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Abstract
As cryptographic proofs have become essentially unverifiable,
cryptographers have argued in favor of systematically structuring
proofs as sequences of games. Code-based techniques form anin-
stance of this approach that takes a code-centric view of games,
and that relies on programming language theory to justify steps
in the proof—transitions between games. While these techniques
contribute to increase confidence in the security of cryptographic
systems, code-based proofs involve such a large palette of concepts
from different fields that machine-verified proofs seem necessary to
achieve the highest degree of confidence. Indeed, Halevi hascon-
vincingly argued that a tool assisting in the construction and verifi-
cation of proofs is necessary to solve the crisis with cryptographic
proofs. This article reports a first step towards the completion of
Halevi’s programme through the implementation of a fully formal-
ized framework for code-based proofs built on top of the Coq proof
assistant. The framework has been used to yield machine-checked
proofs of the PRP/PRF switching lemma and semantic securityof
ElGamal andOAEP encryption schemes.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Compilers, Optimization; F.3.1 [Logics and
Meanings of Programs]: Specifying and Verifying and Reason-
ing about Programs—Logics of programs, Mechanical verification,
Pre- and post-conditions; F.3.2 [Logics and Meanings of Pro-
grams]: Semantics of Programming Languages—Denotational se-
mantics, Program analysis.

General Terms Languages, Security, Verification.

Keywords game-based cryptographic proofs, compiler transfor-
mations and optimizations, relational Hoare logic, the Coqproof
assistant.

1. Introduction
Provable security, whose origins can be traced back to the pioneer-
ing work of Goldwasser and Micali [22], advocates a mathematical
approach based on complexity theory in which the goals and re-
quirements of cryptosystems are specified precisely, and where the
security proof is carried rigorously and makes all underlying as-
sumptions explicit. In a typical provable security setting, one rea-
sons about effective adversaries, modeled as arbitrary probabilistic
polynomial-time Turing machines, and about their probability of
thwarting a security objective, e.g. secrecy; in general, provable se-
curity statements do not refer directly to the probabilityp of the
adversary breaking security, but to its advantageAdv = |p − p̂|
over ablind, uninformed adversary. Typically,̂p can be easily com-
puted and by providing an upper bound forp, one also provides
an upper bound forAdv. In a similar fashion, security assumptions
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about cryptographic primitives bound the probability of polynomial
algorithms to solve difficult problems, e.g. computing discrete log-
arithms. The security proof is performed by reduction by showing
that the existence of an effective adversary with a certain advantage
in breaking security implies the existence of an effective algorithm
contradicting the security assumptions. Many security proofs estab-
lish an asymptotic behavior for the adversaries, and show that the
advantage of any effective adversary is negligible w.r.t. asecurity
parameter, typically the length of keys or messages.

Although the adoption of provable security has significantly
enhanced confidence in cryptographic systems, the cryptographic
community is increasingly wary about security proofs: several pub-
lished proofs have been found incorrect. Even for such basicre-
sults as the PRP/PRF switching lemma, subtle errors in proofs have
made their way into publications [12].

The game-playing technique is a general method to structure
and unify cryptographic proofs, thus making them less error-prone.
Its central idea is to view the interaction between an adversary and
the cryptosystem as a game, and to study game transformations
that preserve security. In a typical game-based proof, one considers
transitions of the formG→h G′. Denoting byp andp′ the winning
probability of the adversary in gamesG andG′ respectively, we
requireh to be a monotonic function preserving negligibility and
such thatp ≤ h(p′). By successively refining the initial gameG0 to
be analyzed into an ideal gameGn where one can provide a bound
for the probabilitypn,

G0 →
h1 G1 → · · · →

hn Gn ,

one can obtain an upper bound forp0, namelyp0 ≤ h(pn), for
h = h1 ◦· · ·◦hn, and conclude that the advantageAdv0 = |p0− p̂|
of the adversary in the initial game is negligible provided that
|h(pn)− p̂| is negligible.

The game-playing technique is widely applicable, it supports
reasoning in both the standard and the random oracle model of
cryptography and has been extensively used for proving security
properties of a variety of schemes and protocols. Code-based tech-
niques (CBT) is an instance of the game-playing technique that
has been used successfully to verify state-of-the-art cryptographic
schemes, see e.g. [12]; its distinguishing feature is to take a code-
centric view of games, security hypotheses and computational
assumptions, that are expressed using (probabilistic, imperative,
polynomial-time) programs. Under this view, game transforma-
tions become program transformations, and can be justified rigor-
ously by semantic means; for instance, many transformations can
be viewed as common program optimizations (e.g. constant prop-
agation, common subexpression elimination), and are justified by
proving that the original and transformed programs are equivalent
w.r.t. indistinguishability. AlthoughCBT proofs are easier to ver-
ify and are more easily amenable to machine-checking, they go
far beyond established theories of program equivalence andex-
hibit a surprisingly rich and broad set of reasoning principles that
draws from program verification, algebraic reasoning, and proba-
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bility and complexity theory. Thus, despite the beneficial effect of
their underlying framework,CBT proofs remain inherently diffi-
cult to verify. In an inspiring paper, Halevi [26] argues that formal
verification techniques are mandatory to improve trust in game-
based proofs, going as far as describing an interface to a tool for
computer-assisted code-based proofs. To the best of our knowl-
edge, however, there is no tool currently available that meets the
needs of cryptographers.

This article describesCertiCrypt, a framework to construct
machine-checked code-based proofs in the Coq proof assistant [39].
CertiCrypt achieves many important goals of Halevi’s ideal tool.
At the same time, it brings a formal semanticist perspectiveon the
design of the tool, and builds upon ideas of Foundational Proof Car-
rying Code [4] to achieve the highest guarantees with the smallest
trusted base. The main characteristics ofCertiCrypt are:

Direct and faithful encoding of code-based techniques. In order to
take advantage of the generality of theCBT approach and to
be readily accessible to cryptographers, we have chosen a for-
malism that is commonly used by cryptographers to describe
games. Concretely, the lowest layer ofCertiCrypt is a deep em-
bedding in Coq of an imperative programming language with
random assignments, structured datatypes, and procedure calls.
The language semantics takes into account non-standard fea-
tures such as complexity of programs, variable usage and call-
ing policies, that are of paramount importance in cryptographic
proofs. In addition,CertiCrypt provides a library for expressing
common security properties, such as indistinguishabilityunder
chosen plain-text attacks (IND-CPA) for encryption primitives,
and computational hypotheses, such as the Decisional Diffie-
Hellmann (DDH) assumption.

Support for automated proofs. Automating proof steps is neces-
sary to ensure an efficient use of any formal tool. We have there-
fore developed tactics for the most common transformations;
all tactics are certified, in the sense that they are proved cor-
rect with respect to the operational semantics. Transformations
fall into three main categories; 1) semantics preserving transfor-
mations, including compiler optimizations such as dead code
elimination, code motion, constant propagation and common
subexpression elimination; 2) transformations based on indis-
tinguishability, i.e. a change that cannot be detected witha non-
negligible probability; and 3) transformations based on failure
events, where both games behave identically unless a certain
failure occurs, and it is shown that this failure occurs with neg-
ligible probability.

Complete and independently verifiable proofs. CertiCrypt bene-
fits from being developed on top of the Coq proof assistant to
go beyond Halevi’s vision in two respects. First, it supports the
construction of full proofs, whereas Halevi mostly focuseson
their “mundane parts”. Second, it permits independent verifi-
ability of proofs by third parties, which is an important moti-
vation behind game-based proofs. Regarding full proofs,Cer-
tiCrypt requires that all (complexity-theoretic, group-theoretic,
probabilistic) side conditions to apply transformations are jus-
tified within Coq, and also enablesad hoc reasoning, e.g. to
conclude the proof in case of a sequence of games that ends
in a non-trivial game [27]. Regarding verifiability,CertiCrypt
inherits from Coq its ability to provide certificates, or proof ob-
jects, that are automatically verifiable with a small trusted core,
namely the type-checker of Coq.

