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Abstract. Recently, 9-variable Boolean functions having nwdrity
241, which is strictly greater than the bent coewation bound of 240,
have been discovered in the class of Rotation SynunBoolean
Functions (RSBFs) by Kavut, Maitra and Yicel. Instipaper, we
present several 9-variable Boolean functions havioglinearity of
242, which we obtain by suitably generalizing thesses of RSBFs and
Dihedral Symmetric Boolean Functions (DSBFs).

1 Introduction

Boolean functions with very high nonlinearity is one of the nebsilenging
problems in the area of cryptography and combinatorics. The problaisois
related to the covering radius of the first order Reed-Mullede. The
Boolean functions attaining maximum nonlinearity 67222 are called
bent [22] which occur only for even number of input variablegor odd
number of variables, the maximum nonlinearity (upper bound) can be at
most 22"%-2"22] [10]. For oddn, one can get Boolean functions having
nonlinearity 2-2"%2 py concatenating two bent functions on-1)
variables. That is the reason why the nonlinearity valile 2" for oddn

is known as the bent concatenation bound.

Recently, 9-variable Boolean functions having nonline&y, which is
greater than the bent concatenation bound, have been discoveréd 2]
RSBF class. The gquestion of whether it is possible to exceedédhe
concatenation bound for= 9, 11, 13 was open for almost three decades. It
was known for odd<7, that the maximum nonlinearity is equal to the bent
concatenation bound,"2-2"%2% since the maximum nonlinearity of 5-
variable Boolean functions was found as 12 in 1972 [1], and that of 7-variable



Boolean functions was computed as 56 in 1980 [18]. However, in[1983
15-variable Boolean functions with nonlinearity 16276 which exceeded t
bent concatenation bound were demonstrated and using this result niebeca
possible to get Boolean functions with nonlinearify'-2 "2 +20x2("1%/2
for oddn>15. Until 2006, there was a gap for 9, 11, 13 and the maximum
nonlinearity known for these cases wa5-2""2 In 2006, 9-variable
functions, which belong to the class of Rotation Symmetric Booleatidnac
(RSBFs), with nonlinearity 241 (£2-2""2+1) were discovered [12]. Such
functions were attained utilizing a steepest-descent bagetiviégeheuristic
that appeared in [14], which was suitably modified for actear the class of
RSBFs.

The class of RSBFs is important in terms of their cryptographd
combinatorial properties {7, 9, 13, 16, 17, 20, 23, 24]. The nonlinearity and
correlation immunity of such functions have been studied in detail in [2, 9, 13,
16, 17, 23, 24]. It is now clear that the RSBF class is quite mi¢erims of
these properties and the recently found 9-variable RSBFs havingewemitly
241 [12] support this fact. In [15], a subspace of RSBFs calibedal
Symmetric Boolean Functions (DSBFs), which are invariant uthdeaction
of dihedral group are introduced. It has been shown that somae o8-t
variable RSBFs having nonlinearity 241 also belong to this subspace,
confirming the richness of DSBFs.

Since the space of the RSBF class is much smalléan’T) than the total

space of Boolean functionszz)Zon n variables, it is possible to exhaustively
search the space of RSBFs up to a certain value lof [11], an exhaustive
search is carried out for the whole space of 9-variable R®Rploiting some
combinatorial results related to the Walsh spectra of RS&fs it has been
shown that there is no RSBF having nonlinearity > 241. In order to find
functions with higher nonlinearity, one needs to increase thehlsspace.
This motivated us to generalize the classes of RSBFs &BFf) and our
search in the generalized DSBF and RSBF classes suclyessfigdd up with
9-variable functions having nonlinearity 242.

Considering a Boolean functidras a mapping froreF(2") - GF(2), the
functions for whichf (o) = f (a) for any aOGF(2"), are referred to as
idempotents [6, 7]. In [19], 15-variable Patterson-Wiedemaunmnctions
having nonlinearity 1627622-2"%2+20 are identified in the idempotent
class. As pointed out in [6, 7], the idempotents can be seRSBEs with
proper choice of basis. In the following section, we will define the geredali

k-RSBFs, as functions which satisfy(azs = f (a), where 1<k | n and
gcdn, K) # 1. Note that if ged{, k) = 1, the resulting functions are the same as
idempotents. We then impose the condition of invariance under ibe att
dihedral group to obtain the class of generalizddSBFs as a subset &f
RSBFs.



