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Abstract. Here we study a weakness of the RC4 Key Scheduling Al-
gorithm (KSA) that has already been noted by Mantin and Mironov.
Consider the RC4 permutation S of N (usually 256) bytes and denote
it by SN after the KSA. Under reasonable assumptions we present a
simple proof that each permutation byte after the KSA is significantly
biased (either positive or negative) towards many values in the range
0, . . . , N − 1. These biases are independent of the secret key and thus
present an evidence that the permutation after the KSA can be distin-
guished from random permutation without any assumption on the secret
key. We also present a detailed empirical study over Mantin’s work when
the theoretical formulae vary significantly from experimental results due
to repetition of short keys in RC4. Further, it is explained how these
results can be used to identify new distinguishers for RC4 keystream.

Keywords: Bias, Cryptography, Cryptanalysis, Key Scheduling Algorithm,
RC4, Stream Cipher.

1 Introduction

RC4, one of the most popular stream ciphers till date, was proposed by Rivest in
1987. The cipher gained its popularity from its extremely simple structure and
substantially good strength in security, as even after lots of explored weaknesses
in the literature (see [1–7, 9–14] and the references in these papers), it could not
be thoroughly cracked. Studying weaknesses of RC4 received serious attention
in the literature and these studies are believed to be quite useful in further
development of stream ciphers that exploit shuffle-exchange paradigm.

Before getting into our contribution, let us briefly present the Key Scheduling
Algorithm (KSA) and the Pseudo Random Generation Algorithm (PRGA) of
RC4. The data structure consists of (1) an array of size N (in practice 256



which is followed in this paper) which contains a permutation of 0, . . . , N − 1,
(2) two indices i, j and (3) the secret key array K. Given a secret key k of l
bytes (typically 5 to 32), the array K of size N is such that K[i] = k[i mod l]
for any i, 0 ≤ i ≤ N − 1. All additions used in the description of the algorithm
are modulo N additions.

Algorithm KSA
Initialization:

For i = 0, . . . , N − 1
S[i] = i;

j = 0;
Scrambling :

For i = 0, . . . , N − 1
j = (j + S[i] + K[i]);
Swap(S[i], S[j]);

Algorithm PRGA
Initialization:

i = j = 0;
Output Keystream Generation Loop:

i = i + 1;
j = j + S[i];
Swap(S[i], S[j]);
t = S[i] + S[j];
Output z = S[t];

RC4 KSA has been analysed deeply in [13, 14, 2, 11]. All these works discuss
the relationship of the permutation bytes after the KSA with the secret key. For a
proper design, the permutation S after the KSA should not have any correlation
with the secret keys. However, weaknesses of RC4 in this aspect have already
been reported [13, 14, 2, 11]. These weaknesses, in turn, leak information about
RC4 secret key in the initial keystream output bytes [10].

Another approach of study is to look at the permutation after the KSA
in a (secret) key independent manner and try to distinguish it from random
permutations. In [9], the sign of the permutation after the KSA has been studied
(see [9] for the definition of the sign of a permutation). There it has been shown
that, after the KSA, the sign of the permutation can be guessed with probability
56%.

In [8, Chapter 6 and Appendix C] and later in [9], the problem of estimating
P (SN [u] = v) has been discussed. A complete proof for these results has been
presented in [8, Chapter 6 and Appendix C]. We present an independent proof
technique in this paper which looks simpler. We argue in more detail in Section 2
how our technique is different from that in [8]. Due to the small keys (say 5 to 32
bytes) generally used in RC4, some of the assumptions differ from practice and
hence the theoretical formulae do not match with the experimental results. We
also detail this over the already identified anomalies in [8]. Further, we discuss
applications to show how these results can be used to present new distinguishers
for RC4. The distinguishers discussed in this paper are different from the earlier
ones [1, 3, 5, 7, 12].

