A Refined Algorithm for the nr Pairing
Calculation in Characteristic Three

Jean-Luc Beuchat!, Masaaki Shirase?, Tsuyoshi Takagi?, and Eiji Okamoto®

! Graduate School of Systems and Information Engineering, University of Tsukuba,
1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
2 Future University-Hakodate, School of Systems Information Science, 116-2
Kamedanakano-cho, Hakodate, Hokkaido, 041-8655, Japan

Abstract. We describe further improvements of the nr pairing algo-
rithm in characteristic three. Our approach combines the loop unrolling
technique introduced by Granger et. al for the Duursma-Lee algorithm,
and a novel algorithm for multiplication over Fs6m proposed by Gorla et
al. at SAC 2007. For m = 97, the refined algorithm reduces the number
of multiplications over Fs= from 815 to 692.
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1 Introduction

This short paper describes further improvements of the nr pairing algorithm
in characteristic three without inverse Frobenius maps proposed in [3] (Algo-
rithm 1). We consider the supersingular elliptic curve E : y? = 23 — 2 + 1
over Fsm and denote by E(Fsm)[¢] the ¢-torsion subgroup of E(Fsm). The nr
pairing is the map 1y : E(Fam)[l] x E(Fsm)[l] — Fje, defined by nr(P,Q) =
fr.p(¥(Q)), where T € Z and fr p is a rational function on the curve with divisor
[T](P)—(TP)—[T—1](O). The distortion map ) : E(Fgm) — E(Fsem) is defined,
for all Q = (z4,yq) € E(F3m), by ¥(Q) = (—x4+p, Y40), where o and p belong to
F36m and satisfy 02 = —1 and p? = p+1 respectively. We construct Faem as an ex-
tension of F3m using the basis (1,0, p, op, p?, 0p?). Hence, arithmetic operations
over F3em are replaced by computations over Fgm. In order to get a well-defined,
non-degenerate, bilinear pairing, a final exponentiation is mandatory: we have
to compute 57 (P, Q)W , where W = (33™ — 1)(3™ 4+ 1)(3™ — 3™~ +1).

In the following, we take advantage of a novel algorithm for multiplication
over Fzem [4] and apply the loop unrolling technique proposed by Granger et al.
for the Duursma-Lee algorithm [5]. For m = 97, the refined algorithm reduces
the number of multiplications over Fgm from 815 to 692, thus improving software
and hardware implementations of the np pairing.

2 Refined Algorithm

Granger et al. proposed a loop unrolling technique for the Duursma-Lee algo-
rithm [5]. They exploit the sparsity of R; in order to reduce the number of
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Algorithm 1 Computation of nr(P, Q)" [3].

Input: P = (2p,yp) and Q = (24,yq) € E(Fsn)[l]. The algorithm requires Ry and
Ry € Fs6m, as well as 7o € Fgm and d € F3 for intermediate computations.

Output: nr(P, Q)(Ssm_1>(3m+1)(3m+1_3(m+1)/2).

:fori:OtomTflfldo

1

2wy ey — Ly — —yp;

3: end for

4 yp — —ypy d — 1

5: 1o —xp + x4+ d;

6: Ro — —ypro + yq0 + ypp;

T: Ry =10 4 Ypyeo — rop — p’;

8: Ro — (R0R1)3;

9: for i =0 to m;1 —1do

100 yp — —Yp; Tq — Th; Yg — Y3 d — (d — 1) mod 3;
11: 1o —zp + 24 + d;

12: Ry« =15 + Ypyg0 — T0p — p';

13: Ro «— (R0R1)3;

14: end for . . . (m1)/2
15: Ro — Ré‘g —1)(3™+1) (3" +1-3 )
16: Ro — °V/Ro;

17: return Ro;

I

multiplications over Fsm. Let Ry[i] and R;[i + 1] denote the value of R; at steps
i and i+ 1 respectively. By noting that R;[i]* is as sparse as R1[i], we can apply
the same approach to Algorithm 1. Let A = ag+a,0+agp+azop+asp? +asop?
and recall that the cubing formula is given by:

A? = (ag + a3 + af) + (—af — a3 — ad)o + (a3 — a})p +
(—a3 +a3)op + ajp® + (—a3)op’.

By substituting ag = —roli]?, a1 = y,lily,li], a2 = —roli], a3 = a5 = 0, and
ags = —1 in the above equation, we obtain:

Ru[i? = (=ro[i]® = roli]® = 1) = (yplilyq[i])®o + (=ro[i]® + 1)p — p*.
By unrolling the main loop of Algorithm 1, we get:

Ro[i + 1] = (RQM . Rl[l + 1})3
= ((Roli — 1] - Ru[i])® - Ruli +1])°
= (Ro[i — 1]* - Ry[i]* - Ry[i + 1])°.

The product R;[i]> - R1[i + 1]® can be computed by means of six multiplications
over Fgm (Algorithm 2). Note that neither Rg[i + 1] nor Ry[i]® - Ry[i + 1]3 are
sparse in general. Their multiplication can be performed according to a novel
algorithm introduced by Gorla et al. [4]. This approach is based on the fast
Fourier transform and reduces the number of multiplications over Fgm from 18
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(see for instance [6]) to 15 (Algorithm 3). Note that we rewrote the algorithm
in order to save additions. Therefore, Ry[i + 1] can be computed by means of
25 multiplications over Fsm (Table 1). Algorithm 4 summarizes the np pairing
calculation with loop unrolling. The first multiplication over Fzom (lines 7 and 8)
involves 8 multiplications over Fsm [1]. The final exponentiation features a single
multiplication over Fzem [2]. Thus, only three multiplications over Fsm can be
saved here. Table 2 summarizes the number of multiplications over F3» requested
for the full pairing. When m = 97, we have to carry out 8+25-(m—1)/44+84 = 692
multiplications over Fgm instead of 815 as in [1].

