
A Note on Automata-based Dynamic Convolutional

Cryptosystems

Renji Tao
Institute of Software, Chinese Academy of Sciences,

Beijing 100080, China
E-mail: trj@ios.ac.cn

Abstract

In [1], the automata-based dynamic convolutional cryptosystem is proposed and ana-
lyzed; the author claims that “finding partial information about the cipher is quite easy,
and the main idea of such an attack, described in detail in Section 4.1, is based on Gaussian
elimination.” But the deduction supporting this claim in Section 4.1 of [1] cannot work.
It seems that this cipher is not so weak so far.

1 Definition of ADCC

Recall some definitions. 1 A finite automaton, say M , is a quintuple 〈X, Y, S, δ, λ〉, where X is
a nonempty finite set (the input alphabet of M), Y a nonempty finite set (the output alphabet of
M), S a nonempty finite set (the state alphabet of M), δ : S ×X → S a single-valued mapping
(the next state function of M), and λ : S×X → Y a single-valued mapping (the output function
of M).

For any set A, we use A∗ to denote the set of all words (finite sequences) over A including
the empty word ε. Expand the domains of δ and λ to S ×X∗ as follows.

δ(s, ε) = s, δ(s, αx) = δ(δ(s, α), x),
λ(s, ε) = ε, λ(s, αx) = λ(s, α)λ(δ(s, α), x),

s ∈ S, x ∈ X, α ∈ X∗.

In [1], Trincă proposed a symmetric cryptosystem, named automata-based dynamic convo-
lutional cryptosystem (ADCC for short) with q states. The encoder of an ADCC is a finite
automaton, say M = 〈X, Y, S, δ, λ〉, where X and Y are the k-dimensional row vector space
over GF (2) (the field with 2 elements), S = Xm×{1, . . . , q} = {〈x−1, . . . , x−m, w〉 | xi ∈ X, i =
−1, . . . ,−m,w = 1, . . . , q}, q and m being two positive integers,

δ(〈x−1, . . . , x−m, w〉, x0) = 〈x0, . . . , x−m+1, f(w, x0)〉,

λ(〈x−1, . . . , x−m, w〉, x0) =
m∑

j=0

x−jGj,w,

x0, x−1, . . . , x−m ∈ X, w ∈ {1, . . . , q},
f being a single-valued mapping from {1, . . . , q} × X to {1, . . . , q}, for each w ∈ {1, . . . , q},
G0,w being a k× k nonsingular matrix over GF (2), and Gj,w being a k× k matrix over GF (2),
j = 1, . . . , m.

1See [2] for example.

1

For any initial state s0 = 〈x−1, . . . , x−m, w0〉 in S and any input sequence α = x0 . . . xp−1

over X, the output of the encoder is β = y0 . . . yp−1, where β = λ(s0, α), that is,2

yi = λ(si, xi) = λ(〈xi−1, . . . , xi−m, wi〉, xi) =
m∑

j=0

xi−jGj,wi
,

si+1 = δ(si, xi) = δ(〈xi−1, . . . , xi−m, wi〉, xi) = 〈xi, . . . , xi−m+1, wi+1〉,
wi+1 = f(wi, xi), (1)

i = 0, 1, . . . , p− 1.

By notation in automata theory the encoder mentioned above is a weakly invertible finite
automaton with delay 0. Thus the decoder can be implemented by a finite automaton. It is
easy to construct an decoder, say the finite automaton M ′ = 〈Y, X, S, δ′, λ′〉, where

δ′(〈x−1, . . . , x−m, w〉, y0) = 〈x0, . . . , x−m+1, f(w, x0)〉,
λ′(〈x−1, . . . , x−m, w〉, y0) = x0,

x0 = y0G
−1
0,w −

m∑

j=1

x−jGj,wG−1
0,w,

x−1, . . . , x−m ∈ X, w ∈ {1, . . . , q}, y0 ∈ Y.

For any initial state s0 = 〈x−1, . . . , x−m, w0〉 in S and any input sequence β = y0 . . . yp−1 over
Y , the output of the decoder is λ′(s0, β) = x0 . . . xp−1, where

xi = λ′(si, yi) = λ′(〈xi−1, . . . , xi−m, wi〉, yi) = yiG
−1
0,wi

−
m∑

j=1

xi−jGj,wi
G−1

0,wi
,

si+1 = δ′(si, yi) = δ′(〈xi−1, . . . , xi−m, wi〉, yi) = 〈xi, . . . , xi−m+1, wi+1〉,
wi+1 = f(wi, xi), (2)

i = 0, 1, . . . , p− 1.

From (1) and (2), it is easy to verify that for any state s ∈ S and any sequence α over X
we have

λ′(s, λ(s, α)) = α.