2 Bias in Each Permutation Byte

We denote the initial identity permutation by S0 and the permutation at the
end of the r-th round of the KSA by Sr, 1 ≤ r ≤ N (note that r = i + 1,
for the deterministic index i, 0 ≤ i ≤ N − 1). Thus, the permutation after the
KSA will be denoted by SN . By jr, we denote the value of the index j after it



is updated in round r. We consider the index j of each round to be distributed
uniformly at random. Further, we replace the joint probabilities with the product
of the probabilities of the individual events, assuming that the events under
consideration are statistically independent.

Lemma 1. P (S2[0] = 1) = 2(N−1)
N2 .

Proof. In the first round, we have i = 0, and j1 = 0 + S[0] + K[0] = K[0]. In
the second round, i = 1 and j2 = j1 + S1[1] + K[1]. We consider two mutually
exclusive and exhaustive cases, namely, K[0] = 1 and K[0] 6= 1.

1. Take K[0] = 1. So, after the first swap, S1[0] = 1 and S1[1] = 0. Now,
j2 = K[0] + 0 + K[1] = K[0] + K[1]. Thus, after the second swap, S2[0] will
remain 1, if K[0]+K[1] 6= 0. Hence the contribution of this case to the event
(S2[0] = 1) is P (K[0] = 1) · P (K[0] + K[1] 6= 0) = 1

N · N−1
N = N−1

N2 .
2. Take K[0] 6= 1. Then after the first swap, S1[1] remains 1. Now, j2 = K[0]+

1 + K[1] = K[0] + K[1] + 1. Thus, after the second swap, S2[0] will get the
value 1, if K[0] + K[1] + 1 = 0. Hence the contribution of this case to the
event (S2[0] = 1) is P (K[0] 6= 1) ·P (K[0]+K[1]+1 = 0) = N−1

N · 1
N = N−1

N2 .

Adding the two contributions, we get the total probability as 2(N−1)
N2 . ut

We here calculate P (Sv+1[u] = v) for the special case u = 0, v = 1. Note that
the form of P (Sv+1[u] = v) for v ≥ u + 1 in general (see Lemma 2 later) does
not work for the case u = 0, v = 1 only. This will be made clear in Remark 1
after the proof of Lemma 2.

Proposition 1. P (Sv[v] = v) = (N−1
N )v, for v ≥ 0.

Proof. In the rounds 1 through v, the deterministic index i touches the permu-
tation indices 0, 1, . . . , v − 1. Thus, after round v, Sv[v] will remain the same as
S0[v] = v, if v has not been equal to any of the v many pseudo-random indices
j1, j2, . . . , jv. The probability of this event is (N−1

N )v. So the result holds for
v ≥ 1. Furthermore, P (S0[0] = 0) = 1 = (N−1

N )0. Hence, for any v ≥ 0, we have
P (Sv[v] = v) = (N−1

N )v. ut

Proposition 2. For v ≥ u + 1, P (Sv[u] = v) = 1
N · (N−1

N )v−u−1.

Proof. In round u + 1, the permutation index u is touched by the deterministic
index i for the first time and the value at index u is swapped with the value at
a random location based on ju+1. Hence, P (Su+1[u] = v) = 1

N . The probability
that the index u is not touched by any of the subsequent v − u − 1 many j
values, namely, ju+2, . . . , jv, is given by (N−1

N )v−u−1. So, after the end of round
v, P (Sv[u] = v) = 1

N · (N−1
N )v−u−1. ut

Lemma 2. For v ≥ u+1 (except for the case “u = 0 and v = 1”), P (Sv+1[u] =
v) = 1

N · (N−1
N )v−u + 1

N · (N−1
N )v − 1

N2 · (N−1
N )2v−u−1.



Proof. In round v+1, i = v and jv+1 = jv+Sv[v]+K[v]. The event (Sv+1[u] = v)
can occur in two ways.

