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Abstract. We describe further improvements of the nr pairing algo-
rithm in characteristic three. Our approach combines the loop unrolling
technique introduced by Granger et. al for the Duursma-Lee algorithm,
and a novel algorithm for multiplication over Fs6m proposed by Gorla et
al. at SAC 2007. For m = 97, the refined algorithm reduces the number
of multiplications over Fs= from 815 to 692.
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1 Introduction

This short paper describes further improvements of the nr pairing algorithm
in characteristic three without inverse Frobenius maps proposed in [3] (Algo-
rithm 1). We consider the supersingular elliptic curve E : y? = 23 — 2 + 1
over Fsm and denote by E(Fsm)[¢] the ¢-torsion subgroup of E(Fsm). The nr
pairing is the map 1y : E(Fam)[l] x E(Fsm)[l] — Fje, defined by nr(P,Q) =
fr.p(¥(Q)), where T € Z and fr p is a rational function on the curve with divisor
[T](P)—(TP)—[T—1](O). The distortion map ) : E(Fgm) — E(Fsem) is defined,
for all Q = (z4,yq) € E(F3m), by ¥(Q) = (—x4+p, Y40), where o and p belong to
F36m and satisfy 02 = —1 and p? = p+1 respectively. We construct Faem as an ex-
tension of F3m using the basis (1,0, p, op, p?, 0p?). Hence, arithmetic operations
over F3em are replaced by computations over Fgm. In order to get a well-defined,
non-degenerate, bilinear pairing, a final exponentiation is mandatory: we have
to compute 57 (P, Q)W , where W = (33™ — 1)(3™ 4+ 1)(3™ — 3™~ +1).

In the following, we take advantage of a novel algorithm for multiplication
over Fzem [4] and apply the loop unrolling technique proposed by Granger et al.
for the Duursma-Lee algorithm [5]. For m = 97, the refined algorithm reduces
the number of multiplications over Fgm from 815 to 692, thus improving software
and hardware implementations of the np pairing.

2 Refined Algorithm

Granger et al. proposed a loop unrolling technique for the Duursma-Lee algo-
rithm [5]. They exploit the sparsity of R; in order to reduce the number of
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Algorithm 1 Computation of nr(P, Q)" [3].

Input: P = (2p,yp) and Q = (24,yq) € E(Fsn)[l]. The algorithm requires Ry and
Ry € Fs6m, as well as 7o € Fgm and d € F3 for intermediate computations.

Output: nr(P, Q)(Ssm_1>(3m+1)(3m+1_3(m+1)/2).

:fori:OtomTflfldo

1

2wy ey — Ly — —yp;

3: end for

4 yp — —ypy d — 1

5: 1o —xp + x4+ d;

6: Ro — —ypro + yq0 + ypp;

T: Ry =10 4 Ypyeo — rop — p’;

8: Ro — (R0R1)3;

9: for i =0 to m;1 —1do

100 yp — —Yp; Tq — Th; Yg — Y3 d — (d — 1) mod 3;
11: 1o —zp + 24 + d;

12: Ry« =15 + Ypyg0 — T0p — p';

13: Ro «— (R0R1)3;

14: end for . . . (m1)/2
15: Ro — Ré‘g —1)(3™+1) (3" +1-3 )
16: Ro — °V/Ro;

17: return Ro;

I

multiplications over Fsm. Let Ry[i] and R;[i + 1] denote the value of R; at steps
i and i+ 1 respectively. By noting that R;[i]* is as sparse as R1[i], we can apply
the same approach to Algorithm 1. Let A = ag+a,0+agp+azop+asp? +asop?
and recall that the cubing formula is given by:

A? = (ag + a3 + af) + (—af — a3 — ad)o + (a3 — a})p +
(—a3 +a3)op + ajp® + (—a3)op’.

By substituting ag = —roli]?, a1 = y,lily,li], a2 = —roli], a3 = a5 = 0, and
ags = —1 in the above equation, we obtain:

Ru[i? = (=ro[i]® = roli]® = 1) = (yplilyq[i])®o + (=ro[i]® + 1)p — p*.
By unrolling the main loop of Algorithm 1, we get:

Ro[i + 1] = (RQM . Rl[l + 1})3
= ((Roli — 1] - Ru[i])® - Ruli +1])°
= (Ro[i — 1]* - Ry[i]* - Ry[i + 1])°.

The product R;[i]> - R1[i + 1]® can be computed by means of six multiplications
over Fgm (Algorithm 2). Note that neither Rg[i + 1] nor Ry[i]® - Ry[i + 1]3 are
sparse in general. Their multiplication can be performed according to a novel
algorithm introduced by Gorla et al. [4]. This approach is based on the fast
Fourier transform and reduces the number of multiplications over Fgm from 18
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(see for instance [6]) to 15 (Algorithm 3). Note that we rewrote the algorithm
in order to save additions. Therefore, Ry[i + 1] can be computed by means of
25 multiplications over Fsm (Table 1). Algorithm 4 summarizes the np pairing
calculation with loop unrolling. The first multiplication over Fzom (lines 7 and 8)
involves 8 multiplications over Fsm [1]. The final exponentiation features a single
multiplication over Fzem [2]. Thus, only three multiplications over Fsm can be
saved here. Table 2 summarizes the number of multiplications over F3» requested
for the full pairing. When m = 97, we have to carry out 8+25-(m—1)/44+84 = 692
multiplications over Fgm instead of 815 as in [1].

