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Abstract. In this paper, we present a weakness of the RC4 Key Schedul-
ing Algorithm (KSA). Consider the RC4 permutation S of N (usually
256) bytes and denote it by SN after the KSA. We observe for the first
time and then theoretically prove that each permutation byte after the
KSA is significantly biased (either positive or negative) towards many
values in the range 0, . . . , N − 1. For each byte u, 0 ≤ u ≤ N − 2,
P (SN [u] = v) is maximum at v = u + 1 and this maximum probability
ranges approximately between 1

N
(1 + 1

3
) and 1

N
(1 + 1

5
) for different val-

ues of u. Moreover, these biases are independent of the secret key and
thus presents an evidence that the permutation after the KSA can be
distinguished from random permutation without any assumption on the
secret key.

Keywords: Bias, Cryptography, Cryptanalysis, Key Scheduling Algorithm,
RC4, Stream Cipher.

1 Introduction

RC4, one of the most popular stream ciphers till date, was proposed by Rivest in
1987. The cipher gained its popularity from its extremely simple structure and
substantially good strength in security, as even after lots of explored weaknesses
in the literature [1–16], it could not be thoroughly cracked. Studying weaknesses
of RC4 received serious attention in the literature and these studies are believed
to be quite useful in further development of stream ciphers that exploit shuffle-
exchange paradigm.

Before getting into our contribution, let us briefly present the Key Scheduling
Algorithm (KSA) and the Pseudo Random Generation Algorithm (PRGA) of
RC4. The data structure contains an array of size N (in practice 256 which
is followed in this paper) with each location having an integer in the range



[0, . . . , N − 1], two indices i, j and the secret key array K. Given a secret key k

of l bytes (typically 5 to 32), the array K of size N is such that K[i] = k[i mod l]
for any i, 0 ≤ i ≤ N − 1. All additions used in the description of the algorithm
are modulo N additions.

Algorithm KSA

Initialization:
For i = 0, . . . , N − 1

S[i] = i;
j = 0;

Scrambling :
For i = 0, . . . , N − 1

j = (j + S[i] + K[i]);
Swap(S[i], S[j]);

Algorithm PRGA

Initialization:
i = j = 0;

Output Keystream Generation Loop:
i = i + 1;
j = j + S[i];
Swap(S[i], S[j]);
t = S[i] + S[j];
Output z = S[t];

RC4 KSA has been analysed deeply in [15, 16, 3, 12]. All these works discuss
the relationship of the permutation bytes after the KSA with the secret key. For a
proper design, the permutation S after the KSA should not have any correlation
with the secret keys. However, weaknesses of RC4 in this aspect have already
been reported [15, 16, 3, 12]. These weaknesses, in turn, leak information about
RC4 secret key in the initial keystream output bytes [11].

Another approach of study is to look at the permutation after the KSA
in a (secret) key independent manner and try to distinguish it from random
permutations. In [10], the sign of the permutation after the KSA has been studied
(see [10] for the definition of the sign of a permutation). There it has been shown
that, after the KSA, the sign of the permutation can be guessed with probability
56%.

In Figure 1, we present a few graphs for P (SN [u] = v), against v, 0 ≤ v ≤
N − 1, for a few values of u as motivating examples. These graphs are based
on 10 million trials over randomly chosen keys of 32 bytes. One may clearly
note that the values of P (SN [u] = v) are not that of random association 1

N

(probability that any two randomly chosen integers, with replacement, in the
range [0, . . . , N − 1] are equal).

Our main results related to the biases are presented in Section 2 (see Theo-
rem 1 and Theorem 2). Numerical values of our theoretical formulae match with
the experimental results except in very few places and that we discuss in Sec-
tion 3. Numerical values from our formulae in Theorem 1 show that P (SN [u] = v)
varies approximately in the range 1

N
(1+ 1

3 ) at the higher side (i.e., positive bias)
to 1

N
(1 − 1

3 ) at the lower side (i.e., negative bias). It also attains maximum at
v = u + 1, for each u in [0, N − 2], and P (SN [u] = u + 1) varies approximately
from 1

N
(1 + 1

3 ) to 1
N

(1 + 1
5 ).