1. Sv[u] already had the value v and the index u is not involved in the swap in
round v + 1.

2. Sv[u] 6= v and the value v comes into the index u from the index v (i.e.,
Sv[v] = v) by the swap in round v + 1.

From Proposition 1, we have P (Sv[v] = v) = (N−1
N )v and from Proposition 2,

we have P (Sv[u] = v) = 1
N · (N−1

N )v−u−1. Hence, P (Sv+1[u] = v)
= P (Sv[u] = v) · P (jv + Sv[v] + K[v] 6= u)

+ P (Sv[u] 6= v) · P (Sv[v] = v) · P (jv + Sv[v] + K[v] = u)
(except for the case “u = 0 and v = 1”, see Remark 1)

=
(

1
N · (N−1

N )v−u−1
)
· (N−1

N ) +
(
1− 1

N · (N−1
N )v−u−1

)
· (N−1

N )v · 1
N

= 1
N · (N−1

N )v−u + 1
N · (N−1

N )v − 1
N2 · (N−1

N )2v−u−1. ut

Remark 1. Case 1 in the proof of Lemma 2 applies to Lemma 1 also. In case 2,
i.e., when Sv[u] 6= v, in general we may or may not have Sv[v] = v. However,
for u = 0 and v = 1, (S1[0] 6= 1) ⇐⇒ (S1[1] = 1), the probability of each of
which is N−1

N (note that there has been only one swap involving the indices 0
and K[0] in round 1). Hence the contribution of case 2 except for “u = 0 and
v = 1” would be P (Sv[u] 6= v) · P (Sv[v] = v) · P (jv + Sv[v] + K[v] = u), and
for “u = 0 and v = 1” it would be P (S1[0] 6= 1) · P (j1 + S1[1] + K[1] = 0) or,
equivalently, P (S1[1] = 1) · P (j1 + S1[1] + K[1] = 0).

Lemma 3. Let pu,v
r = P (Sr[u] = v), for 1 ≤ r ≤ N . Given pu,v

t , i.e., P (St[u] =
v) for any intermediate round t, max{u, v} < t ≤ N , P (Sr[u] = v) after the
r-th round of the KSA is given by
pu,v

t · (N−1
N )r−t + (1− pu,v

t ) · 1
N (N−1

N )v ·
(
1− (N−1

N )r−t
)
, t ≤ r ≤ N .

Proof. After round t (> max{u, v}), there may be two different cases: St[u] = v
and St[u] 6= v. Both of these can contribute to the event (Sr[u] = v) in the
following ways.

1. St[u] = v and the index u is not touched by any of the subsequent r − t
many j values. The contribution of this part is P (St[u] = v) · (N−1

N )r−t

= pu,v
t · (N−1

N )r−t.
2. St[u] 6= v and for some x in the interval [t, r−1], Sx[x] = v which comes into

the index u from the index x by the swap in round x + 1, and after that the
index u is not touched by any of the subsequent r− 1− x many j values. So
the contribution of the second part is given by

P (St[u] 6= v) ·
( r−1∑

x=t

P (Sx[x] = v) · P (jx+1 = u)·(N−1
N )r−1−x

)
.

Suppose, the value v remains in location v after round v. By Proposition 1,
this probability, i.e., P (Sv[v] = v), is (N−1

N )v. The swap in the next round



moves the value v to a random location x = jv+1. Thus, P (Sv+1[x] = v) =
P (Sv[v] = v) ·P (jv+1 = x) = (N−1

N )v · 1
N . For all x > v, until x is touched by the

deterministic index i, i.e., until round x+1, v will remain randomly distributed.
Hence, for all x > v, P (Sx[x] = v) = P (Sv+1[x] = v) = 1

N (N−1
N )v and

P (St[u] 6= v) ·
(r−1∑

x=t

P (Sx[x] = v) · P (jx+1 = u)·(N−1
N )r−1−x

)
= (1− pu,v

t ) ·
(r−1∑

x=t

1
N (N−1

N )v · 1
N · (N−1

N )r−1−x
)

= (1− pu,v
t ) · 1

N2 (N−1
N )v ·

(r−1∑
x=t

(N−1
N )r−1−x

)
= (1− pu,v

t ) · 1
N2 (N−1

N )v ·
(

1−ar−t

1−a

)
,

where a = N−1
N . Substituting the value of a and simplifying, we get the above

probability as (1− pu,v
t ) · 1

N (N−1
N )v ·

(
1− (N−1

N )r−t
)
.