Algorithm 2 Computation of Ry [i]* - Ry[i + 1].
Input: ro[i], ro[i + 1], ypli], yp[i + 1], yq[é], and yq[i + 1] € Fam.

Output: co + c10 + c2p + csop + 04,02 + C5O'p2 =R [z]3 -Rai +1].

1 ao — —rolil® — roi* — 1; a1 — —(plilyalil)® = (wpli + Uyali)); az — —roil® +1;
2: by «— rofi + 1]%; b1 «— ypli + 1yg[i + 1]; be «— roli + 1];

3: eg < ap + a1; e1 < ap + az; ez +— a1 + az;

4: ez «— —bg +b1; eq — —bg — ba; e5 — by —bg;
5: eg «— ao - bo; €7 «— a1 - b1; es «— az - ba;
6
7
8

L €9 < €0 €3; €10 < €1 * €4 €11 < €2 €55
: Co<——€6—€7+bg—a2;
T Cc1 — eg + e — er;

9: cp«—eiot+es+es—ax+b+1;

10: c3 < e11 +es — er;

11: C4<——€8—a0+b0—|—1;

12: ¢5 «— —a1 — by;

Table 1. Number of multiplications over Fgm to compute Ro[i + 1].

| Operation |[# multiplications|
rolil”, rofi + 1%, yp[ily,[i], and y,[i + yg[i + 1] 4
S = Ri[i]> - Rufi + 1] 6 (Algorithm 2)
Roli +1] = Ro[i — 1J°- S 15 [4]
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Table 2. Number of multiplications over Fzm to compute the full 7 pairing.

l Operation ‘# multiplications‘

17 (P, Q) 25- " +38
Final exponentiation 84 [2,4]
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Algorithm 3 Multiplication over Fzom [4].

Input: A, B € F3m with A = ao + a10 + a2p + asop + a4p2 + a50'p2 and B =
bo + b1o + bap + bzop + bap® + bsop.
Output: C = AB. The algorithm requires 15 multiplications and 67 additions over

DN NN RNDLN s = e
STEIRBTOLPISTEENYES

F37”.

7o < Qo + a4; €0 < To + az; €12 < To — a2;

ro < bo + ba; e3 < 1o + ba; e15 < ro — ba;

TO < @o — Q4; €6 < To — A3} €18 +— To + as3;

7o <= bo — ba; eg «— 1o — b3; ea1 « 1o + b3;

7o <— a1 + as; €1 <— 1o + as; e13 < ro — as;

7o < b1 + bs; eq < 1o + b3; €16 < ro — b3;

To <= A1 — A5; €7 <— T + G2; €19 «— T'o — A2;

ro +— b1 — bs; €10 «— 10 + b2; ean < 1o — ba;

€2 «— €eg + €15 €5 «— €3 + €4; eg < €6 1+ €e7; €11 < €9 + €10;
€14 < €12 + €13; €17 < €15 + €16; €20 < €18 + €19; €23 < €21 + €22;
€24 < a4 + as; ea5 — by + bs;

o <— €0 - €3; M1 < €2 €5; T2 < €1 * €4;

m3 <— €6 " €9; My <— €8 * €11; M5 < €7 * €10;

Mg < €12 * €15; My < €14 - €17; Mg < €13 - €16;

My <— €18 - €21; M1 < €20 * €23; M11 < €19 * €22;

Mi2 < a4 - by; M13 < €24 - €25; M14 < as - bs;

€0
€2
€5
€7
Co
C1
Cc2
Cc3
Cq
Cs

rrrrrrrra

mo + M4 + Mi2; €1 < M2 + Mio + Ma4;

me + Mi2; €3 < —Mg — Mi4; €4 < M7 + M13;
e3 + ma; e «— €2 — Mo,

€3 — M2 + M5 + Mi1; €g «— e2 + mo — M3 — M,
—ep +e1 —m3 + maa;

eo +e1—mi1+ ms + mg — mais;

es + eg;

€5 — e + €4 — M1;

e7r + es;

er —eg +eq +mi —mg — Mmio;
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Algorithm 4 Computation of n7(P, Q)W

Input: P = (2p,yp) and Q = (x4,yq) € E(Fsm)[l]. The algorithm requires Ry and
Ry € Fsom, as well as 19 € Fam and d € F3 for intermediate computations.
Output: nr(P, Q)(?’sm71>(3m+1)(3m+173(m+1)/2).

: for i =0 to m2_1—1d0
Tp — Tp— 15 Yp — —Up;
end for

Yp — —Yp; d — 1
ro «— Tp + xq + d;
Ro — —ypTo + Y40 + ypp;
Ri — =18 + ypyqo — rop — p%;
Ro «— (RoR1)%;
9: fori:Oto%*lfldo
10: mq 20 yg — yh; d — (d— 1) mod 3;
11: 1o —xp + x4+ d;
12: Ry (=16 — 7§ — 1) + (Ypya)’o + (=78 + Dp — p*;
13: Ry < R};
14t mg ) yg — yo; d— (d— 1) mod 3;
15: 1o —zp + 24+ d;
16:  Ri «— Ri- (=78 + ypyqo — 10p — p°);
17: Ro — (RoRl)B;
18: end for o . N (m1))2
19: Ry — Ré?’ —1)(3M4+1) (3™ +1-3 )
20: Ro — *V/Ro;
21: return Ro;

)