Note that the result of [10] on biased sign of RC4 permutations is based on the
complete permutation SN , but not on each individual byte of the permutation.
Existing [15, 16, 3, 11, 12] key dependent biases of RC4 permutation after the
KSA could be identified only for the initial bytes (0 to 47 for N = 256) of SN .
We identify the biases for all the bytes of the permutation after the KSA and
each byte is biased to many values.
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Fig. 1. P (SN [u] = v) versus v for some specific u’s.

2 Bias in Each Permutation Byte

We denote the initial identity permutation by S0 and the permutation at the
end of the r-th round of KSA by Sr, 1 ≤ r ≤ N (note that round r = i + 1,
for the deterministic index i, 0 ≤ i ≤ N − 1). Thus, the permutation after the
KSA will be denoted by SN . By jr, we denote the value of index j after it is
updated in round r. In the proofs, we replace the joint probabilities with the
product of the probabilities of the individual events, assuming that the events
under consideration are statistically independent.

We start with the following technical result.

Lemma 1. P (S2[0] = 1) = 2(N−1)
N2 .

Proof. In the first round, we have i = 0, and j1 = 0 + S[0] + K[0] = K[0]. In
the second round, i = 1 and j2 = j1 + S1[1] + K[1]. We consider two mutually
exclusive and exhaustive cases, namely, K[0] = 1 and K[0] 6= 1.

1. Take K[0] = 1. So, after the first swap, S1[0] = 1 and S1[1] = 0. Now,
j2 = K[0] + 0 + K[1] = K[0] + K[1]. Thus, after the second swap, S2[0] will
remain 1, if K[0]+K[1] 6= 0. Hence the contribution of this case to the event
(S2[0] = 1) is P (K[0] = 1) · P (K[0] + K[1] 6= 0) = 1

N
· N−1

N
= N−1

N2 .
2. Take K[0] 6= 1. Then after the first swap, S1[1] remains 1. Now, j2 = K[0]+

1 + K[1] = K[0] + K[1] + 1. Thus, after the second swap, S2[0] will get the
value 1, if K[0] + K[1] + 1 = 0. Hence the contribution of this case to the
event (S2[0] = 1) is P (K[0] 6= 1) ·P (K[0]+K[1]+1 = 0) = N−1

N
· 1

N
= N−1

N2 .



Adding the two contributions, we get the total probability as 2(N−1)
N

. ut

We here calculate P (S2[0] = 1). Note that the form of P (Sv+1[u] = v) for
v ≥ u+1 in general (see Lemma 2 later) does not work for the case u = 0, v = 1
only. This will be made clear in Remark 1 after the proof of Lemma 2.

Proposition 1. P (Sx[x] = x) = (N−1
N

)x, for x ≥ 0.

Proof. In the rounds 1 through x, the deterministic index i touches the permu-
tation indices 0, 1, . . . , x− 1. Thus, after round x, Sx[x] will remain the same as
S0[x] = x, if x has not been equal to any of the x many pseudorandom indices
j1, j2, . . . , jx. The probability of this event is (N−1

N
)x. So the result holds for

x ≥ 1. Furthermore, P (S0[0] = 0) = 1 = (N−1
N

)0. Hence, for any x ≥ 0, we have

P (Sx[x] = x) = (N−1
N

)x. ut

Proposition 2. For v ≥ u + 1, P (Sv[u] = v) = 1
N

· (N−1
N

)v−u−1.

Proof. The permutation index u is touched by the deterministic index i for the
first time in round u+1. After round u+1, the probability that Su+1[u] = v is 1

N
;

as in the round u+1, the value of i is u and the location u of the permutation will
be swapped with a random location based on the secret key values and the value
ju+1. The probability that the index u is not touched by any of the subsequent
v −u− 1 many j values, namely, ju+2, . . . , jv, is given by (N−1

N
)v−u−1. So, after

the end of round v, P (Sv [u] = v) = 1
N

· (N−1
N

)v−u−1. ut

Lemma 2. For v ≥ u+1 (except for the case “u = 0 and v = 1”), P (Sv+1[u] =
v) = 1

N
· (N−1

N
)v−u + 1

N
· (N−1

N
)v − 1

N2 · (N−1
N

)2v−u−1.

Proof. In round v+1, i = v and jv+1 = jv+Sv[v]+K[v]. The event (Sv+1[u] = v)
can occur in two ways.