Now, combining the above two contributions, we get
pu,v

r = pu,v
t · (N−1

N )r−t + (1− pu,v
t ) · 1

N (N−1
N )v ·

(
1− (N−1

N )r−t
)
. ut

Corollary 1. Given pu,v
t , i.e., P (St[u] = v) for any intermediate round t,

max{u, v} < t ≤ N , P (SN [u] = v) after the complete KSA is given by
pu,v

t · (N−1
N )N−t + (1− pu,v

t ) · 1
N (N−1

N )v ·
(
1− (N−1

N )N−t
)
.

Proof. Substitute r = N in Lemma 3. ut

Theorem 1.
(1) For 0 ≤ u ≤ N − 2, u + 1 ≤ v ≤ N − 1,
P (SN [u] = v) = pu,v

v+1 ·(N−1
N )N−1−v+(1−pu,v

v+1)· 1
N ·

(
(N−1

N )v−(N−1
N )N−1

)
, where

pu,v
v+1 =

{
2(N−1)

N2 if u = 0 and v = 1;
1
N · (N−1

N )v−u + 1
N · (N−1

N )v − 1
N2 · (N−1

N )2v−u−1 otherwise.

(2) For 0 ≤ v ≤ N − 1, v ≤ u ≤ N − 1,
P (SN [u] = v) = 1

N · (N−1
N )N−1−u + 1

N · (N−1
N )v+1 − 1

N · (N−1
N )N+v−u.

Proof. First we prove item (1). Since v > u, so for any t > v, we will have
t > max{u, v}. Substituting t = v + 1 in Corollary 1, we have
P (SN [u] = v) = pu,v

v+1 · (N−1
N )N−1−v + (1− pu,v

v+1) · 1
N (N−1

N )v ·
(
1− (N−1

N )N−1−v
)

= pu,v
v+1·(N−1

N )N−1−v+(1−pu,v
v+1)· 1

N ·
(
(N−1

N )v−(N−1
N )N−1

)
. Now, from Lemma 2,

we get pu,v
v+1 = 1

N · (N−1
N )v−u + 1

N · (N−1
N )v− 1

N2 · (N−1
N )2v−u−1, except for “u = 0

and v = 1”. Also, Lemma 1 gives p0,1
2 = 2(N−1)

N2 . Substituting these values of
pu,v

v+1, we get the result.
Now we prove item (2). Here we have u ≥ v. So for any t > u, we will have

t > max{u, v}. Substituting t = u + 1 in Corollary 1, we have
P (SN [u] = v) = pu,v

u+1 · (N−1
N )N−1−u +(1−pu,v

u+1) · 1
N (N−1

N )v ·
(
1− (N−1

N )N−1−u
)
.

As pu,v
u+1 = P (Su+1[u] = v) = 1

N (see proof of Proposition 2), substituting this



in the above expression, we get
P (SN [u] = v) = 1

N · (N−1
N )N−1−u + (1− 1

N ) · 1
N (N−1

N )v ·
(
1− (N−1

N )N−1−u
)

= 1
N · (N−1

N )N−1−u + 1
N · (N−1

N )v+1 − 1
N · (N−1

N )N+v−u. ut

We like to mention that our final formulae in Theorem 1 are very close to the
results presented in [8] apart from some minor differences as terms with N2 in
the denominator or a difference in 1 in the power. These differences are negligible
and we have also checked by calculating the numerical values of the theoretical
results that for N = 256, the maximum absolute difference between our results
and the results of [8] is 0.000025 as well as the average of absolute differences is
0.000005.