This means that M ′ is an decoder of the encoder M indeed.
The key of the ADCC, according to [1], consists of f and Gj,w, j = 0, 1, . . . , m, w = 1, . . . , q.3

2 ADCC is not so weak

We have restated Trincă’s definition of ADCC with automata-theoretic and linear algebraic
notation in the preceding section. In [1, p.8], the author wrote: “An automata-based dynamic
convolutional cryptosystem is considered broken as soon as the attacker finds the bits of the
matrices4 G1

t,0, . . ., G1
t,m, . . ., Gq

t,0, . . ., Gq
t,m, and the values of the function f , i.e. f(i, u)

for all (i, u). Breaking the cipher completely is a very difficult task, as we will see in Section
4.2. However, finding partial information about the cipher is quite easy, and the main idea of
such an attack, described in detail in Section 4.1, is based on Gaussian elimination.” In [1,

2In [1], the initial state s0 = 〈x−1, . . . , x−m, w0〉 always takes the value 〈0, . . . , 0, 1〉. It seems not necessary.
3The key may also include the initial state 〈x−1, . . . , x−m, w0〉.
4Gw

t,j is rewritten as Gj,w in this paper.

2

p.10], the author wrote: “We have seen in Section 4.1 that a (256, 256, 32) automata-based
dynamic convolutional cryptosystem can be partially broken quite easily.” But the deduction
supporting this claim in Section 4.1 of [1] cannot work. This observation is implicit in the
following discussion in this section.

Similar to the discussion in in Section 4.1 of [1], consider a known-plaintext attack. We still
confine to the case where x−1 = . . . = x−m = 0 and w0 = 1.

Assume that an adversary had gotten n plaintext-ciphertext pairs of length p, say (αi, βi) =
(x0,ix1,i . . . xp−1,i, y0,iy1,i . . . yp−1,i), i = 1, 2, . . . , n, satisfying the following conditions:

βi = λ(〈0, . . . , 0, 1〉, αi), i = 1, 2, . . . , n, (3)

and5

∃w0 . . .∃wp−1[w0 = 1&∀i∀j(1 ≤ i ≤ n&0 ≤ j < p− 1 → f(wj , xj,i) = wj+1)]. (4)

Denote xj,i = 0, for j < 0, 1 ≤ i ≤ n. For any j, 0 ≤ j ≤ p− 1, from (3) and (4), we have

Aj




Gm,wj

Gm−1,wj

...
G0,wj


 =




yj,1

yj,2

...
yj,n


 , (5)

where

Aj =




xj−m,1 xj−m+1,1 . . . xj,1

xj−m,2 xj−m+1,2 . . . xj,2

...
...

...
...

xj−m,n xj−m+1,n . . . xj,n


 . (6)

We discuss the number of the solutions Gh,wj , h = 0, 1, . . . , m of (5). Let

Aj = [Xj−m, Xj−m+1, . . . , Xj],

where Xh has k columns, h = j −m, j −m + 1, . . . , j. Let rj be the rank of Aj , and r′h the
rank of Xh. Clearly, r′h ≤ k and rj ≤

∑m
h=0 r′j−h.

Consider the case of m ≤ j < p− 1. Since (4) holds, we have

f(wh, xh,i) = wh+1, i = 1, . . . , n, h = j −m, j −m + 1, . . . , j. (7)

For any w′, w′′ ∈ {1, . . . , q − 1}, define a set

Xw′,w′′ = {x ∈ X | f(w′, x) = w′′}.
We use rw′,w′′ to denote the dimension of the vector space generated by Xw′,w′′ . Then we have

rj ≤
m∑

h=0

r′j−h ≤
m∑

h=0

rwj−h,wj−h+1 , j = m,m + 1, . . . , p− 2.

It follows that the number of the solutions Gh,wj
, h = 0, 1, . . . , m of the system of equations (5)

and (7) is at least 6

2k[(m+1)k−
∑m

h=0
rwj−h,wj−h+1], j = m,m + 1, . . . , p− 2. (8)

5The condition (4) has not been considered in [1] !
6The condition that G0,w is nonsingular is neglected here.

3

This yields that if the solution Gh,wj , h = 0, 1, . . . , m is unique, then rwj−h,wj−h+1 = k, for
h = 0, 1, . . . , m.

For the case of j = p − 1, similar to (8), noticing r′p−1 ≤ k, the number of the solutions
Gh,wj

, h = 0, 1, . . . , m of the system of equations (5) and (7) is at least

2k[mk−
∑m

h=1
rwp−h−1,wp−h

]. (9)

For the case of 0 ≤ j < m and x−1 = . . . = x−m = 0, letting rh,h+1 = 0 for h < 0, then (8)
gives a lower bound also for j = 0, 1, . . . , m− 1.

As shown in (8) and (9), the lower bounds heavily depends on rw′,w′′ . We turn back to
discuss Xw′,w′′ .