We have appliedCertiCrypt to machine-check three famous ex-
amples of code-based proofs: the PRP/PRF switching lemma and
semantic security of theElGamal andOAEP encryption schemes.
The first and second examples are basic applications of the main

code-based techniques, but nonetheless nicely illustratemany as-
pects of our work. The third example is far more challenging,and
involves a large number of transitions as well as some advanced
game-based techniques that have not been formally justifiedbefore.
The justification of some steps in the proof relies on programinvari-
ants which are proved using program verification techniques; for
this purpose we have built a Hoare logic and an executable weakest
precondition calculus forCertiCrypt underlying language. Other
steps in the proof involve properties that are universally quantified
over all well-formed adversaries. We have therefore modeled pre-
cisely the notion of well-formedness, which is very often left im-
plicit in cryptographic proofs, and derived an induction principle
that allows to reason about an unspecified well-formed adversary.

2. Basic Examples
The aim of this section is to illustrate the principles ofCertiCrypt
on two basic examples of game-based proofs: the PRP/PRF switch-
ing lemma and semantic security ofElGamal encryption. Descrip-
tion of the internals ofCertiCrypt is deferred to later sections.

2.1 The ElGamal Encryption Scheme

ElGamal [20] is a widely used asymmetric encryption scheme, and
an emblematic example of game-based proofs. The proof of its
semantic security is very direct, see e.g. [36], but still embodies
the most common techniques that arise in more complex proofs.

ElGamal inner workings ElGamal is a probabilistic public-key
encryption scheme whose security relies on the assumption that
computing discrete logarithms in certain cyclic groups is ahard
problem. Given a cyclic group of orderq + 1 generated byg, to
generate a new key pair one uniformly samples an integerx in
the interval[0..q] and takesx as the private key andα = gx as
the public one. The ciphertext for a given plaintextm (an element
of the group) is(β = gy, ζ = αy × m) wherey is uniformly
sampled in[0..q]. Using the secret keyx it is easy to recover the
plaintext from a ciphertext(β, ζ) by computingm = ζ × β−x. As
an encryption scheme,ElGamal is composed of three algorithms:

• The key generatorKG() def
= x $← [0..q]; return (x, gx)

• The encryption algorithm
Enc(α, m) def

= y $← [0..q]; return (gy, αy ×m)

• The decryption algorithmDec(x, β, ζ) def
= return ζ × β−x.

Semantic security of ElGamal Fig. 1 presents a high level view
of the proof thatElGamal is semantically secure (equivalently,
IND-CPA secure) under the Decisional Diffie-Hellman (DDH) as-
sumption. The objective is to prove that it is impossible to gain
significant information about a plaintext given only a correspond-
ing ciphertext and the public key. This is formally expressed using
two games1 ElGamal0 andElGamal1. Each game begins by gen-
erating a fresh public key, which is given to a probabilisticpoly-
nomially bounded algorithmA that outputs a pair of messages
(m0, m1). Depending on the game, eitherm0 or m1 is encrypted
and the resulting ciphertext is given to another probabilistic poly-
nomially bounded algorithm2 A′ which tries to guess which mes-
sage has been encrypted by outputting a single bitd—if d = 1,
the guess ism1, otherwisem0. We say thatElGamal is semanti-
cally secure iff for any pair of adversariesA, A′, the difference

1 IND-CPA security can also be described using only one game; both
descriptions are evenly used in the literature. We find that the description
using two games eases the presentation.
2 Both adversaries are allowed to share state via global variables and can
thus be regarded as a single adversary (structuring games inthis way is
common in game-based proofs.)
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Lemma B1 PPT : PPT B1.
Proof ...

inline.

simplify.
swap.
simplify.

Lemma B0 PPT : PPT B0.
Proof ...

simplify head 3.
simplify tail.
apply mult uniform.

apply DDH.
apply B0 PPT ||
apply B1 PPT.

inline.
simplify.

GameElGamal0:

GameElGamal10:

d′ ← A′(α, β, ζ)
ζ ← δ ×m1;
(m0, m1)← A(α);
Adversary B1(α, β, δ):

x $← [0..q]; y $← [0..q];
(m0, m1)← A(gx);
z $← [0..q]; ζ ← gz ×m0;
d← A′(gx, gy , ζ)

≃d

≈[d=1]

≃d

x $← [0..q]; y $← [0..q];
(m0, m1)← A(gx);

≃d≃d

≈[d=1]

GameDDH0:
x $← [0..q];
y $← [0..q];

GameDDH1:
x $← [0..q];
y $← [0..q];
z $← [0..q];

ζ ← gxy ×m1;
d← A′(gx, gy, ζ)

(m0, m1)← A(gx);
x $← [0..q]; y $← [0..q];
GameElGamal1:

d← B(gx, gy , gxy)

GameElGamal11:
x $← [0..q]; y $← [0..q];
(m0, m1)← A(gx);
z $← [0..q]; ζ ← gz ×m1;
d← A′(gx, gy, ζ)

≃d

return d′

Adversary B1(α, β, δ):
(m0, m1)← A(α);
ζ ← δ ×m1;
d′ ← A′(α, β, ζ)
return d′

Adversary B0(α, β, δ):
(m0, m1)← A(α);
ζ ← δ ×m0;
d′ ← A′(α, β, ζ)
return d′

return d′

Adversary B0(α, β, δ):
(m0, m1)← A(α);
ζ ← δ ×m0;
d′ ← A′(α, β, ζ)

d← B(gx, gy , gz)

GameDDH0:
x $← [0..q];
y $← [0..q];
d← B(gx, gy, gxy)

GameDDH1:
x $← [0..q];
y $← [0..q];
z $← [0..q];
d← B(gx, gy, gz)

z $← [0..q]; ζ ← gz ;
d← A′(gx, gy , ζ)

GameElGamal2:
≃d

ζ ← gxy ×m0;
d← A′(gx, gy, ζ)

(m0, m1)← A(gx);
x $← [0..q]; y $← [0..q];

Figure 1. Game-based proof ofElGamal semantic security

in the probability of outputtingd = 1 (equivalently,d 6= 1) in
either game is a negligibly function of the security parameter:3

ElGamal0 ≈[d=1] ElGamal1.
The security ofElGamal relies on theDDH assumption [17],

which states that it is hard to distinguish between triples of the
form (gx, gy, gxy) and(gx, gy, gz) wherex, y andz are uniformly
sampled in[0..q]. In our setting,DDH is formulated more precisely,
stating that for any polynomial adversaryB, DDH0 ≈[d=1] DDH1

(DDH0 andDDH1 are defined in Fig. 1).

Proof The proof is done by showing that both initial games are in-
distinguishable from a third one, namelyElGamal2. ForElGamal0
this is achieved using the following sequence of transformations:

ElGamal0 ≃d DDH0 ≈[d=1] DDH1 ≃d ElGamal
1
0 ≃d ElGamal

2

The transition fromElGamal0 to ElGamal10 is justified by a re-
duction to theDDH assumption. The transition fromElGamal10
to ElGamal2 makes use of an algebraic property of cyclic groups:
when multiplying a uniformly distributed element of the group by
another element, the result is uniformly distributed. ForElGamal1
the sequence of transformations is completely symmetric.

In order to do the reduction to theDDH assumption it is nec-
essary to construct an adversaryB0 such that the distribution of
the value ofd after running gamesDDH0 and ElGamal0 is ex-
actly the same (and similarly forDDH1 andElGamal10). This is de-
noted byElGamal0 ≃d DDH0 and is proved by applying semantics
preserving transformations using the following tactics:simplify,

3 The security parameter, implicit in this presentation, determines a cyclic
group of orderq with generatorg by indexing a family of groups where the
DDH problem is believed intractable.

that removes common context in both games,swap, that hoists in-
structions when possible in order to obtain a common prefix, and
inline, that inlines a procedure call and optimizes the resulting
code by performing dead code elimination and copy propagation.
To justify the reduction we must also prove that the adversary B0

is polynomially bounded assuming so areA andA′. This is eas-
ily done sinceB0 is just alinear extension ofA andA′. Then, by
appealing to the assumptionDDH0 ≈[d=1] DDH1 and the tran-
sitivity of the≈[d=1] relation we conclude thatElGamal0 ≈[d=1]

ElGamal10.
In the last transition, we eliminate the common context in the

two games with the exception of the instructionz $← [0..q], and
then make use of the algebraic property mentioned above to prove
thatz $← [0..q]; ζ ← gz × m0 andz $← [0..q]; ζ ← gz induce
the same distribution onζ, obtainingElGamal10 ≃d ElGamal2. To-
gether with the result of the previous paragraph, this allows to con-
clude thatElGamal0 ≈[d=1] ElGamal2, and by a completely sym-
metric argument thatElGamal1 ≈[d=1] ElGamal2, thus proving
the desired result.

