type of operands being
used. Because memory-to-memory MOV instructions require the most cycles, we
employ two extra registers r8 and r9 as temporary storage to save on the overall
cycle count (memory-to-register operations are much less expensive).

At a first glance it might appear that the cost of both methods (hybrid
and standard) is exactly the same on the MSP430. Calculation of 4 partial
products using the simple Comba method requires 8 MOV, 4 ADD, 4 ADDC and 4
ADC instructions. The hybrid method uses also 20 instructions with exactly the
same mnemonics. However on closer inspection we will see that the advantage of
the hybrid method lies in the total number of clock cycles. The 8 MOV instructions
in the simple algorithm takes 48 clock cycles in total. The hybrid method can
take advantage of register to memory operations and saves 14 cycles using only
34 cycles for the same work carried out. As we can see the benefit in clock cycles
of our improved hybrid method is very similar on both the MSP430 and the

8

M O V 2 0 (r 1 0) , r 8
M O V 2 2 (r 1 0) , r 9
M O V 1 2 (r 1 1) , & M P Y
M O V r 8 , & O P 2
A D D & R E S L O , r 4
A D D C & R E S H I , r 5
A D C r 1 3
M O V r 9 , & O P 2
A D D & R E S L O , r 5
A D D C & R E S H I , r 6
A D C r 1 4
M O V 1 4 (r 1 1) , & M P Y
M O V r 8 , & O P 2
A D D & R E S L O , r 5
A D D C & R E S H I , r 6
A D C r 1 4
M O V r 9 , & O P 2
A D D & R E S L O , r 6
A D D C & R E S H I , r 7
A D C r 1 5

Fig. 5. The processing of 4 partial products using hybrid method on MSP430F1611

ATmega128-L in the case where m = 2. Note that, as for the Atmel chip, the
savings are due to the overall reduction in memory read accesses to the digits of
the multiplier and multiplicand.

We cannot achieve further savings on the MSP430, as we have used all 12
available registers in our hybrid method with m = 2. Using this algorithm
160 × 160 bit multiplication was performed in 1746 clock cycles, which is a
nice improvement compared to the 2065 cycles for the standard Comba method.
See Table 2 for details.

Assuming that our MSP430 device is clocked at the standard frequency of
8MHz we can calculate the result of the multiplication of two 160-bit numbers in
0.22ms. Our result compares favourably with the 0.95ms reported for the same
operation on a MSP430F1611 in [13]. In [3] Guajardo et al. tested multiprecision
multiplication on the TI MSP430x33x family of processors, which differs slightly
in design from our platform. The common features are the same instruction set
and the presence of the hardware multiplier. In order to compare results in [3]
with our achievements we had to run our multiplication algorithm with 128-bit
numbers. Once again our improved hybrid method proved to be more efficient
using only 1154 clock cycles against the 1425 reported in [3].

9

Table 2. Comparison of instruction counts for MSP430F1611

This Work Classic Comba
Instruction CPI Instructions Cycles Instructions Cycles

add &label,reg 3 100 300 100 300

addc &label,reg 3 100 300 100 300

adc reg 1 109 109 100 100

mov x(reg),&label 6 45 270 180 1080

mov reg,x(reg) 4 20 80 20 80

mov reg,reg 1 27 27 38 38

mov reg,&label 4 100 400

mov x(reg),reg 3 45 135

other 125 167

Totals 1746 2065

5 The ARM processor

Finally we consider the popular 32-bit ARM processor. This has a standard
RISC load-store architecture, with several innovative features, including effec-
tively free shifting of operands and conditional execution. It has 16 registers,
although significantly three of these are reserved for special purposes, r13 as
a stack pointer, r14 holds a function return address, and r15 is the program
counter. The ARM processor has recently made an appearance in the WSN seg-
ment, but is more well known as the processor of choice for PDA and mobile
embedded applications.

Figure 6 shows the calculation of a typical partial product on this architec-
ture using the standard Comba method. Registers r5 and r6 store the memory
addresses of the first 32-bit digits of the multiplicand and the multiplier. In-
dexed addressing mode is used to find the address of a particular 32-bit digit.
The UMULL instruction calculates the 64-bit product in registers r8 and r9. These
are then added-with-carry to the triple register r2:3:4.

L D R r 0 , [r 5 , # 4]
L D R r 1 , [r 6 , # 8]
U M U L L r 8 , r 9 , r 0 , r 1
A D D S r 2 , r 2 , r 8
A D C S r 3 , r 3 , r 9
A D C r 4 , r 4 , # 0

Fig. 6. The processing of a single partial product on the ARM

10

However a naive attempt to implement our hybrid method with m = 2 will
fail, due to a lack of registers. For the multiplication algorithm 3 registers are
required to hold the addresses of the operands, 4 more are required as column
registers, 3 as carry-catchers, and 2 more for the row elements, plus another for
the multiplier. Furthermore the multiplication instruction requires 2 registers to
hold the 64-bit product of a pair of 32-bit registers, for a total of 15 registers.

We solve this problem by exploiting the novel features of the instruction set.
The basic idea is to use just one carry-catcher register instead of three. As the
carry-catcher registers are used to catch and accumulate the sum of individual
carry bits, they do not require the 32-bit precision of a full register. In fact for any
reasonable application with big number operands of a useful size, a byte would
be sufficient. We exploit this fact to compress the carry-catcher requirement into
a single register, without incurring any extra cost.

