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Abstract: Recently, the supersingular elliptic curves over ternary fields are widely used in 

pairing based crypto-applications since they achieve the best possible ratio between security 

level and space requirement. We propose new algorithms for projective arithmetic on the 

curves, where the point tripling is field multiplication free, and point addition and point 

doubling requires one field multiplication less than the known best algorithms, respectively. 

The algorithms combined with DBNS can lead to apparently speed up scalar multiplications 

on the curves. 
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1. Introduction 

 

For elliptic curve based cryptosystems, point multiplication(or scalar multiplication) on the 
curve is the most important but time-consuming operation. So the research on speeding up the 
operation continues to get increasing attraction since the origin of ECC. 

The point multiplication is performed by curve arithmetic operations such as point addition, 
doubling and tripling which in turn are performed by field arithmetic operations such as 
addition, subtraction, multiplication, inversion and cubing in the field. Thus, it is important to 
decrease the number of field operations needed for the arithmetic on the curves. 

A field inversion is much more costly than any other field operation. In affine coordinates, 
while tripling on the curves is field multiplication free as well field inversion free so that it is 
very fast, but point addition and doubling require the costly field inversions. But, when using 
projective coordinates we can eliminate all the costly field inversions in point multiplication, 
except for a few (usually one or two) needed to return to affine coordinates at the end of 
computation, asking for more field multiplications.  
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Thus, algorithms for projective arithmetic on elliptic curves have been proposed in many 
literatures(see e.g. [2], [3], [5], [12], [14], [15], [16], [17], [18], [25]), especially for 
characteristic 3 in [16] by N. Koblitz, in [5] by P. Barreto et al. and in [12] by K. Harrison et al.. 

N. Koblitz[16] has employed the ordinary projective coordinates, on which the point 
tripling is field multiplication free as is in affine coordinates. In the same coordinates, P. Barreto 
et al.[5] have proposed new point addition algorithm which requires 9 field multiplications that 
is one less than required for the algorithm by N. Koblitz. On the other hand, in [12] K. Harrison 
et al. have proposed algorithms for the curve arithmetic in Jacobian projective coordinates, 
where they also have proposed an algorithm for point doubling. The point addition algorithm 
proposed by K. Harrison et al. requires 8 field multiplications and so it is more efficient than P. 
Barreto et al.’s. But, for point tripling which is more important than point addition(in practice of 
scalar multiplication), K. Harrison et al.’s algorithm requires one field multiplication and thus 
the scalar multiplication based on their algorithms results in inefficient compared with one 
based on P. Barreto et al.’s algorithms. 

This paper is organized as follows. Basic concepts and previous work on arithmetic on 
supersingular elliptic curves over ternary fields are summarized in section 2. In section 3, new 
algorithms are proposed, using the type of projective coordinates which was proposed in [15] by 
the first author et al. to give efficient algorithms on non-supersingular elliptic curves over the 
fields. In section 4, the performance of scalar multiplication using proposed algorithms is briefly 
discussed. 

 

2. Curve Arithmetic 
 
In this paper we consider following supersingular elliptic curves:  

  ,                        (1) )1(:)( 32
3

±=+−= bbxxyFE m

which recently are most attracting for efficient implementation of pairing-based cryptosystems 
(see e. g. [4], [5], [6], [9], [11], [12], [13],[20], [21], [22], [23]).  

In affine coordinates , arithmetic operations on the curves can be performed by 

below formulae. [5] 
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- Point addition: ),(),(),( 221133 yxyxyx +=  

)( 21
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3 xxx +−= λ , , 3
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Let us denote the costs of an inversion, a multiplication, a squaring, a cubing in the field as 
, , and , respectively. According to [1], it holds that when using the 

polynomial base representation of the field, , and if we use the normal 
base representation, , , independently on compilers used, in all 

practical sizes of the base field. The costs of a field addition and subtraction are much cheaper 
than (see [1]) and so it will be ignored in the cost evaluations of this paper. 