Comparison with other works ElGamal is a standard example for
security proofs, and has been used by several authors to validate
their work. We briefly comment on three proofs that are closely
related to ours. The most recent, and closely related is a formal-
ization in Coq of a game-based proof ofElGamal semantic secu-
rity by Nowak [31]. While we opt for a deep embedding, Nowak
uses a shallow one, modeling adversaries directly as Coq functions.
This implies that the resulting framework can only provide limited
support for proof automation: because there is no special syntax
for writing games, mechanizing syntactic transformationsbecomes
very difficult. All in all, the resulting proof is elegant butignores
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complexity issues.4 An earlier work by Barthe, Cederquist and Tar-
ento [9] provides a formal proof of security of (signed)ElGamal
in Coq. The proof is not completely formalized, only the “mathe-
matical” arguments are proved. Moreover the proof relies onideal-
ized models (generic model and random oracle model) while the
proof presented here is done in the standard model of cryptog-
raphy. Corin and den Hartog [19] developed a Hoare-style proof
system for game-based cryptographic proofs. The formalismis not
sufficiently powerful to express precisely the security goals: no-
tions such as negligible advantage or effective adversary are not
modeled. Moreover, there is currently no computer assistance for
reasoning using this logic.

2.2 The PRP/PRF Switching Lemma

In cryptographic proofs, particularly those dealing with blockci-
phers, it is often convenient to replace a pseudo-random permu-
tation (PRP) by a pseudo-random function (PRF). The PRP/PRF
switching lemma states that it is indeed justified to do such re-
placement in a game without significantly changing the advantage
of a polynomial adversary. The intuition is that the probability of
a game outputting a given value is the same if a PRP is replaced
by a PRF but no collisions are observed, but as explained in [12]
the proof is not trivial. Nonetheless, using Lemma 2 presented in
Sec. 4, the proof can be easily done inCertiCrypt (see Fig. 2 for a
high level view of the proof). The goal is to prove that the difference
in the probability that an adversary outputs1 when given oracle ac-
cess to a PRP and when given oracle access to a PRF is negligible.
This statement is encoded inCertiCrypt asGPRP ≈[d=1] GPRF

(these games are defined in Fig. 2), and proved by means of the
sequence of games:

GPRP ≃d G
′
PRP ≈[d=1] G

′
PRF ≃d GPRF

The first and last transitions in the sequence are semantics preserv-
ing transformations used to reformulate the statement in the form
required to apply Lemma 2. For doing so, we introduce a variable
bad that is set totrue whenever a collision is found inG′

PRF, and
we reformulateG′

PRP accordingly to be syntactically equal until
bad is set. Then, by applying Lemma 2 and proving that the prob-
ability that bad is set totrue is negligible, we can conclude. It is
important to note that, inCertiCrypt, we explicitly distinguish the
global variables that can be accessed by the adversary, suchas the
security parameterη, that can be read but not written, and the global
variables that it cannot even read, such as the association list L or
the variablebad, while this is usually left unspecified in the litera-
ture.

3. The pWHILE Language
To define games we use a probabilistic imperative language with
procedure calls; all probabilistic features are encapsulated in a set
BI of basic instructions, which is left unspecified in large part of
the development. We assume given a setV of variable identifiers,
a partition (Vglb, Vloc) of V of identifiers for global and local
variables respectively, a setP of procedure identifiers, and a set
E of expressions. We define inductively the set of commands by
the following clauses:

I ::= BI basic instruction
| if E then C else C conditional
| while E do C while loop
| V ← P(E , . . . , E) procedure call

C ::= nil nop
| I; C sequence

4 See [18] for preliminary treatment of complexity in a shallow-embedding
setting.

In the rest of this paper the metavariablesc, ci range overC;
x, xi over V; e, ei over E ; andp, pi overP . Since sequencing
is associative we reuse the notationc1; c2 for denoting also the
sequence of two commands. To the purpose of this presentation,
we instantiate the set of basic instructionsBI as follows:

BI ::= V ← E deterministic assignment
| V $← [0..E ] uniform sampling (integer interval)
| V $← {0, 1}E\E uniform sampling (bitstrings)

In the following, x $← {0, 1}e will be used as a shorthand for
x $← {0, 1}e\∅.

Definition 1 (Program). A program consists of a command and an
environment, which maps a procedure identifier to its declaration,
consisting of its formal parameters, its body, and a return expres-
sion (we use an explicitreturn when specifying games, though),

decl
def
= {params : list Vloc; body : C; re : E} .

In the the remainder of this section we assume the existence of an
implicit environmentE.

In the actual development we instantiate values in the language to
include booleans, bitstrings, natural numbers, and group elements
as base types and pairs and lists as structured types; expressions
are instantiated accordingly to include common operations. How-
ever, to ease the presentation, in this section we leave themun-
specified and assume the existence of a functionJ·K, that evalu-
ates an expression in a given memory (a mapping from local and
global variables to values). We give meaning to programs by means
of a small-step semantics, using a frame stack to deal with proce-
dure calls. The small-step semantics relates a deterministic state to
a (sub-)probability distribution over deterministic states (Fig. 3).
Following Paulin and Audebaud [5] formulation, (sub-)probability
distributions over a setX are represented using the continuation
monad

D(X) def
= (X → [0, 1])→ [0, 1] .

The unit and bind operators of the monad, satisfying the usual
properties, are defined as

unit : X → D(X) def
= λx. λf. f x

bind : D(X)→ (X → D(Y ))→ D(Y )
def
= λµ M. λf. µ(λ x. M x f)

A deterministic state is a triple consisting of a command(c : C),
a memory(m :M), and a frame stack(F : list frame). Upon a
call (3rd rule in Fig. 3), a new frame is appended to the stack,con-
taining the destination variable, the return expression ofthe called
procedure, the continuation to the call, and the local memory of the
callee. The state resulting from the call contains the body of the
called procedure, the global part of the memory, a local memory
initialized to map the formal parameters to the value of the actual
parameters just before the call, and the updated stack. Whenreturn-
ing from a call (2nd rule) with a non-empty stack, the top frame is
popped, the return expression is evaluated and the resulting value
is assigned to the destination variable after previously restoring the
local memory of the callee; the continuation taken from the frame
becomes the current command. If the stack is empty when returning
from a call, the execution of the program has terminated and thus
nothing is done except embedding the final state into the monad
using theunit operator.

The one step execution relation defines a semantic function
J·K1 : S → D(S); the continuation monad allows us to compose
this semantic function with itself to obtain ann-step execution
functionJ·Kn:

JSK0
def
= unit S JSKn+1

def
= bind JSKn J·K1
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≈[d=1] ≃d≃d

else S $← {0, 1}η ;

return S

if S ∈ img(L)
then bad← true;

S $← {0, 1}η\L
L← (R, S) :: L

return S

OracleO(R):
if R ∈ dom(L)
then S ← L[R]
else S $← {0, 1}η ;

L← (R, S) :: L

OracleO(R):
if R ∈ dom(L)
then S ← L[R]
else S $← {0, 1}η ;

return S

if S ∈ img(L)
then bad← true
L← (R, S) :: L

GameGPRP:
L← []; d← A()

OracleO(R):
if R ∈ dom(L)
then S ← L[R]
else S $← {0, 1}η\L;

return S
L← (R, S) :: L

GameG′
PRF:

bad← false;
GameG′

PRP:
bad← false;

GameGPRF:

L← []; d← A()

OracleO(R):

L← []; d← A()

...
apply uptobad.
...