For any w ∈ {1, . . . , q}, f is called almost uniform with respect to w, if for any w′ ∈ f(w, X),
b2k/qc ≤ |{x ∈ X | f(w, x) = w′}| ≤ d2k/qe holds.7 f is called almost uniform, if for any
w ∈ {1, . . . , q}, f is almost uniform with respect to w.

Suppose that f is almost uniform. It is easy to see that |Xw,w′ | ≤ d2k/qe holds for any
w, w′ ∈ {1, . . . , q}. It follows that rw,w′ ≤ d2k/qe holds for any w, w′ ∈ {1, . . . , q}. From (8)
and (9), the number of the solutions Gh,wj , h = 0, 1, . . . , m of the system of equations (5) and
(7) is at least

2k(m+1)(k−d2k/qe), for j = 0, 1, . . . , p− 2, (10)

and

2km(k−d2k/qe), for j = p− 1. (11)

In case of q ≥ 2k, we have d2k/qe = 1. Whenever f in the key is almost uniform, from (10)
and (11), the number of the solutions Gh,wj

, h = 0, 1, . . . , m of the system of equations (5) and
(7) is at least

2k(m+1)(k−1), for j = 0, 1, . . . , p− 2,

and

2km(k−1), for j = p− 1.

In case of 2k−d+1 > q ≥ 2k−d, 0 ≤ d ≤ k, we have d2k/qe ≤ 2d. Whenever f in the key is
almost uniform, from (10) and (11), the number of the solutions Gh,wj , h = 0, 1, . . . , m of the
system of equations (5) and (7) is at least

2k(m+1)(k−2d), for j = 0, 1, . . . , p− 2,

and

2km(k−2d), for j = p− 1.

For example, for d = 1, the lower bounds are 2(m+1)k(k−2) and 2mk(k−2), respectively.
For any small q with k ≤ d2k/qe, the lower bounds given by (10) and (11) are trivial.
In an extreme case q = 1, Gj,w is independent of w. The adversary can learn Gh,1, h =

0, 1, . . . , m from n = (m+1)k plaintext-ciphertext pairs of length p = m+1, say (x0,ix1,i . . . xm,i,
y0,iy1,i . . . ym,i), i = 1, 2, . . . , (m + 1)k, so that the (m + 1)k × (m + 1)k matrix Am defined by
(6) is nonsingular. This observation is trivial, since the encoder degenerates to a linear finite
automaton. In general, contrary to error correcting codes, the linear encoder for a cipher is
avoided.

7dae is the least integer ≥ a, and bac is the greatest integer ≤ a.

4

In case of q > 1, since f in the key is unknown, the probability of ∀i(1 ≤ i ≤ n&f(wj , xj,i) =
f(wj , xj,1)) may be assumed to be q−(n−1). Thus the probability of that (4) holds may be
regarded as q−(n−1)(p−1); it equals q−((m+1)k−1)m if n = (m + 1)k and p = m + 1. We have
q−((m+1)k−1)m = 10−(33·256−1)32 = 10−270304, if k = 256, m = 32 and q = 10 (parameters in
[1]), and q−((m+1)k−1)m = 2−(33·8−1)32 = 2−8416 < 10−2533, if k = 8, m = 32 and q = 2. It
seems that for moderate n and p, the probability of that (4) holds is too small.

3 Key space of ADCC

In the definition of ADCC with q states, it is not necessary that for any 1 ≤ i < w ≤ q,
[G0,i, . . . , Gm,i] 6= [G0,w, . . . , Gm,w] holds. This restriction will reduce the size of the key space
of ADCC. Since the number of all k × k nonsingular matrices over GF (2) is

∏k−1
h=0(2

k − 2h)
and the number of all k × k matrices over GF (2) is 2k2

, the number of all possible values of
[G0,w, G1,w, . . . , Gm,w] is 2k2m

∏k−1
h=0(2

k − 2h), denoted by qm. Notice that log2 qm = k2m +∑k−1
h=0 log2(2k−2h) = k2m+

∑k−1
h=0 log2(2h(2k−h−1)) = k2m+k(k−1)/2+

∑k−1
h=0 log2(2k−h−1)

= k2m+k(k−1)/2+
∑k

h=1 log2(2h−1) ≥ k2m+k(k−1)/2+
∑k

h=2 log2(2h−1) = k2m+k(k−1) =
k2(m + 1)− k.