Algorithm 2 Computation of Ry[i]® - Ry[i + 1].

Input: ro[i], roli + 1], ypli], ypli + 1], yq[i], and ygli + 1] € Fam.
Output: co + c10 + cap + czop + cap® + csop® = Ry [2]3 - Ri[i +1].
L ag — —roli]® = roli]® = 1; a1 — —(yp[ilyq[i])*; a2 — —ro[i]® + 1;
bo = roli +1]%; b1 yp[i + yali + 1]; b2 — rofi + 1J;

€o < ao + ai; €1 <— ao + az; ez < a1 + ag;

e3 < —bo + b1; eq +— —bg — b2; e5 < b1 — ba;

eﬁ%ao-bo; e7Ha1~b1;es%a2-b2;

€9 <= €0 * €3; €10 < €1 * €4; €11 < €2 - €5,
cop «— —eg — e7 + ba — as;

C1 < €9 + es — €7;

9: cp «—e1o+es+es—az+br+1;

10: c3 < e11 +es —er;

11: C4H768*a0+b0+1;

12: ¢5 «— —a1 — by;

Table 1. Number of multiplications over Fgm to compute Ro[i + 1].

| Operation |[# multiplications|
roli]”, roli + 117, yp[dyg[il, and y,[i + 1ygli +1] 4
S = Ri[i]> - Rufi + 1] 6 (Algorithm 2)
Ro[i +1] = Ro[i — 1]*- S 15 [4]
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Table 2. Number of multiplications over Fzm to compute the full 7 pairing.

l Operation ‘# multiplications‘
nr(P,Q) 25- =7 +38
Final exponentiation 84 [2,4]
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Algorithm 3 Multiplication over Fzom [4].

Input: A, B € F3m with A = ao + a10 + a2p + asop + a4p2 + a50'p2 and B =
bo + b1o + bap + bzop + bap® + bsop.
Output: C = AB. The algorithm requires 15 multiplications and 67 additions over

DN NN RNDLN s = e
STEIRBTOLPISTEENYES

F37”.

7o < Qo + a4; €0 < To + az; €12 < To — a2;

ro < bo + ba; e3 < 1o + ba; e15 < ro — ba;

TO < @o — Q4; €6 < To — A3} €18 +— To + as3;

7o <= bo — ba; eg «— 1o — b3; ea1 « 1o + b3;

7o <— a1 + as; €1 <— 1o + as; e13 < ro — as;

7o < b1 + bs; eq < 1o + b3; €16 < ro — b3;

To <= A1 — A5; €7 <— T + G2; €19 «— T'o — A2;

ro +— b1 — bs; €10 «— 10 + b2; ean < 1o — ba;

€2 «— €eg + €15 €5 «— €3 + €4; eg < €6 1+ €e7; €11 < €9 + €10;
€14 < €12 + €13; €17 < €15 + €16; €20 < €18 + €19; €23 < €21 + €22;
€24 < a4 + as; ea5 — by + bs;

o <— €0 - €3; M1 < €2 €5; T2 < €1 * €4;

m3 <— €6 " €9; My <— €8 * €11; M5 < €7 * €10;

Mg < €12 * €15; My < €14 - €17; Mg < €13 - €16;

My <— €18 - €21; M1 < €20 * €23; M11 < €19 * €22;

Mi2 < a4 - by; M13 < €24 - €25; M14 < as - bs;

€0
€2
€5
€7
Co
C1
Cc2
Cc3
Cq
Cs

rrrrrrrra

mo + M4 + Mi2; €1 < M2 + Mio + Ma4;

me + Mi2; €3 < —Mg — Mi4; €4 < M7 + M13;
e3 + ma; e «— €2 — Mo,

€3 — M2 + M5 + Mi1; €g «— e2 + mo — M3 — M,
—ep +e1 —m3 + maa;

eo +e1—mi1+ ms + mg — mais;

es + eg;

€5 — e + €4 — M1;

e7r + es;

er —eg +eq +mi —mg — Mmio;
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Algorithm 4 Computation of n7(P, Q)W

Input: P = (2p,yp) and Q = (x4,yq) € E(Fsm)[l]. The algorithm requires Ry and
Ry € Fsom, as well as 19 € Fam and d € F3 for intermediate computations.
Output: nr(P, Q)(?’sm71>(3m+1)(3m+173(m+1)/2).
: for i =0 to m2_1 —1do
9 . 9.
Tp < Tp — 17 Yp < —Yp;
end for

Yp = —Yp; d = 1

ro «— Tp + xq + d;

Ro = —ypro +Yq0 + ypp;

Ry = =78 4 Ypyqo — rop — p°;

Ro « (RoR1)%;

9: fori:Oto%*lfldo

10: yp — —Yp; :cq<—:r2; yq<—y2;d<—(d—1) mod 3;
11: 1o —zp + x4+ d;

120 Ry — (=78 + ypyao — rop — p*)%;

13: Ry < R};

14 yp — —yp; g — 35 Yg — Yy d — (d — 1) mod 3;
15: 1o —zp + 24 + d;

16:  Ri«— Ri- (=78 + ypyqo —10p — p°);

17: Ro — (RoRl)B;

18: end for 3m m m (m+1)/2
19: Ro<—R83 —DE™+) (3™ +1-3 )

)

21: return Ro;