L← []; d← A()

if R ∈ dom(L)
then S ← L[R]

Figure 2. Code-based proof of the PRP/PRF switching lemma

(nil, m, ∅)  unit (nil, m, ∅)

(nil, m, (x, e, c, l) :: F )  unit (c, (l, m.glb){x← JeKm}, F )

(x← p(~e); c, m, F )  unit (E(p).body, ({E(p).params← J~eKm}, m.glb), (x,E(p).re, c, m.loc) :: F )

(if e then c1 else c2; c, m, F )  unit (c1; c, m,F ) if JeKm = true

(if e then c1 else c2; c, m, F )  unit (c2; c, m,F ) if JeKm = false

(while e do c; c′, m, F )  unit (c; while e do c; c′, m, F ) if JeKm = true

(while e do c; c′, m, F )  unit (c′, m, F ) if JeKm = false

(x← e; c, m, F )  unit (c, m{x← JeKm}, F )

(x $← [0..e]; c, m, F )  λf.
Pn

i=0
1

1+n
f(c, m{x← i}, F ) wheren = JeKm

(x $← {0, 1}e\eL; c, m, F )  λf.
P

bs∈{0,1}n\L
1

2n−|L|
f(c, m{x← bs}, F ) wheren = JeKm andL = JeLKm

Figure 3. Probabilistic semantics of pWHILE programs

Finally, the denotation of a command in a given initial memory is
defined to be the (limit) distribution of reachable final memories:

JcK m : D(M) def
= λf. sup {J(c, m, ∅)Kn f |final | n ∈ N}

wheref |final :M → [0, 1] is the function that when applied to a
state(c, m, F ) gives f(m) if it is a final state and 0 otherwise.
Since the sequenceJ(c, m, ∅)Kn f |final is increasing and upper
bounded by 1, this least upper bound always exists and corresponds
to the limit of the sequence. As an example, it is left as an exercise
to the reader to verify that the denotation ofx $← [0..1]; y $← [0..1]
in m is

λf. 1
4
(f(m{x, y ← 0, 0}) + f(m{x, y ← 0, 1})

+f(m{x, y ← 1, 0}) + f(m{x, y ← 1, 1}))

Computing probabilities The advantage of using this monadic
semantics is that, if we use an arbitrary function as a continuation to
the denotation of a program, what we get (for free) as a resultis its
expected value w.r.t. the distribution of final memories. Inparticu-
lar, we can compute the probability of an eventA in the distribution
obtained after executing a commandc in an initial memorym by
measuring its characteristic function1A: Prc,m[A] def

= JcK m 1A.
For instance, the probability of the eventx ≤ y after executing the
command above is3

4
.

Probabilistic termination The semantics is sufficiently expres-
sive to characterize different notions of termination. Forinstance,
one can characterize the class of always-terminating—lossless—
programs as the programs satisfying the condition

Lossless(c) def
= ∀m. JcK m 1true = 1

The probability that a given program does not terminate starting
from the initial memorym is 1− JcK m 1true.

In game-based cryptographic proofs we are frequently inter-
ested in notions of asymptotic termination depending on a security
parameterη. To define these notions we have extended our seman-
tics to take into account the cost incurred in executing a program by
extending deterministic states with an extra parameter representing
this cost, i.e. we take distributions overS × N instead of simply
overS .

Definition 2 (Probabilistic polynomial time termination5). A com-
mandc parametrized byη is said to be PPT, denotedPPT(c, η)
if there exists a polynomialπ such that for every polynomially
bounded memorym,

JcK m (λ (m′
, n). if n ≤ π(η) then 1 else 0) = 1

Observe that we cannot simply quantify over every initial memory
in the above definition, because by doing so we will rule out most
programs from the definition—a single instruction operating on a
non-polynomially bounded value may take an exponential time to
execute. Instead, we quantify over every initial memoriesm as-
sociating only polynomially-bounded values to variables (denoted
poly(m,η)).

4. Computational Indistinguishability
In CBT proofs it is usually needed to show that two games are com-
putationally indistinguishable w.r.t. some observable event. This is
expressed by saying that the difference between the probability of
the event occurring in each game is a negligible function of ase-
curity parameterη. Formally, a functionν : N → R is negligible

5 This notion is not what is known as expected PPT, it is strictly stronger.
Nevertheless both definitions are interchangeable in most cryptographic
proofs.
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iff

negl(ν) def
= ∀ c. ∃ nc. ∀ n. n ≥ nc ⇒ |ν(n)| ≤ n

−c

Given an indexed family of memoriesM :N →M, the difference
in the probability of an eventA between two gamesG1 andG2 is
said to be negligible iff

M � G1 ≈A G2
def
= negl(λη. |PrG1,M(η)[A]− PrG2,M(η)[A]|)

Fundamental lemma of game-based proofs A technique very
often used for proving two games indistinguishable is basedon
what cryptographers callfailure events. This technique relies on
a fundamental lemmathat allows to bound the difference in the
probability of a given event in two games: one identifies a failure
event and argues that both games behave identically until this event
occurs. One can then bound the difference in probability of another
event by the probability of occurrence of the failure event in either
game.

Lemma 1 (Fundamental lemma). LetG1 andG2 be two games,A
an event defined onG1, B an event defined onG2 andF an event
defined in both games. IfPrG1,m[A ∧ ¬F ] = PrG2,m[B ∧ ¬F ],
then

|PrG1,m[A]− PrG2,m[B]| ≤ PrGi,m[F ] i = 1, 2

In most code-based proofs, the failure condition is indicated by
setting a global flag variable (usually calledbad) to true. This
specialization allows to define a syntactic criterion for deciding
whether two games behave equivalently up to the raise of the failure
condition: we say that two gamesG1 andG2 are equal up-to-bad
and note ituptobad(G1, G2) whenever they are syntactically equal
up to every point where thebad flag is set totrue and they do not
reset thebad flag tofalse afterward. For instance, gamesG′

PRP and
G′

PRF in Fig. 2 satisfy this condition. We have used this syntactic
criterion to implement in Coq a specialization of the fundamental
lemma for game-based proofs.

Lemma 2 (Fundamental lemma—based on reflection).

∀ G1 G2 A.
uptobad(G1, G2) ∧ Lossless(G1) ∧ Lossless(G2)⇒
|PrG1,m[A]− PrG2,m[A]| ≤ PrGi,m[bad = true] i = 1, 2

To prove that two games are computationally indistinguishable one
can apply this lemma and then show that the probability of the
failure event is negligible in one of the games. The hypotheses in
the lemma may be proved by reflection in the Coq implementation,
since we provide syntactic criteria for provingLossless whenever
it is syntactically provable (this is the case for programs without
loops or recursive functions). Observe that we need to ensure that
the termination behavior of both games is the same after setting
bad to true, requiring both games to beLossless is sufficient but
not necessary.

5. Computational Equivalence
In this section, we present a general notion of program equivalence
for pWHILE programs.

5.1 Probabilistic Relational Hoare Logic (pRHL)

A particular but useful way to prove that the difference in the
probability of occurrence of an eventA in two games is negligible
is to prove that this probability does not change at all, i.e the two
programs are equivalent w.r.t. the eventA:

G1 ≃A G2
def
= ∀m,PrG1,m[A] = PrG2,m[A]

Unfortunately this property is not contextual, the transition between
G1 and G2 is generally a local replacement of a partP by a
part P ′ in the main code or the code of a procedure, andP and

P ′ are not necessarily observationally equivalent, they needonly
to be equivalent in the context where the replacement is done.
However, it is often sufficient to characterize the context where the
replacement is valid by a precondition and a postcondition over the
memories before and after the evaluation of the replaced part.

A judgment⊢ G1 ∼ G2 : Ψ ⇒ Φ in our probabilistic rela-
tional Hoare Logic relates the evaluation of a programG1 to the
evaluation of a programG2. If the two programs are deterministic,
it states that, for any initial memoriesm1 andm2 satisfying the pre-
conditionm1 Ψ m2, if the evaluations ofG1 andG2 starting from
m1 andm2 terminate with final memoriesm′

1 andm′
2 respectively,

thenm′
1 Φ m′

2 holds. So, restricted to deterministic programs, our
equivalence relation corresponds to the Relational Hoare Logic of
Benton [13]. Unfortunately, the probabilistic case is moredifficult
since the semantics maps programs and initial memories to dis-
tributions over memories and thus one needs to consider relations
over distributions instead of simply relations over memories.

Definition 3 (Meaning of pRHL judgments).