Our solution is illustrated in figure 7.

L D R r 8 , [r 5 , # 8]
L D R r 9 , [r 5 , # 1 2]
L D R r 1 2 , [r 6 , # 0]
U M U L L r 0 , r 1 , r 8 , r 1 2
A D D S r 2 , r 2 , r 0
A D C S r 3 , r 3 , r 1
A D C r 1 1 , r 1 1 , # 0
U M U L L r 0 , r 1 , r 9 , r 1 2
A D D S r 3 , r 3 , r 0
A D C S r 4 , r 4 , r 1
A D D C S r 1 1 , r 1 1 , 0 x 1 0 0
L D R r 1 2 , [r 6 , # 4]
U M U L L r 0 , r 1 , r 8 , r 1 2
A D D S r 3 , r 3 , r 0
A D C S r 4 , r 4 , r 1
A D D C S r 1 1 , r 1 1 , 0 x 1 0 0
U M U L L r 0 , r 1 , r 9 , r 1 2
A D D S r 0 , r 1 , r 9 , r 1 2
A D C S r 1 0 , r 1 0 , r 1
A D D C S r 1 1 , r 1 1 , 0 x 1 0 0 0 0

Fig. 7. The processing of 4 partial products using hybrid method on the ARM

The trick is in the use of the ADDCS instruction (ADD if Carry Set) which
adds a carry bit to a specific byte in the shared carry-catcher register r11. Here
r2:3:4:10 are the column registers. In this case the savings are again revealed by
simple inspection – we have saved four load instructions.

11

The foot-of-column processing is a little complex, as the individual carry-
catcher components must now be masked and shifted before being added to the
column registers. However a register argument can be shifted at no extra cost
using the ARM’s barrel shifter, so the overall cost is small.

The method was implemented and tested in the context of a 192 × 192 bit
multiplication. Using the ARM RealView simulator [7] in the context of the
ARM7 variant of the architecture, we found that the basic Comba method re-
quired 580 clock cycles, whereas our modified hybrid method required only 487
cycles.

6 Conclusion

We have described a simple and generic method of implementing the hybrid
method for multiprecision multiplication. The general applicability of the idea
has been demonstrated on three quite different 8-bit, 16-bit and 32-bit architec-
tures.

If there should be insufficient registers, one idea would be to drop intermedi-
ate carry-catchers, and to allow the carry to propagate past the missing carry-
catcher to the next available one, at the cost of some extra add-with-carries in
the calculation of each partial product.

As a negative result we would like to report that the proposed method with
m = 2 when applied to the x86-64 architecture, and attempting to exploit the
extra registers r8-r15 available with this architecture, did not produce any im-
provement in our experiments. This is explained in part by the fact that the
unsigned multiply instruction always expects one of the 64-bit multiplicands to
be in the rax register, and the extra register moves required to get it there offset
any advantage.

12

References

1. P. Comba. Exponentiation cryptosystems on the IBM PC. IBM Systems Journal,
29(4):526–538, 1990.

2. Johann Großschädl and Erkay Savas. Instruction set extensions for fast arithmetic
in finite fields GF(p) and GF(2m). In CHES, pages 133–147, 2004.

3. J. Guajardo, R. Bluemel, U. Krieger, and C. Paar. Efficient implementation of
elliptic curve cryptosystems on the TI MSP430x33x family of microcontrollers. In
International Workshop on Practice and Theory in Public Key Cryptography (PKC
2001), 2001.

4. N. Gura, A. Patel, A. Wander, W. Eberle, and S. Shantz. Comparing elliptic curve
cryptography and RSA on 8-bit CPUs. In Cryptographic Hardware and Embedded
Systems - CHES’2004, volume 3156 of Lecture Notes in Computer Science, pages
119–132. Springer-Verlag, 2004.

5. D. Hankerson, A. Menezes, and S. Vanstone. Guide to Elliptic Curve Cryptography.
Springer-Verlag, 2004.

6. C. Koç, T. Acar, and B. Kaliski. Analyzing and comparing Montgomery multipli-
cation algorithms. IEEE Micro, pages 26–33, June 1996.

7. ARM Ltd. Arm realview tools. http://www.arm.com/products/DevTools/.
8. Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Hand-

book of applied cryptography. CRC Press, Boca Raton, Florida, 1996. URL:
http://cacr.math.uwaterloo.ca/hac.

9. P. Montgomery. Modular multiplication without division. Mathematics of Com-
putation, 44(170):519–521, 1985.

10. M. Scott. Implementing cryptographic pairings. In Pairing-Based Cryptography –
Pairing ’2007, volume 4575 of Lecture Notes in Computer Science, pages 177–196.
Springer-Verlag, 2007.

11. MIPS technologies. http://www.mips.com/products/architectures/

smartmips-ase/.
12. Leif Uhsadel, Axel Poschmann, and Christof Paar. Enabling Full-Size Public-Key

Algorithms on 8-bit Sensor Nodes. In Proceedings of ESAS 2007, volume 4572
of LNCS. Springer, 2007. http://www.ist-ubisecsens.org/publications/ecc_

esas2007.pdf.
13. Haodong Wang, Bo Sheng, and Qun Li. Elliptic curve cryptography based access

control in sensor networks. International Journal of Security and Networks (IJSN).
Special Issue on Security Issues on Sensor Networks, 1(3/4):127–137, 2006.

13