1. Sv [u] already had the value v and the index u is not involved in the swap in
round v + 1.

2. Sv [u] 6= v and the value v comes into the index u from the index v (i.e.,
Sv [v] = v) by the swap in round v + 1.

From Proposition 1, we have P (Sv [v] = v) = (N−1
N

)v and from Proposition 2,

we have P (Sv[u] = v) = 1
N

· (N−1
N

)v−u−1. Hence, P (Sv+1[u] = v)
= P (Sv[u] = v) · P (jv + Sv [v] + K[v] 6= u)

+ P (Sv [u] 6= v) · P (Sv [v] = v) · P (jv + Sv[v] + K[v] = u)
(except for the case “u = 0 and v = 1”, see Remark 1)

=
(

1
N

· (N−1
N

)v−u−1
)

· (N−1
N

) +
(

1 − 1
N

· (N−1
N

)v−u−1
)

· (N−1
N

)v · 1
N

= 1
N

· (N−1
N

)v−u + 1
N

· (N−1
N

)v − 1
N2 · (N−1

N
)2v−u−1. ut

Remark 1. Case 1 in the proof of Lemma 2 applies to Lemma 1 also. In case 2,
i.e., when Sv [u] 6= v, in general we may or may not have Sv [v] = v. However,
for u = 0 and v = 1, (S1[0] 6= 1) ⇐⇒ (S1[1] = 1), the probability of each of
which is N−1

N
(note that there has been only one swap involving the indices 0



and K[0] in round 1). Hence the contribution of case 2 except for “u = 0 and
v = 1” would be P (Sv[u] 6= v) · P (Sv [v] = v) · P (jv + Sv[v] + K[v] = u), and
for “u = 0 and v = 1” it would be P (S1[0] 6= 1) · P (j1 + S1[1] + K[1] = 0) or,
equivalently, P (S1[1] = 1) · P (j1 + S1[1] + K[1] = 0).

Lemma 3. Let pu,v
r = P (Sr[u] = v), for 1 ≤ r ≤ N . For any t > max{u, v},

P (SN [u] = v) = p
u,v
t · (N−1

N
)N−t + (1 − p

u,v
t ) · 1

N
(N−1

N
)v ·

(

1 − (N−1
N

)N−t
)

.

Proof. After round t (> max{u, v}), there may be two different cases: St[u] = v

and St[u] 6= v. Both of these can contribute to the event (SN [u] = v) in the
following ways.

1. St[u] = v and the index u is not touched by any of the subsequent N − t

many j values. The contribution of this part is P (St[u] = v) · (N−1
N

)N−t

= p
u,v
t · (N−1

N
)N−t.

2. St[u] 6= v and for some i in the interval [t, N −1], Si[i] = v which comes into
the index u from the index i by the swap in round i + 1, and after that the
index u is not touched by any of the subsequent N − 1 − i many j values.
So the contribution for this part is given by

P (St[u] 6= v) ·
(

N−1
∑

i=t

P (Si[i] = v) · P (ji+1 = u)·(N−1
N

)N−1−i
)

. By Proposi-

tion 1, P (Sv[v] = v) = (N−1
N

)v. Now, consider the swap in round v + 1. For

any x > v, P (Sv+1[x] = v) = P (Sv[v] = v) · P (jv+1 = x) = (N−1
N

)v · 1
N

. If
Sv+1[x] = v, then during the rounds r, v + 2 ≤ r ≤ x, the value of Sr[x]
may be changed to some other value from v and also if Sv+1[x] 6= v, then
during the rounds r, v + 2 ≤ r ≤ x, the value of Sr[x] may be changed from
some other value to v; we assume that these effects cancel out each other.
Thus, for x > v, P (Sx[x] = v) = P (Sv+1[x] = v) = 1

N
(N−1

N
)v . Since we are

considering i ≥ t > max{u, v}, we can write

P (St[u] 6= v) ·
(

N−1
∑

i=t

P (Si[i] = v) · P (ji+1 = u)·(N−1
N

)N−1−i
)

= (1 − p
u,v
t ) ·

(

N−1
∑

i=t

1
N

(N−1
N

)v · 1
N

· (N−1
N

)N−1−i
)

= (1 − p
u,v
t ) · 1

N2 (N−1
N

)v ·
(

N−1
∑

i=t

(N−1
N

)N−1−i
)

= (1 − p
u,v
t ) · 1

N2 (N−1
N

)v ·
(

1−aN−t

1−a

)

, where a = N−1
N

.