• Two functions are equivalent w.r.t. a predicateΦ iff:

f ∼Φ g
def
= ∀m1 m2. m1 Φ m2 ⇒ f(m1) = g(m2) ;

• This notion is extended to distributions as follows:

d1 ∼Φ d2
def
= ∀ f g. f ∼Φ g ⇒ d1 f = d2 g ;

• Two programsG1 and G2 are equivalent w.r.t. a precondition
Ψ and a postconditionΦ iff:

� G1 ∼ G2 : Ψ⇒ Φ
def
=

∀m1 m2. m1 Ψ m2 ⇒ JG1K m1 ∼Φ JG2K m2 .

Using this definition we can derive the system in Fig. 4, correspond-
ing to the inference rules of RHL in [13]. The major difference with
RHL is that pRHL judgments talk about probabilistic programs in-
stead of deterministic ones, and that pre and postconditions are not
restricted to a particular syntax, they can be any relation over mem-
ories expressible in Coq.

The [R-Rand] and [R-Case] rules do not appear in RHL. The
former deals with random assignments, whered1 and d2 stand
for expressions denoting distributions. We require that ina given
memory they evaluate to the same distribution inD(val), and that
the postcondition holds no matter which value in the supportof
the distribution is used to update the memories in each program.
The latter rule permits to do a case analysis on the evaluation of
an arbitrary relation in the initial memories. Together with simple
rules in the spirit of

m1 Ψ′ m2
def
= m1 Ψ m2 ∧ JeKm1 ⊢ c1 ∼ c : Ψ′ ⇒ Φ

⊢ if e then c1 else c2 ∼ c : Ψ′ ⇒ Φ

it subsumes [R-Cond] and allows to derive a judgment showingthe
equivalence of(if e then c1 else c2) and(if ¬e then c2 else c1),
which is otherwise not possible.

Rather than defining the rules for pRHL and proving them
sound w.r.t. the meaning of judgments, we place ourselves ina
semantic setting and derive the rules as lemmas. This allowsto
easily extend the system by deriving extra rules, or even to resort
to the semantic definition if the system reveals insufficient, thus
avoiding completeness issues.

5.2 Mechanizing Equivalence Proofs

Hand building derivations in pRHL to prove program equivalence
is tedious. However, by restricting pre and postconditionsto rela-
tions based on equality over a subset of program variables, proving
equivalence becomes a semi-decidable problem.

To proveG1 ≃A G2 it is sufficient to determine the set of
variablesO on which the eventA depends and find another set
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⊢ E1, nil ∼ E2, nil : Φ⇒ Φ [R-Skip]
⊢ E1, c1 ∼ E2, c2 : Φ⇒ Φ′ ⊢ E1, c

′
1 ∼ E2, c

′
2 : Φ′ ⇒ Φ′′

⊢ E1, c1; c
′
1 ∼ E2, c2; c

′
2 : Φ⇒ Φ′′ [R-Seq]

⊢ E1, x1 ← e1 ∼ E2, x2 ← e2 : (λ m1 m2. (m1{x1 ← Je1Km1}) Φ (m2{x2 ← Je2Km2}))⇒ Φ [R-Ass]

m1 Ψ m2
def
= Jd1Km1 = Jd2Km2 ∧ ∀ v ∈ supp(Jd1Km1). (m1{x1 ← v}) Φ (m2{x2 ← v})

⊢ E1, x1
$← d1 ∼ E2, x2

$← d2 : Ψ⇒ Φ
[R-Rand]

⊢ E1, c1 ∼ E2, c2 : (λ m1 m2. m1 Ψ m2 ∧ Je1Km1 ∧ Je2Km2)⇒ Φ
⊢ E1, c

′
1 ∼ E2, c

′
2 : (λ m1 m2. m1 Ψ m2 ∧ ¬Je1Km1 ∧ ¬Je2Km2)⇒ Φ

⊢ E1, if e1 then c1 else c′1 ∼ E2, if e2 then c2 else c′2 : (λ m1 m2. m1 Ψ m2 ∧ Je1Km1 = Je2Km2)⇒ Φ
[R-Cond]

m1 Φ′ m2
def
= m1 Φ m2 ∧ Je1Km1 = Je2Km2 ⊢ E1, c1 ∼ E2, c2 : (λm1 m2. m1 Φ m2 ∧ Je1Km1 ∧ Je2Km2)⇒ Φ′

⊢ E1, while e1 do c1 ∼ E2, while e2 do c2 : Φ′ ⇒ (λm1 m2. m1 Φ m2 ∧ ¬Je1Km1 ∧ ¬Je2Km2)
[R-Whl]

⊢ G1 ∼ G2 : Ψ′ ⇒ Φ′ ∀m1 m2. m1 Ψ m2 ⇒ m1 Ψ′ m2 ∀m1 m2. m1 Φ′ m2 ⇒ m1 Φ m2

⊢ G1 ∼ G2 : Ψ⇒ Φ
[R-Sub]

⊢ G1 ∼ G2 : Ψ⇒ Φ SYM(Ψ) SYM(Φ)

⊢ G2 ∼ G1 : Ψ⇒ Φ
[R-Sym]

⊢ G1 ∼ G2 : Ψ⇒ Φ ⊢ G2 ∼ G3 : Ψ⇒ Φ PER(Ψ) PER(Φ)

⊢ G1 ∼ G3 : Ψ⇒ Φ
[R-Tr]

⊢ G1 ∼ G2 : (λm1 m2. m1 Ψ m2 ∧m1 Ψ′ m2)⇒ Φ ⊢ G1 ∼ G2 : (λm1 m2. m1 Ψ m2 ∧ ¬(m1 Ψ′ m2))⇒ Φ

⊢ G1 ∼ G2 : Ψ⇒ Φ
[R-Case]

Figure 4. Selection of derived rules for pRHL

I of variables such that the following holds:

� G1 ≃
I
O G2

def
= � G1 ∼ G2 : =I ⇒ =O ,

wherem1 =X m2
def
= ∀ x ∈ X. m1 x = m2 x. Unfortunately

this is too restrictive as showed by the example:

p(w) : if w < 5 then r ← w + x else r ← w; return r
p(w) : return w

main() : x← 0; c

Under the hypothesis that global variablex is equal to 0 at the
beginning of the body ofp, it is easy to prove that both versions
of the procedure are equivalent (use constant propagation on x,
copy propagation and dead code elimination). Therefore, ifthe
codec preserves the invariant(x = 0), one can show that the two
programs are equivalent. To that end, we first define the following
predicate6

m1 =X,ϕ m2
def
= m1 =X m2 ∧ ϕ(m1) ∧ ϕ(m2) ,

and then specialize our equivalence relation as follows

�ϕ G1 ≃
I
O G2

def
= � G1 ∼ G2 : =I,ϕ ⇒ =O,ϕ .

In general, the global invariant is not satisfied by the initial mem-
ories of the games, it is only established after reaching a certain
point in the execution of the programs. To show that the invariant
holds we have implemented in Coq a certified weakest precondition
calculus for probabilistic programs (without loops).

Note that the instantiation of the previous judgment with the
same command (⊢ϕ E1, c ≃

I
O E2, c) is a generalization of the

type system for secure information flow of Volpano and Smith [37].
Given a set of input variablesI , it is semi-decidable to find a set of
output variables for which the previous judgment is sound—it can
be done using a calculus of variable dependencies. The converse
problem is also semi-decidable. We have constructed (partial) func-
tions calledeqobsIn (eqobsOut) that given a setO (I) of output

6 Since we are interested in doing interprocedural optimizations, we con-
sider invariantsϕ depending only on global variables.

(input) variables compute a setI (O) of input (output) variables
which is sufficient to ensure�ϕ E1, c ≃

I
O E2, c holds.

Interprocedural analysis The main difficulty in implementing
the algorithms described in the previous paragraph is due tothe
presence of procedure calls in our language. Each time it crosses a
procedure call, the algorithm should be able to compute the input
(output, resp.) set of variables whose equality is guaranteed by the
call as well as telling whether the call preserves the invariant. With-
out recursive calls, this can be done by a recursive inspection of the
procedure bodies, with the exception of adversaries (whosecode is
unknown). To resolve the problem we assume given a partial func-
tion providing information about the code of the proceduresin both
programs. This function can be seen as an environment in a type
system. The correctness of our algorithms rely on the correctness
of this function. For each procedurep, we store three different kinds
of information about its declaration in both environments:whether
the procedure is lossless, which global variables it does not mod-
ify, and a triple composed of a subsetIl of the formal parameters,
and two setsIp, Op of global variables. The validity of this triple is
semantically expressed as:

∃ Ol. �ϕ E1, E1(p).body ≃
Ip∪Il
Op∪Ol

E2, E2(p).body

∧ JE1(p).reK ∼=Op∪Ol
JE2(p).reK

Loosely speaking, the above formula states that the invariant is
preserved, and that equality overIp andIl is sufficient to guarantee
that both versions ofp return the same value and result in memories
that are equal w.r.t.Op. In Sec. 6 we describe a method for deriving
this information for an unknown adversary from the information of
its oracles.