2 Generalized Rotation and Dihedral Symmetric
Boolean Functions

After briefly summarizing RSBFs, we propose the generalitasses ok-
RSBFs andk-DSBFs in Definition 2 and Definition 3 respectively. Letting
(X0, X1y s Xne1) O V4, the (left)k-cyclic shift operato;zfn onn-tuples is defined
an(n(Xo, X1, ---aXn—l) = (X(O+k)modn ) e ,X(n—1+k)modn)1 for 15 kf n.

Definition 1. A Boolean functiorf is calledRotation Symmetridf for each
input (o, ..., %w-1) 0 {0, 13", f (02(Xo, -r; X-1)) =F (X0, oe; 1)

That is, RSBFs are invariant under all cyclic rotationshef inputs. The
inputs of a rotation symmetric Boolean function can be dividexdariiits so
that each orbit consists of all cyclic shifts of one ingut.orbit generated by

(Xor Xt vy Xne1) 1S Gr(Xo, X4, ey Xo-1) = {ﬁn(xg, X1, - X%-1) | 1< k< n} and the
number of such orbits is denoted dpy(= 2° ™). More specificallyg, is equal
to (1/h)Zt|nq/(t)2”’t is the number of rotation symmetric classes [23], where

1) is the Euler’s phi-function. The total numbeme¥ariable RSBFs is®

In the following, we define the generalized RSBFk-astation symmetric
Boolean functionsktRSBFs).

Definition 2. Let 1 <m < n such that gcd( m) = k # 1. An n-variable
Boolean functiorf is calledk-rotation symmetriaf for each inputXo, ..., X,-1)

0{0, 13" F(Fe(%o s Xe1) = (X0, o0 X)-

As can be seen, thlerotation symmetric Boolean functions are invariant
underk-cyclic rotations of inputs. Therefore, an orbit ok-RSBF generated

by (X1, X, ..., %) iS Ga(Xe, Xor wory X)) = {Fn(X, Yo, oo Xn) |1 =k, 2K, 3K, ..., N}
For exampleG%(001, 001, 111) = {(001, 001, 111), (001, 111, 001), (111,
001, 001)}.

If gnk is the number of distinct orbits in the classkd®SBFs ofn variables,
one can show thahy = (Wn) 2, | () At)2™, wheregt) is the Euler's phi

function.

In [15], a subspace of RSBFs called Dihedral Symmetric Bookunctions
(DSBFs), which are invariant under the action of dihedral groypare
introduced. In addition to the (leff-cyclic shift operatord, on n-tuples,
which is defined asd‘n(xo, Xi, ooy X ne1) = (Kosgmod n 5 -+ s Xn-14mod n), the



dihedral groupD, also includes the reflection operatfxo, X1, ... ,X 1) =

(X1, .. » X1, Xo). SO, D permutations oD, are {0, Frv .0 I 0 Ire Ty
L o LA T} The dihedral grouD, generates equivalence classes
in the setV, [21]. Let d, be the number of such patrtitions. The following
proposition gives the exact valuedyf[8, page 184], [15].

Proposition 1 Let d, be the total number of orbits induced by the dihedral
group D, acting onV,. Thend, = g./2 +1, where,g, = 1h zt|n dt)2"™ is the

number of rotation symmetric classes [2&}) is the Euler’s phi-function and
(%)2% ifnis even,
Y2 it nis odd.

Since there are™number of-variable DSBFs, a reduction in the size of the
search space over the size of RSBFs is provided.

Definition 3. Let 1 <m < n such that gcad{f m) = k # 1. An n-variable
Boolean functiorf is calledk-dihedral symmetridgf f is invariant under the

group actiorD, = {dn, Tnon |i =k, 2k 3K, ...,n}.

As the class of DSBFs is a subspace kdDSBFs, we callk-DSBFs
generalized dihedral symmetric Boolean functions. One slulngerve thak-
DSBFs is a subspace leRSBFs.

When Proposition 1 is applied tedihedral symmetric functions, we obtain
the following corollary.

Corollary 1. Letd,x be the number of distinct orbits, in the clas&-8fSBFs

of n variables. Theng,x = g./2 + 1, where,g,x = k/n Zt | ik dt)2" is the

number ofk-rotation symmetric classegt) is the Euler’s phi-function and
gva-1 ifnis evenk is even,

=<{ 3922 ifnis evenkis odd,
-z ifnis odd.

Table 1 compares the orbit countkwobtational classes:dihedral classes,
RSBFs, and DSBFs.