I1 M1 S1 C1
MI 71 ≥ CM 101 ≥

MI 151 ≥ CM 3001 ≥

C1
In order to avoid the costly inversions in (3) and (4), projective versions of (3)-(5) were 

proposed in [16], [5] and [12], separately.  
There are many types of projective coordinates, including followings: 

1. )/,/(),(),,( ZYZXyxAffineZYXprojectiveOrdinary =↔    (5) 

2.   (6) )/,/(),(),,( 2ZYZXyxAffineZYXprojectiveDahabLopez =↔−
3.    (7) )/,/(),(),,( 32 ZYZXyxaffineZYXprojectiveJacobian =↔
4   (8) )/,/(),(),,,( 32 ZYTXyxaffineZTwhereTZYXprojectiveML =↔=−

For example, in ordinary projective coordinates, the curve equation (1) can be expressed as:         

)1(3232 ±=+−= bbZXZXZY                     (9) 
Then point tripling ),,](3[),,( 333 ZYXZYX =  on the curve (12) can be performed by: 
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, consuming .(see [16]) C6
For point addition, the mixed case where one point is affine and the other point is in 

projective representation is the most important in practice. So, in this paper we will restrict our 
consideration on point addition to the case. 

Point addition ),,()1,,(),,( 22211333 ZYXYXZYX +=  on the curve (12) in ordinary 

projective coordinates can be obtained by:(see [5]) 

3
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22123 YZYZXZXXZXXZXXX −−−−−−=

)(])())[(( 2212
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2212213 XZXYYZYZXZXYZYY −−−−−−= . 

The formula requires  which is CM 19 + M1  less than the cost of N. Koblitz’s 

formula[16]. 
On the other hand, K. Harrison et al. have proposed point tripling, addition and doubling 
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algorithms which require , CM 61 + CM 38 +  and CM 27 +  respectively, in Jacobian 

projective coordinates.(see [12]) Although point addition is nearly by M1  more effective than 
(11), but the point tripling which is more frequent in the procedure of point multiplication is 

more expensive by M1  than (10). So, scalar multiplication based on their algorithms results in 
inefficient compared with one based on P. Barreto et al.’s algorithms. 
 

3. New Algorithms 
 
We use ML- projective coordinates (8), which is a slightly modified version of Jacobian 

projective coordinates and has been used to obtain efficient algorithms for non-supersingular 
elliptic curves over ternary fields, in [15]. In the coordinates, projective equation of the curve 
(1) can be expressed by: 

)1(3232 ±=+−= bbTXTXY .   (12) 
 

[Theorem 1] In ML-projective coordinates, there exist algorithms that give the a point 
tripling, a point doubling and a point addition on the curve at the costs ,  
and , respectively.  

C8 CM 46 +
CM 37 +

 
Proof. Let us denote the affine points corresponding to projective points , 

 as , 
),,,( TZYX

)3,2,1(),,,( =iTZYX iiii ),( yx )3,2,1(),( =iyx ii , respectively. 

 
- The point tripling ),,,](3[),,,( 3333 TZYXTZYX =  can be obtained by: 
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In fact, from (13), it follows that  and bxbxZbZXx −=−=−= 991892
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- The point doubling ),,,](2[),,,( 3333 TZYXTZYX =  can be obtained by: 
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In fact, from (14) and the curve equation (12), it follows that  
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- The point addition ),,,()1,1,,(),,,( 2222113333 TZYXYXTZYX +=  ( ) can be 
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In fact, from (15) it follows that  
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It is clear that the costs of (13), (14), (15) are , C8 CM 46 +  and ,  

respectively. The theorem was proven.                                             ▐ 

CM 37 +

 
 

Algorithm Coordinates Tripling Addition Doubling 

Classic Affine C4  CMI 121 ++  CMI 111 ++

N. Koblitz[16] Ordinary projective C6  CM 110 +   

P. Barreto et al.[5] Ordinary projective C6  CM 19 +   

K. Harrison et al.[12] Jacobian Projective CM 61 + CM 38 +  CM 27 +  

Proposed ML-projective C8  CM 37 +  CM 46 +  

 
Table 1. Comparing costs for arithmetic operations on supersinguar curves over ternary fields  
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4. Point multiplication  
 

In [10], M. Ciet et al. showed that use of the double base number system(DBNS) results in 
sublinear algorithm for scalar multiplication on supersingualr elliptic curves over ternary fields, 
using the fact that a point tripling is performed in a negligible fraction of the time costs of an 
addition and doubling.  

So our algorithms combined with DBNS lead to very efficient scalar multiplications on 
supersingular elliptic curves over ternary and binary fields, because besides the efficient tripling 
comparable with the affine case, the point addition and doubling does not require field 
inversions and so is much faster compared with the affine case. The detailed discussion on the 
implementation of scalar multiplication is abbreviated. 
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