However, our approach is different from that of [8]. In [8], the idea of rel-
ative positions is introduced. If the current deterministic index is i, then rel-
ative position a means the position (i + 1 + a) mod N . The transfer function
T (a, b, r), which represents the probability that value in relative position a in S
will reach relative position b in the permutation generated from S by executing
r RC4 rounds, has the following explicit form by [8, Claim C.3.3]: T (a, b, r) =
p(qa + qr−(b+1) − qa+r−(b+1)) if a ≤ b and T (a, b, r) = p(qa + qr−(b+1)) if a > b,
where p = 1

N and q = (N−1
N ). This solution is obtained by solving a recurrence [8,

Equation C.3.1] which expresses T (a, b, r) in terms of T (a− 1, b − 1, r − 1). In-
stead, we use the probabilities P (St[u] = v) in order to calculate the probabilities
P (Sr[u] = v) which immediately gives P (SN [u] = v) with r = N . When v > u,
we take t = v + 1 and when v ≤ u, we take t = u + 1 (see Theorem 1). However,
the values u+1 and v+1 are not special. If we happen to know the probabilities
P (St[u] = v) at any round t between max{u, v}+ 1 and N , then we can arrive
at the probabilities P (Sr[u] = v) using Lemma 3. The recurrence relation in [8]
is over three variables a, b and r, and at each step each of these three variables
is reduced by one. On the other hand, our model has the following features.

1. It relates four variables u, v, t and r which respectively denote any index u
in the permutation (analogous to b), any value v ∈ [0, . . . N − 1] (analogous
to the value at a), any round t > max{u, v} and a particular round r ≥ t.

2. Though in our formulation we do not solve any recurrence relation and pro-
vide a direct proof, it can be considered analogous to a recurrence over a
single variable r, the other two variables u and v remaining fixed.

3 Anomaly Pairs and New Distinguishers

To evaluate how closely our theoretical formulae tally with the experimental
results, we use average percentage absolute error ε̄. Let pu,v

N and qu,v
N respectively

denote the theoretical and the experimental value of the probability P (SN [u] =

v), 0 ≤ u ≤ N − 1, 0 ≤ v ≤ N − 1. We define εu,v =
( |pu,v

N −qu,v
N |

qu,v
N

)
· 100%

and ε̄ = 1
N2

N−1∑
u=0

N−1∑
v=0

εu,v. We ran experiments for 100 million randomly chosen



secret keys of 32 bytes and found that ε̄ = 0.22%. The maximum of the εu,v’s was
35.37% and it occured for u = 128 and v = 127. Though the maximum error is
quite high, we find that out of N2 = 65536 (with N = 256) many εu,v’s, only 11
( < 0.02% of 65536) exceeded the 5% error margin. These cases are summarized
Table 1 below. We call the pairs (u, v) for which εu,v > 5% as anomaly pairs.

u v p
u,v
N

q
u,v
N

˛̨̨
p

u,v
N

− q
u,v
N

˛̨̨
εu,v (in %)

38 6 0.003846 0.003409 0.000437 12.82
38 31 0.003643 0.003067 0.000576 18.78
46 31 0.003649 0.003408 0.000241 7.07
47 15 0.003774 0.003991 0.000217 5.44
48 16 0.003767 0.003974 0.000207 5.21
66 2 0.003882 0.003372 0.000510 15.12
66 63 0.003454 0.002797 0.000657 23.49
70 63 0.003460 0.003237 0.000223 6.89

128 0 0.003900 0.003452 0.000448 12.98
128 127 0.003303 0.002440 0.000863 35.37
130 127 0.003311 0.003022 0.000289 9.56

Table 1. The anomaly pairs for key length 32 bytes.

The experimental values of P (SN [u] = v) match with the theoretical values
given by our formula except at these few anomaly pairs. For example, q38,v

N

follows the pattern predicted by p38,v
N for all v’s, 0 ≤ v ≤ 255 except at v = 6

and v = 31 as pointed out in Table 1.

l ε̄ (in %) εmax (in %) umax vmax n5 n10 n5 (in %) n10 (in %)

5 0.75 73.67 9 254 1160 763 1.770 1.164
8 0.48 42.48 15 255 548 388 0.836 0.592

12 0.30 21.09 23 183 293 198 0.447 0.302
15 0.25 11.34 44 237 241 2 0.368 0.003
16 0.24 35.15 128 127 161 7 0.246 0.011
20 0.20 5.99 30 249 3 0 0.005 0.000
24 0.19 4.91 32 247 0 0 0.000 0.000
30 0.19 6.54 45 29 1 0 0.002 0.000
32 0.22 35.37 128 127 11 6 0.017 0.009
48 0.18 4.24 194 191 0 0 0.000 0.000
64 0.26 35.26 128 127 6 4 0.009 0.006
96 0.21 4.52 194 191 0 0 0.000 0.000

128 0.34 37.00 128 127 3 2 0.005 0.003
256 0.46 2.58 15 104 0 0 0.000 0.000

Table 2. The number and percentage of anomaly pairs along with the average and
maximum error for different key lengths.