Transformations based on variable dependencies The eqobsIn
andeqobsOut functions are key stones of a variety of other trans-
formations that we have certified. A transformation that allows to
eliminate a common context when proving two programs equiva-
lent is based on the following rule, which is easily derivable from

7 2007/7/28



rule [R-Seq]:

⊢ϕ E1, c1 ≃
I
I′ E2, c1 ⊢ϕ E1, c3 ≃

O′

O E2, c3

⊢ϕ E1, c2 ≃
I′

O′ E2, c
′
2

⊢ϕ E1, c1; c2; c3 ≃
I
O E2, c1; c

′
2; c3

The main difficulty to apply this rule is to findI ′ andO′. Givenc
andc′, the common contextc1, c3, and setsI ′ andO′ satisfying the
premises can be found automatically. This leads to the simplified
rule:

context(I, c, c′, O) = (I ′, c2, c
′
2, O

′) ⊢ϕ E1, c2 ≃
I′

O′ E2, c
′
2

⊢ϕ E1, c ≃
I
O E2, c

′

where context is a certified algorithm built usingeqobsIn and
eqobsOut. Using the same idea, we have constructed certified
algorithms for removing only a common prefix or suffix.

In many steps in game-based proofs one faces the problem of
proving the equivalence of two games which are syntactically equal
up to code-motion. We have constructed a function testing whether
a sequence of two pieces of code in a program can be swapped.
Using this function we have constructed a certified algorithm that
given two commands, repeatedly hoists common instructionsto
obtain a maximal common prefix, which can then be eliminated
using the previous rule. Its correctness is based on the rule:

⊢ E1, c1 ≃
I1
O1

E2, c1 ⊢ E1, c2 ≃
I2
O2

E2, c2

O1 ∩O2 = ∅ O1 ∩ I2 = ∅ O2 ∩ I1 = ∅
NotModify(Ei, c1, I2∪O2) NotModify(Ei, c2, I1∪O1) i=1, 2

⊢ E1, c1; c2 ≃
I1∪I2
O1∪O2

E2, c2; c1

In the rule above,NotModify(E, c, X) is a predicate expressing
that variables inX are not modified by the commandc in the
environmentE. It is semantically defined as follows:

NotModify(E, c, X) def
=

∀ f m. JE, cK m f = JE, cK m (λ m′.f{X ← m})

For mechanizing the application of the rules, we have implemented
an algorithm computing a sound under approximation of the vari-
ables in a given set that are not modified by a portion of code (this is
done by traversing the code and removing assigned variablesfrom
the set, except for self-assignments).

Our algorithm for performing dead code elimination removes
portions of code that do not affect the output variables consid-
ered, so it actually behaves more like an slicing algorithm,but
performs at the same time other transformations: branch predict-
ing, self-assignment elimination and branch coalescing (replacing
if e then c else c by c). Its correctness relies on the rule

NotModify(E1, c, X) Lossless(E1, c) fv(ϕ) ⊆ X

⊢ϕ E1, c ≃
X
X E2, nil

We have also constructed certified algorithms for inlining proce-
dure calls and performing a simple variant of register allocation.
Together with the optimizations presented in the next paragraph,
this results in a powerful tool for proving program transformations.

Transformations based on program analyses Many of the trans-
formations appearing in game-based cryptographic proofs can be
performed using common compiler optimizations, we have imple-
mented and proved correct in Coq the most common ones: copy
propagation, common subexpression elimination, constantpropa-
gation. As usual, program optimizations are done in two stages:
first, an analysis of the program collects abstract values represent-
ing the compile time approximation of the different expressions
contained in the program; then an optimizer uses this information to
transform the program. All optimizations have been implemented
in a generic way using the module system of Coq. Given an abstract

domainD (a semi-lattice) for the analysis, transfer functions for as-
signment and branching instructions, and an operator transforming
expressions in the language into their optimized versions (using the
result of the analysis), the functor automatically constructs the cer-
tified optimization function

optimize : C → D → C ×D .

When given a commandc and an elementd ∈ D, this function
transformsc into its optimized versionc′ assuming the validity of
d. In addition, it returns an elementd′ ∈ D which is valid after
executingc (or c′) and allows to recursively apply the optimization.

The technique used to prove the correctness of the optimizer
is a mixture of the techniques presented in [29, 14] and [13].For
proving the correctness of an optimization, we first need to express
the validity of the information contained in the analysis domain,
i.e a predicateValid(d, m) expressing the agreement between the
compile time abstract values ind and the runtime memorym. Then,
the correctness of the optimizer is expressed in terms of a pRHL
judgment:

∀d c. let (c′, d′) :=optimize(c, d) in ⊢ E, c ∼ E, c
′ : ≍d ⇒ ≍d′

wherem1 ≍d m2
def
= m1 = m2 ∧ Valid(d, m1). The following

useful rule can be derived:
∀m1 m2. m1 Ψ m2 ⇒ Valid(d, m1)

optimize(c1, d) = (c′1, d
′) ⊢ E1, c

′
1 ∼ E2, c2 : Ψ⇒ Φ

⊢ E1, c1 ∼ E2, c2 : Ψ⇒ Φ

When implementing a classical analysis (not an inter-procedural
analysis), the analysis loses all information about the value of
global variables after a function call. In our context it is important
to keep this information. We do so by reusing the same information
that is used for transformations based on variable dependencies as
presented above.

5.3 Building Automatic Tactics

The meta theory of the Coq theorem prover is based on the Calcu-
lus of Inductive Constructions, a functional programming language
with dependent types. In this type system type programs are com-
pared up toβ-equivalence. In practice, this allows to replace deduc-
tion by computation. The idea is the following, to proveprime(17)
one can first write a programtest dividing its inputn by all num-
bers between2 andn−1, and returningtrue iff no division is exact,
second prove the correctness of the test:

∀n. test(n) = true⇒ prime(n)

Last, to proveprime(17), apply the correctness lemma to 17 and
to a proof of the propositiontest(17) = true. Since test(17)
reduces totrue, the proposition isβ-equivalent to the proposition
true = true which is trivial. This proof technique is called proof
by reflection and has been used for many applications [23, 24,25].
CertiCrypt is strongly based on this proof technique. Most of the
tactics provided to the user boil down to the application of the
correctness lemmas of one or more of the certified algorithmswe
have constructed.

6. Reasoning about Adversaries
The notion of adversary is generally left implicit in cryptographic
proofs. In the literature, most of the time the only condition
imposed to adversaries is that their (expected) running time is
bounded by a polynomial on the security parameter. In some cases,
extra conditions forbidding repeated or malformed queriesto ora-
cles are imposed. In any case, little care is taken to explicitly state
the access rights of adversaries to global variables or to procedures.
However, these issues cannot be ignored if one wants to formally
justify security; for instance, if security relies on a secret shared
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among the oracles using a global variable, any adversary with the
right to access this variable may trivially break security.