Table 1 Comparison of the orbit coungs, d,, g,k andd, forn=4, 6, ..., 15, and all
integersk, which dividen.

k 2 3 4 5 6 7

n

4 0,=6 Oax | 10 - - - - -
d,=6 d4,k 7 - - - - —

6 Os =14 Osk | 24 36 - - - -
ds =13 Jsx | 16 24 - - - -

8 gs = 36 Osk | 70 - 136 - - -
ds =30 dgx | 43 - 76 - - -

g [ B= 60 Qok | -~ 176 | - - - -
do = 46 dox - 104 - - - -

10 1.910= 108 | Qiok | 208 | - - 528 - -
le =78 dlo,k 120 - - 288 - -

10| ©12=352 | dip | 700 | 1044 1376] - |2080| -
di, =224 | dipx | 382 | 570| 720 - 1072 -

14 014 = 1182| Quak | 2344| - - - - 8256
di4 =687 | digx | 1236 - - - - 4224

15| 915=2192) Gisi | - | 6560| - | 10944 - -
dis = 1224 dysk - 3408 - 5600 - -

3 Search Strategy

We present the basic description of our search strategy and for detadgew
the reader to [12-14]. The search strategy uses a stekysesit like iterative
algorithm in the pre-chosen set mariable Boolean functions, where each
iteration accepts the functidrand outputs the functiofy,;,. At each iteration
step, a cost function is calculated within a pre-defined neigbbdroff and
the function having the smallest cost is chosen as theidremttputf ;.. In
some rare cases, the costf,gf may be larger than or equal to the cosf.of
This is the crucial part of the search strategy, which previle ability to
escape from local minima and its distinction from the sw&egescent
algorithm. Our steepest-descent based search technique minitmizesst
until a local minimum is attained, but then it takes a stefhe direction of
non-decreasing cost. That is, whenever possible, the costnisigg@d;
otherwise, a step in the reverse direction is taken. The datstimstep in the
reverse direction corresponds to the smallest possible cosagecwithin the
pre-defined neighborhood of the preceding Boolean function, which also
makes it possible to escape from the local minima.



4 Results

We apply our search strategy to 9-variable 3-DSBFs, whergzéef search
space is 2%see Table 1). We have found several unbalanced Boolean
functions having nonlinearity 242. Among them there are two diftere
absolute indicator values, which are 32, 40.

The following is the truth table of a 9-variable, 3-dihedral sytnim Boolean
function having nonlinearity 242, absolute indicator value 40, arsbed@
degree 7:

68B7EF2DA03BOD3EAOODBG6A96 DDO9AEAFDBIC842B6D5DC8CA526 CEODD29020DB
B75FE3314568344E73688FF0CB2482E065231869E1AA4583765CCA91F8A8DB12

And, the function below is another 9-variable 3-DSBF having noniigear
242, absolute indicator value 32, and algebraic degree 7:

125425D30A398F36508C06817BEE122E250D973314F976 AEDS8A3EA9120DA4FE
OEADA575C4A2DD0426365EBA7FCS5FA5BE9B2F336981B5E1863618F49474F6FEOO

Using a computer system with Pentium IV 2.8 GHz processor anslR56
RAM, and setting the iteration number to 600, a typical run of the search
algorithm takes 1 minute and 34 seconds. We have carried outiri9@ach
with the iteration numbelN = 60,000. Out of 6 million 3-DSBFs, 152
functions have the nonlinearity 241, and 36 many 3-DSBFs have the
nonlinearity 242.

Additionally, we have applied the search strategy to 9-variaklRSBFs
(the size of the search space is noW &s can be seen from Table 1), for
which we initiate the search algorithm with a 9-variabl®SBF having
nonlinearity 242. Then we have obtained some 9-variable 3-RSBhisgha
nonlinearity 242, absolute indicator 56, and algebraic degree 7. Thwifag
is the truth table of such a function:

3740B6A118A1E19642A85E2B7E2F3C3CB65FAODISECODB1EA92BDB3666185AED
087F5FEGE0757106A12FC918754CA0ES8ALBCCB7A714032A8961456E066E8A801

It is clear that using one of the above 9-variable func(eegf ) and a 2-
variable bent function (say), the 11-variable functiog(yi, y») O f (X, ..., X9)
with highest -till date- nonlinearity of'2* - 232 4+ 4 = 996, can be
obtained. Similarlyh(ys, Vo, Va, Ya) O f(X3, ..., Xg) is the most nonlinear 13-
variable function known to date, with nonlinearitf 2- 2092+ 8 = 4040
whereh is a 4-variable bent function arids one of the above 9-variable
functions with nonlinearity 242. We think this is a significant improvement on
the results of [12].
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