We experimented with different key lengths (100 million random keys for
each key length) and found that the location of the anomaly pairs and the total
number of anomaly pairs vary with the key lengths in certain cases. Table 2
shows the number n5 of anomaly pairs (when εu,v > 5%) for different key lengths
l (in bytes) along with the average ε̄ and the maximum εmax of the εu,v’s. umax

and vmax are the (u, v) values which correspond to εmax. Though for some key
lengths there are more than a hundred anomaly pairs, most of them have εu,v ≤
10%. To illustrate this, we add the column n10 which shows how many of the



anomaly pairs exceed the 10% error margin. The two rightmost columns show
what percentage of 2562 = 65536 (total number of (u, v) pairs) are the numbers
n5 and n10.

These results indicate that as the key length increases, the proportion of
anomaly pairs tends to decrease. With 256 bytes key, we have no anomaly pair
with εu,v > 5%, i.e., n5 = 0. It has also been pointed out in [8] that as the
key length increases, the actual random behaviour of the key is demonstrated
and that is why the number of anomaly pairs decrease and experimental results
match the theoretical formulae. In [8, Section 6.3.2] the anomalies are discussed
for rows and columns 9, 19 and also for the diagonal given short keys as 5 bytes.
We now discuss these results with more details and how they can be applied to
distinguish the RC4 keystream from random streams.

We denote the permutation after r-th round of PRGA by SG
r for r ≥ 1.

Lemma 4. Consider B ⊂ [0, . . . , N−1] with |B| = b. Let P (SN [r] ∈ B) = b
N +ε,

where ε can be positive or negative. Then P (SG
r−1[r] ∈ B) = b

N + δ, where

δ = ( b
N + ε) ·

(
(N−1

N )r−1 +
(
1− (N−1

N )r−1
)
· ( b−1

N−1 −
b
N )

)
− b

N · (N−1
N )r−1, r ≥ 1.

Proof. The event (SG
r−1[r] ∈ B) can occur in three ways.

1. SN [r] ∈ B and the index r is not touched by any of the r− 1 many j values
during the first r − 1 rounds of the PRGA. The contribution of this part is
( b

N + ε) · (N−1
N )r−1.

2. SN [r] ∈ B and index r is touched by at least one of the r − 1 many j
values during the first r−1 rounds of the PRGA. Further, after the swap(s),
the value SN [r] remains in the set B. This will happen with probability
( b

N + ε) ·
(
1− (N−1

N )r−1
)
· b−1

N−1 .
3. SN [r] /∈ B and index r is touched by at least one of the r− 1 many j values

during the first r − 1 rounds of the PRGA. Due to the swap(s), the value
SN [r] comes to the set B. This will happen with probability (1 − b

N − ε) ·(
1− (N−1

N )r−1
)
· b

N .

Adding these contributions, we get the total probability as ( b
N +ε) ·

(
(N−1

N )r−1+(
1− (N−1

N )r−1
)
· ( b−1

N−1 −
b
N )

)
+ b

N − b
N · (N−1

N )r−1. ut

Lemma 5. If P (SG
r−1[r] ∈ B) = b

N + δ, then P (zr ∈ C) = b
N + 2δ

N , where
C = {c′|c′ = r − b′ where b′ ∈ B}, r ≥ 1.

Proof. The event (zr ∈ C) can happen in two ways.

1. SG
r−1[r] ∈ B and zr = r − SG

r−1[r]. From Glimpse theorem [4, 6], we have
P (zr = r − SG

r−1[r]) = 2
N for r ≥ 1. Thus, the contribution of this part is

2
N ( b

N + δ).
2. SG

r−1[r] /∈ B and still zr ∈ C due to random association. The contribution of
this part is (1− 2

N ) b
N .