Substituting the value of a and simplifying, we get the above probability as

(1 − p
u,v
t ) · 1

N
(N−1

N
)v ·

(

1 − (N−1
N

)N−t
)

.

Thus, combining the above two contributions, we get

P (SN [u] = v) = p
u,v
t · (N−1

N
)N−t + (1 − p

u,v
t ) · 1

N
(N−1

N
)v ·

(

1 − (N−1
N

)N−t
)

. ut



Theorem 1. For u + 1 ≤ v ≤ N − 1, P (SN [u] = v) = p
u,v
v+1 · (

N−1
N

)N−1−v

+ (1 − p
u,v
v+1) ·

1
N

·
(

(N−1
N

)v − (N−1
N

)N−1
)

, where

p
u,v
v+1 =

{

2(N−1)
N2 if u = 0 and v = 1;

1
N

· (N−1
N

)v−u + 1
N

· (N−1
N

)v − 1
N2 · (N−1

N
)2v−u−1 otherwise.

Proof. Here we have v > u. So for any t > v, we will have t > max{u, v}.
Substituting t = v + 1 in Lemma 3, we have

P (SN [u] = v) = p
u,v
v+1 · (

N−1
N

)N−1−v + (1− p
u,v
v+1) ·

1
N

(N−1
N

)v ·
(

1− (N−1
N

)N−1−v
)

= p
u,v
v+1·(

N−1
N

)N−1−v+(1−p
u,v
v+1)·

1
N
·
(

(N−1
N

)v−(N−1
N

)N−1
)

. Now, from Lemma 2,

we get p
u,v
v+1 = 1

N
· (N−1

N
)v−u + 1

N
· (N−1

N
)v − 1

N2 · (
N−1

N
)2v−u−1, except for “u = 0

and v = 1”. Also, Lemma 1 gives p
0,1
2 = 2(N−1)

N2 . Substituting the value of p
u,v
v+1,

we get the result. ut

Note that for each u, 0 ≤ u ≤ N −2, the expression for P (SN [u] = v) above (for
v ≥ u+1) is maximized at v = u+1. This is also supported by our experimental
observations.

Theorem 2. For v ≤ u ≤ N − 1,
P (SN [u] = v) = 1

N
· (N−1

N
)N−1−u + 1

N
· (N−1

N
)v+1 − 1

N
· (N−1

N
)N+v−u.

Proof. Here we have u ≥ v. So for any t > u, we will have t > max{u, v}.
Substituting t = u + 1 in Lemma 3, we have

P (SN [u] = v) = p
u,v
u+1 · (

N−1
N

)N−1−u +(1−p
u,v
u+1) ·

1
N

(N−1
N

)v ·
(

1− (N−1
N

)N−1−u
)

.

As discussed in the proof of Proposition 2, p
u,v
u+1 = P (Su+1[u] = v) = 1

N
. Substi-

tuting this in the above expression, we get

P (SN [u] = v) = 1
N

· (N−1
N

)N−1−u + (1 − 1
N

) · 1
N

(N−1
N

)v ·
(

1 − (N−1
N

)N−1−u
)

= 1
N

· (N−1
N

)N−1−u + 1
N

· (N−1
N

)v+1 − 1
N

· (N−1
N

)N+v−u. ut

3 Discussion

To evaluate how closely our theoretical formulae tally with the experimental
results, we use average percentage absolute error ε̄. Let p

u,v

N and q
u,v

N respectively
denote the theoretical and the experimental value of the probability P (SN [u] =

v), 0 ≤ u ≤ N − 1, 0 ≤ v ≤ N − 1. We define εu,v =
(

|pu,v

N
−q

u,v

N |
q

u,v

N

)

· 100%

and ε̄ = 1
N2

N−1
∑

u=0

N−1
∑

v=0

εu,v . We ran experiments for 100 million randomly chosen

secret keys of 32 bytes and found that ε̄ = 0.22%. The maximum of the εu,v’s was
35.37% and it occured for u = 128 and v = 127. Though the maximum error is
quite high, we find that out of N2 = 65536 (with N = 256) many εu,v’s, only 11
( < 0.02% of 65536) exceeded the 5% error margin. These cases are summarized
Table 1 below. We call the pairs (u, v) for which εu,v > 5% as anomaly pairs.
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Fig. 2. Comparing Experimental and Theoretical values of P (SN [38] = v) versus v.