Given a set of procedure identifiersO (the procedures that may
be called by the adversary), and sets of global variablesGA (those
that can be read and written by the adversary) andGro (those that
the adversary can only read), we say that an adversaryA is well-
formed in an environmentE if the judgment⊢wf A can be derived
in the type system:

I ⊢ nil :I
I ⊢ i :I ′ I ′ ⊢ c :O

I ⊢ i; c :O
Writable(x) fv(e) ⊆ I

I ⊢ x← e :I ∪ {x}
Writable(x) fv(d) ⊆ I

I ⊢ x $← d :I ∪ {x}
fv(e) ⊆ I I ⊢ ci :Oi i = 1, 2

I ⊢ if e then c1 else c2 :O1∩O2

fv(e) ⊆ I I ⊢ c :I

I ⊢ while e do c :I
fv(~e) ⊆ I Writable(x) o ∈ O

I ⊢ x← o(~e) :I ∪ {x}
GA ∪ Gro ∪AE .params ⊢ AE .body :O fv(AE .re) ⊆ O

⊢wf A

whereWritable(x) def
= Local(x)∨ x ∈ GA, andAE andoE stand

for E(A) andE(o) respectively. The rules above guarantee that
each time a variable is written by the adversary, the adversary has
the right to do so; and that each time a variable is read by the
adversary, it is either a global variable the adversary has the right
to read or a local variable previously initialized. In everyderivable
judgment of the formI ⊢ c :O, it is the case thatI ⊆ O.

In order to apply the mechanized tactics described in the pre-
vious sections in the presence of unknown adversaries, we need to
provide information about the adversaries in the same way aswe
do for other procedures. For oracles, and in the absence of recur-
sive calls, this information can be constructed incrementally and in
an automatic way by reusing the functions presented in Sec. 5.2.
Once the information for the oracles inO is computed, we provide
a function that computes the needed information for a well-formed
adversary (the code of the adversary should be the same in both en-
vironments). This is achieved by taking

T

o∈O NotModify(o)\GA
as the set of variables known to be not modified by the adversary.
In addition, we build a triple(Il, IA, OA) satisfying the specifi-
cation given in Sec. 5. We takeIl as the whole set ofA’s actual
parameters. The needed input global variablesIA should contain
at leastGA ∪ Gro (the adversary may depend on them) as well as
the set of needed input global variables of the oracles that may be
called by the adversary, since the result of the oracle—and thus of
the adversary—may depend on these global variables. In summary,
it suffices to take

IA
def
=

[

o∈O

Io ∪ GA ∪ Gro

Note that, because we make absolutely no assumptions about the
order in which the adversary calls the oracles, for each variable
x ∈ IA, we cannot do better than requiring every oracle to either
not modifyx, or to ensure equality onx after its execution in both
environments. This way, we can guarantee that after an arbitrary
sequence of calls to the oracles, equality overIA is preserved.

When quantifying over an adversaryA in a cryptographic state-
ment, we therefore assume its well-formedness as well as that its
running time is polynomial in the security parameter under the hy-
pothesis that the oracles in the environment are so.

7. A More Elaborated Example: OAEP
The most advanced application ofCertiCrypt is a proof of security
of OAEP, a widely used padding scheme whose history perfectly
illustrates the difficulty in achieving a correct proof. Indeed, it was
initially believed that OAEP wasIND-CCA2 secure [11], but it was

later discovered it was onlyIND-CCA1 secure [35], a weaker se-
curity notion. However, in combination with a well chosen encryp-
tion scheme, it is possible to recoverIND-CCA2 security, as it is
the case for RSA-OAEP [21].

OAEP is parametrized by an encryption scheme whose key gen-
eratorF is also used as key generator forOAEP. This encryption
scheme must act as a permutation. To achieve such a high levelof
security,OAEP adds randomness into the plaintext and uses two
functionsG andH to mask it before applying a non-invertible en-
cryption scheme such as RSA.

We consider the proof thatOAEP is IND-CPA secure in the
random oracle model [10]. In this model, one-way functions are
simulated by oracles that log their responses to previous queries,
and when given a new query answer with a randomly sampled
value. The two functionsG andH used inOAEP are represented
by such random oracles.

In [12] it is shown that, if the probability of inverting a randomly
sampled encryption keyf is negligible, thenOAEP is IND-CPA
secure. This means that, if the underlying encryption primitive used
by OAEP ensures that without knowing the decryption key, one
cannot obtain the whole plaintext given its ciphertext, then using
OAEP it is unfeasible to obtain information even about portions of
the plaintext.

Theorem 1(OAEP semantic security).

∀A A′ M. EOAEP ⊢wf A∧ EOAEP �wf A
′∧

PPT(A, η) ∧ PPT(A′, η)
⇒M ⊢ OAEP0 ≈[d=1] OAEP1

whereM : N→M is a family of polynomially bounded memories
indexed by the security parameterη, andEOAEP is the environment
of the two initial gamesOAEP0 and OAEP1 (not shown in this
paper.)

Proof This proof exemplifies nearly all the game transitions pre-
sented in [12] and is more involved than most proofs appearing
in the literature. The whole proof consists of a main sequence of
nearly 30 transitions, some of them being justified by another se-
quence of transitions of their own. Due to space constraints, we do
not fully present the proof here, but we instead explain in detail
two non-trivial transformations. At some point in the proof, after
introducing a failure event and applying Lemma 2, we become in-
terested in proving that the probability of the event(bad = true)
in a certain gameinit15 is negligible. To prove this, it is conve-
nient to first transform the game into a simpler one, were it iseasier
to bound this probability. Figure 5 illustrates the proof ofthe first
simplifying transition, where we prove the equivalence w.r.t. bad
of the gamesinit15 andinit16. The overall objective of the tran-
sition is to remove(S′,HS

′) from the initialization ofLH in the
main code, and to modify accordingly the code ofH to preserve the
same behavior by returning directlyHS

′ upon a queryS′. In the
justification of this transition most transformations are done in the
oracleH ; we present its various versions in the figure. Although,
thebad flag is only set in theG oracle, we do not present it here be-
cause it remains unmodified in every step of the sequence. Global
variablesS′ andHS

′ correspond to a query and its response, re-
spectively, made to oracleH at the beginning of the game.LH is
a global variable representing a log of the queries made toH and
their corresponding answers, and hence in the two games the value
of LH is not necessarily the same. In particular, if the adversary
never makes a queryS′ to H , the pair(S′,HS

′) will not appear in
LH in gameinit16.

In order to prove the transition, we first introduce an interme-
diate game containing aghostvariableL′

H , representing the vari-
ableLH in (init15, H15). In the second transformation we replace
occurrences ofLH by L′

H using the invariantLH = L′
H . Once
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then r ← LH [S]

LH ← (S, r) :: LH

else r ← HS
′;

then r ← LH [S]
then if S ∈ dom(LH)

return r

else if S ∈ dom(LH )

if S = S′
r $← {0, 1}p;
Oracle H16(S):

else LH ← (S, r) :: LH

Oracle H′
16(S):

if S = S′

else if S ∈ dom(LH)

return r

then if S ∈ dom(LH)
then r ← LH [S]
else r ← HS

′;

then r ← LH [S]
else LH ← (S, r) :: LH ;

L′
H ← (S, r) :: L′

H

LH ← (S, r) :: LH

r $← {0, 1}p;

else LH ← (S, r) :: LH ;

else if S ∈ dom(L′
H)

L′
H ← (S, r) :: L′

H

else LH ← (S, r) :: LH ;

then r ← L′
H [S];

if S /∈ dom(LH)
then LH ← (S, r) :: LH

return r

L′
H ← (S, r) :: L′

H

then r ← L′
H [S]

r $← {0, 1}p;
if S = S′

then if S ∈ dom(L′
H)

Oracle H′′
15(S):

else if S ∈ dom(LH)

if S = S′
r $← {0, 1}p;
Oracle H′

15(S):

L′
H ← (S, r) :: L′

H

else LH ← (S, r) :: LH ;

then r ← LH [S]
else LH ← (S, r) :: LH ;

L′
H ← (S, r) :: L′

H

then r ← LH [S]

return r

then if S ∈ dom(LH)
if S = S′

else if S ∈ dom(LH )

return r

then r ← LH [S]
else LH ← (S, r) :: LH

then r ← LH [S]
else LH ← (S, r) :: LH

r $← {0, 1}p;
Oracle H15(S):

then if S ∈ dom(LH)

ϕ2
def
= LH\S

′ = L′
H\S

′ ∧ L′
H [S′] = HS

′ ∧ (S′ ∈ dom(LH)⇒ LH [S′] = HS
′)ϕ1

def
= LH = L′

H

init′15 init′15 init ′′15 init ′′15 init16init15

H15
≃bad ≃bad

ϕ1

≃bad ≃bad

ϕ2

≃bad H16H′
16H′′

15H′′
15H′

15

... ...