Adding these two contributions, we get the result. ut



Theorem 2. If P (SN [r] ∈ B) = b
N + ε, then P (zr ∈ C) = b

N + 2
N ·

[
( b

N + ε) ·(
(N−1

N )r−1 +
(
1− (N−1

N )r−1
)
· ( b−1

N−1 −
b
N )

)
− b

N · (N−1
N )r−1

]
, where C = {c′|c′ =

r − b′ where b′ ∈ B}, r ≥ 1.

Proof. The proof immediately follows by combining Lemma 4 and Lemma 5. ut

From the above results, it follows that for a single value v, if P (SN [r] = v) =
1
N + ε, then P (zr = r − v) = 1

N + 2δ
N , where the value of δ can be calculated by

substituting b = 1 in Lemma 5. This presents a non-uniform distribution of the
initial keystream output bytes zr for small r.

In [9, Section 6], it has been pointed out that z1 (referred as z0 in [9]) may not
be uniformly distributed due to non-uniform distribution of SN [1]. The experi-
mental results presented in [9, Figure 6] show some bias which does not match
with our theoretical as well as experimental results. According to our Theorem 2,
if P (SN [1] = v) = 1

N + ε, then P
(
z1 = (1 − v) mod 256

)
= 1

N + 2ε
N and this

presents the theoretical distribution of z1.
When the bias of SN [r] towards a single value v is propagated to zr, the

final bias at zr is very small and difficult to observe experimentally. Rather, if
we start with the bias of SN [r] towards many values in some suitably chosen set
B, then a sum of b = |B| many probabilities is propagated to zr according to
Theorem 2, making the bias of zr empirically observable too. For example, given
1 ≤ r ≤ 127, consider the set B as the set of integers [r + 1, . . . , r + 128], i.e.,
b = |B| = 128. The theoretical formulae as well as the experimental results give
P (SN [r] ∈ B) > 0.5, and in turn we get P (zr ∈ C) > 0.5, which is observable at
the r-th keystream output byte of RC4. We have experimented with key length 32
bytes and 100 million runs for different r’s and the experimental results support
this theoretical claim. It is important to note that the non-uniform distribution
can be observed even at the 256-th output byte z256, since the deterministic
index i at round 256 becomes 0 and SN [0] has a non-uniform distribution as
follows from Theorem 1. For random association, P (zr ∈ C) should be b

N , which
is not the case here and thus all these results provide distinguishers for RC4.

We have earlier pointed out that for short key lengths, there exist many
anomaly pairs. We can exploit these to construct some additional distinguishers
by including in the set B those values which are far away from being random.
We illustrate this in the two examples below. For 5 byte secret keys, we exper-
imentally observe over 100 million runs that P (SN [9] ∈ B) = 0.137564 (which
is much less than the theoretical value 0.214785), where B is the set of all even
integers greater than or equal to 128 and less than 256, i.e., b = |B| = 64
and b

N = 0.25. Using Theorem 2 we get P (z9 ∈ C) = 0.249530 < 0.25,
where C = {c′|c′ = 9 − b′ where b′ ∈ B}. Again, for 8 byte secret keys, we
observe that P (SN [15] ∈ B) = 0.160751 (which is much less than the theo-
retical value 0.216581), where B is the set of all odd integers greater than or
equal to 129 and less than 256, i.e., b = |B| = 64 once again. Theorem 2 gives
P (z15 ∈ C) = 0.249340 < 0.25, where C = {c′|c′ = 15− b′ where b′ ∈ B}. Direct
experimental observations also confirm these biases of z9 and z15. Further, given



the values of δ approximately −0.1 in the above two examples, one can get new
linear distinguishers for RC4 with 5 byte and 8 byte keys.

It is interesting to note that since the anomaly pairs are different for different
key lengths, by suitably selecting the anomaly pairs in the set B, one can also
distinguish among RC4 of different key lengths.
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