The key of ADCC with q states is the structure of the finite automaton M . Clearly, the
number of all single-valued mapping from {1, . . . , q}×X to {1, . . . , q} is q2kq and the number of
all possible choices of [G0,w, . . . , Gm,w], w = 1, . . . , q is (qm)q.8 Thus the size of the key space
of ADCC with q states is q2kq(qm)q, where qm = 2k2m

∏k−1
h=0(2

k − 2h) ≥ 2k2(m+1)−k.
The cipher ADCC may be slightly expanded. For any positive integers k and m, we use

Gk,m to denote the set of all (m + 1)k × k matrices over GF (2) of which the submatrices of
the last k rows are nonsingular. As shown above, the number of elements in Gk,m is qm. The
definition of the automata-based dynamic convolutional cryptosystem with q states may be
changed as follow. The encoder is a finite automaton M = 〈X, Y, S, δ, λ〉, where X and Y
are the k-dimensional row vector space over GF (2), S = Xm × {1, . . . , q}, q and m being two
positive integers,

δ(〈x−1, . . . , x−m, w〉, x0) = 〈x0, . . . , x−m+1, f(w, x0)〉,
λ(〈x−1, . . . , x−m, w〉, x0) = [x−m, . . . , x0]g(x−1, . . . , x−m, w),

x0, x−1, . . . , x−m ∈ X, w ∈ {1, . . . , q},

f being a single-valued mapping from {1, . . . , q} ×X to {1, . . . , q}, and g being a single-valued
mapping from S to Gk,m. The key is the structure of M (i.e., f and g) and the initial state.

A corresponding decoder is the finite automaton M ′ = 〈Y, X, S, δ′, λ′〉, where

δ′(〈x−1, . . . , x−m, w〉, y0) = 〈x0, . . . , x−m+1, f(w, x0)〉,
λ′(〈x−1, . . . , x−m, w〉, y0) = x0,

x0 = y0G
−1
0 −

m∑

j=1

[x−m, . . . , x−1]G′G−1
0 ,

x0, x−1, . . . , x−m ∈ X, w ∈ {1, . . . , q},

G′ and G0 being the first mk rows and the last k rows of g(x−1, . . . , x−m, w), respectively. It
is easy to verify that for any s ∈ S and any α ∈ X∗, λ′(s, λ(s, α)) = α holds.

8
∏q−1

h=0
(qm − h) in case where the matrices are different from each other.

5

The original definition of ADCC in [1] is a special case where g(x−1, . . . , x−m, w) does not
depend on x−1, . . . , x−m, denoted by g(w). In this case,




Gm,w

...
G1,w

G0,w


 = g(w), w = 1, . . . , q

in original definition of ADCC.
Contrary to the original ADCC, even if q = 1, the chosen-plaintext attack is not a trivial

task, which can be reduced to solving nonlinear Boolean equations.
From automata-theoretic point of view, any ADCC can be implemented by a “static” cipher.

The encoder of the static cipher is a finite automaton M̄kmq = 〈X, Y, S̄, δ̄, λ̄〉, where X and Y
are the k-dimensional row vector space over GF (2), S̄ = Xm × {1, . . . , q} × F × G, k, m and
q being positive integers, F being the set of all single-valued mappings from {1, . . . , q} ×X to
{1, . . . , q}, G being the set of all single-valued mappings from Xm × {1, . . . , q} to Gk,m,

δ̄(〈x−1, . . . , x−m, w, f, g〉, x0) = 〈x0, . . . , x−m+1, f(w, x0), f, g〉,
λ̄(〈x−1, . . . , x−m, w, f, g〉, x0) = [x−m, . . . , x0]g(x−1, . . . , x−m, w),

x0, x−1, . . . , x−m ∈ X, w ∈ {1, . . . , q}, f ∈ F, g ∈ G.

The key is its initial state. Since |F | = q2kq and |G| = (qm)2
mkq, the size of the key space is

|S̄| = 2mkq2kq+1(qm)2
mkq, where qm = 2k2m

∏k−1
h=0(2

k − 2h) ≥ 2k2(m+1)−k.
Clearly, for any 〈x−1, . . . , x−m, w〉 ∈ S and any α ∈ X∗, we have λ(〈x−1, . . . , x−m, w〉, α) =

λ̄(〈x−1, . . . , x−m, w, f, g〉, α), where f and g are given in the definition of M .

4 Conclusion

We have given a lower bound of the number of the solutions Gh,wj , h = 0, 1, . . . , m of the system
of equations (5) and (7) for almost uniform f . In case of large state number, the lower bound
shows that the solution is not unique in general. In case of small state number other than 1,
the probability of that (4) holds is too small. Therefore, the deduction in Section 4.1 of [1]
cannot work.

In addition, by means of expanding the state alphabet, the automata-based dynamic con-
volutional cryptosystem can be implemented by an automata-based static cryptosystem.

References

[1] D. Trincă, Efficient FPGA Implementations and Cryptanalysis of Automata-based Dy-
namic Convolutional Cryptosystems, available as Cryptology ePrint Archive Report
2006/263.

[2] R. J. Tao, On finite automaton one key cryptosystems, in Fast Software Encryption, Lec-
ture Notes in Computer Science 809, Springer-Verlag, Berlin, 1994, 135–148.

6