The experimental values of P (SN [u] = v) match with the theoretical values
given by our formula except at these few anomaly pairs. As an illustration, we
plot q

u,v

N (calculated by running the KSA with 100 million random keys of length

32 bytes) and p
u,v

N versus v for u = 38 in Figure 2. We see that q
38,v

N follows the

pattern predicted by p
38,v

N for all v’s, 0 ≤ v ≤ 255 except at v = 6 and v = 31 as
pointed out in Table 1.

We experimented with different key lengths (100 million random keys for
each key length) and found that the location of the anomaly pairs and the total
number of anomaly pairs vary with the key lengths in certain cases. Table 2
shows the number n5 of anomaly pairs (when εu,v > 5%) for different key lengths
l (in bytes) along with the average ε̄ and the maximum εmax of the εu,v’s. umax

and vmax are the (u, v) values which correspond to εmax. Though for some key
lengths there are more than a hundred anomaly pairs, most of them have εu,v ≤
10%. To illustrate this, we add the column n10 which shows how many of the
anomaly pairs exceed the 10% error margin. The two rightmost columns show
what percentage of 2562 = 65536 (total number of (u, v) pairs) are the numbers
n5 and n10.

The results indicate that as the key length increases, the proportion of
anomaly pairs tends to decrease. With 256 bytes key, we have no anomaly pair
with εu,v > 5%, i.e., n5 = 0. We are currently working on an in-depth analysis
of the anomalies and the involvement of the key length.



u v p
u,v
N

q
u,v
N

˛

˛

˛
p

u,v
N

− q
u,v
N

˛

˛

˛
εu,v (in %)

38 6 0.003846 0.003409 0.000437 12.82

38 31 0.003643 0.003067 0.000576 18.78

46 31 0.003649 0.003408 0.000241 7.07

47 15 0.003774 0.003991 0.000217 5.44

48 16 0.003767 0.003974 0.000207 5.21

66 2 0.003882 0.003372 0.000510 15.12

66 63 0.003454 0.002797 0.000657 23.49

70 63 0.003460 0.003237 0.000223 6.89

128 0 0.003900 0.003452 0.000448 12.98

128 127 0.003303 0.002440 0.000863 35.37

130 127 0.003311 0.003022 0.000289 9.56

Table 1. The anomaly pairs for key length 32 bytes

l ε̄ (in %) εmax (in %) umax vmax n5 n10 n5 (in %) n10 (in %)

5 0.75 73.67 9 254 1160 763 1.770 1.164

8 0.48 42.48 15 255 548 388 0.836 0.592

12 0.30 21.09 23 183 293 198 0.447 0.302

15 0.25 11.34 44 237 241 2 0.368 0.003

16 0.24 35.15 128 127 161 7 0.246 0.011

20 0.20 5.99 30 249 3 0 0.005 0.000

24 0.19 4.91 32 247 0 0 0.000 0.000

30 0.19 6.54 45 29 1 0 0.002 0.000

32 0.22 35.37 128 127 11 6 0.017 0.009

48 0.18 4.24 194 191 0 0 0.000 0.000

64 0.26 35.26 128 127 6 4 0.009 0.006

96 0.21 4.52 194 191 0 0 0.000 0.000

128 0.34 37.00 128 127 3 2 0.005 0.003

256 0.46 2.58 15 104 0 0 0.000 0.000

Table 2. The number and percentage of anomaly pairs along with the average and
maximum error for different key lengths

4 Concluding Remarks

We here theoretically prove the bias of each permutation byte of RC4 after the
KSA. We run experiments for 100 million randomly chosen secret keys of 32
bytes and present three dimensional representations of P (SN [u] = v) versus
0 ≤ u, v ≤ N − 1 in Figure 3 (top one, see the last page). The numerical values
of the theoretical results are presented in Figure 3 (bottom one, see the last
page). Note that the graph from experimental data has a few downward spikes
which actually correspond to the anomaly pairs as described in Table 1. If one
gets a random permutation then the surface should have been flat at a height
1
N

. However, one may easily note that the surface is not at all flat and that
identifies that the permutation after the RC4 KSA can be distinguished from
random permutation with high confidence.

Acknowledgment: The authors like to thank Mr. Snehasis Mukherjee, Indian
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Fig. 3. P (SN [u] = v) versus 0 ≤ u, v ≤ N − 1. Top: Experimental data, Bottom:
Theoretical data.