Gameinit15:
bad← false;
(f, f−1)← F(k);
S′ $← {0, 1}k−p;
HS

′ $← {0, 1}p;
LH ← [(S′,HS

′)];
...
(m0, m1)← A(f);
...
d← A′(Y ′)

Gameinit ′15:
bad← false;
(f, f−1)← F(k);
S′ $← {0, 1}k−p;
HS

′ $← {0, 1}p;
LH ← [(S′,HS

′)];
L′

H ← [(S′,HS
′)];

...
(m0, m1)← A(f);
...
d← A′(Y ′) d← A′(Y ′)

Gameinit ′′15:
bad← false;
(f, f−1)← F(k);
S′ $← {0, 1}k−p;
HS

′ $← {0, 1}p;
LH ← [];
L′

H ← [(S′,HS
′)];

...
(m0, m1)← A(f);
...

Gameinit16:
bad← false;
(f, f−1)← F(k);
S′ $← {0, 1}k−p;
HS

′ $← {0, 1}p;
LH ← [];
...
(m0, m1)← A(f);
...
d← A′(Y ′)

dead code.
eqobs in.

dead code.
eqobs in.

dead code.
eqobs in.

Figure 5. The proof of a transition forOAEP

this is done, we are able to modify the initialization ofLH in
(init

′′
15, H

′′
15) while still preserving the overall behavior, since the

output ofH is now independent fromLH . We then prove the in-
variant ϕ2 defined in Fig. 5, which states thatLH andL′

H map
queries to the same values except maybe forS′. This allows us to
replace occurrences ofL′

H by LH and modify oracleH accord-
ingly to preserve its behavior. The purpose of the last transition is
simply tocleanthe game by removing the ghost variableL′

H .
Although we have described inCertiCrypt all the transitions in

the proof ofOAEP semantic security, we have not proved all of
them: two transitions involving interprocedural code-motion tech-
niques not yet implemented inCertiCrypt remain unproved. Nev-
ertheless, we believe that the effort needed to implement them in
CertiCrypt is not significant and we expect to do it soon.

8. Related Work
For clarity, we distinguish between verification tools and methods
for cryptographic proofs, and relevant formalizations that have not
been developed on purpose for cryptographic proofs.

Dedicated tools Most dedicated tools focus on verifying proto-
cols in the symbolic model, there are only a few tools that provide
guarantees w.r.t. the computational model.

CryptoVerif [15] is a dedicated tool developed by Blanchet to
support game-based proofs; it was initially developed for proto-
col verification but was later applied to proofs of cryptographic
schemes, e.g. the unforgeability of the FDH signature scheme as-
suming the existence of one-way permutations [16].CryptoVerif
performs an heuristic-based search on a library of (user-provided

and predefined) transformations to try to generate a sequence of
games for a proof, but gives little attention to whether the transfor-
mations are computationally sound, while our framework relies on
the user to supply the sequence of games but instead put the em-
phasis on verifying that the whole proof is computationallysound.
We believe the two approaches are complementary and can bene-
fit from each other: compilingCryptoVerif sequences of games to
CertiCrypt is an interesting research direction.

Backes and Laud [7] have developed a dedicated tool to me-
chanically analyze protocols in the Backes-Pfitzmann-Waidner
cryptographic library [32, 8] against simulatability-based security
conditions. They use type-based program analyses for a process
algebra inspired from the spi calculus [1] and prove automatically
the correctness of a number of protocols from the literature. One
important difference withCertiCrypt (andCryptoVerif) is that the
tool of Backes and Laud provides a proof of security in a sym-
bolic rather than computational model; however, one can derive a
complexity-theoretical guarantee by appealing to the soundness of
the symbolic model. Similarly, several formalizations [38, 6] of the
symbolic model of BPW cryptographic library have been achieved
in various theorem provers, but without proving computational
soundness.

Methods In addition to the above tools, there are recent propos-
als of formalisms to prove security of cryptographic protocols, so
far lacking tool support. Roy, Datta, Derek and Mitchell [33] have
identified conditions under which trace properties ensure compu-
tational guarantees for secrecy and authentication properties. With
this approach, proofs can be done by induction. The authors report
that their technique is powerful enough to apply it to Kerberos and
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IKE. Corin and den Hartog [19] developed a probabilistic Hoare
logic, which is more expressive than the simple (not relational)
Hoare logic we use to reason about programs, and used it to prove
ElGamal semantic security; no tool support nor further examples
have been presented since then. As said in Sec. 2, their logicby
itself is not sufficient to carry arbitrary code-based proofs.

Machine-checked libraries CertiCrypt relies on diverse mathe-
matical concepts and theories that have been modeled for their own
sake, including probabilities, group theory, polynomials, program-
ming languages semantics, program equivalence, Hoare logics and
generation of verification conditions, and compiler optimizations.
It is not possible to review all the relevant work here, but wefocus
on the most directly related formalizations. The most remarkable,
is the Coq library for representing (sub-)probability distributions of
Paulin-Mohring and Audebaud [5] which we reuse to constructour
framework. Hurd et al. [28] developed a mechanized theory inthe
HOL theorem prover for reasoning about pGCL programs, a prob-
abilistic extension of Dijkstra’s guarded command language pre-
sented in McIver and Morgan [30]. Their work focuses on usinga
weakest (liberal) precondition calculus for proving partial correct-
ness properties expressed as Hoare triples in a probabilistic logic.
Despite having very strong theoretical foundations, the framework
is less appealing for carrying program transformations that require
a relational Hoare logic rather than a standard one.

9. Conclusion and Future work
We have developedCertiCrypt, a fully formalized framework for
machine-checked game-based proofs, and applied it to provethe
PRF/PRP switching lemma, andIND-CPA security ofElGamal
and OAEP encryption schemes. About 6000 lines of Coq in the
development are dedicated to formalize the semantics and deriving
the lemmas corresponding to the rules of pRHL; roughly 10000
lines to defining and proving correct the reflection-based tactics;
about 700 to the proof ofElGamal IND-CPA security; and 5000
lines for the proof of security ofOAEP. It is worth noticing that in
these two last proofs, more than one third of the lines are spent just
in defining the sequence of games. The complete Coq development
is available athttp://www-sop.inria.fr/everest/certicrypt.

CertiCrypt is the most advanced tool of its kind, and consti-
tutes a significant first step towards the completion of Halevi’s pro-
gramme. Nevertheless, numerous research directions remain to be
explored.

Code-based game proofs Our most immediate priority is to en-
hance proof automation: while our framework already provides au-
tomated support for semantics-preserving transformations, and the
fundamental lemma of game-playing, we still need to developau-
tomated tactics to compute the complexity of a program and bound
the probability of an event in a final game. In order to assess the
benefits of the tactics we develop, we intend to machine-check the
proof of an exact bound for the security of 3DES [12].

One of our priorities in makingCertiCrypt more user-friendly
is to add an extensive library of lemmas for proving transforma-
tions based on algebraic properties (e.g. equational theory for cyclic
groups), but also more complex transformations, such as transfor-
mations strongly related to the random oracle model (e.g. those pre-
sented in Sec. 7). For some specific transformations in our frame-
work, we need to introduce intermediate games. We believe that
these games could be constructed automatically in most cases. In
the long term, a (minimalist) interface to ease the writing of games
and their corresponding proofs should be developed. Based on a
user-defined sequence of games, this interface should be able to
automatically generate the skeleton of a proof since the proof of
each transition follows the same schema: build the information for

the procedures in the environments, prove its correctness,and then
prove the transition using automated tactics.

In parallel, we are currently working on integrating arrays
within the framework. Dealing with arrays involves a major tech-
nical hurdle: inference of frame conditions, i.e. the partsof the
memory that are modified by a program, becomes more difficult
to achieve—precise and automated inference of frame conditions
is essential for ensuring an appropriate level of automation. The
extension to arrays, and its application to Halevi and Rogaway’s
tweakable enciphering scheme, are currently under development,
and will be reported elsewhere.

Computational soundness of symbolic cryptography The focus
of our work is to use a general purpose proof assistant to verify
cryptographic proofs in the computational model. Alternatively,
one can develop dedicated tools to perform proofs automatically;
to the exception ofCryptoVerif, such tools operate on the sym-
bolic model, that abstracts from the computational model byas-
suming perfect cryptography, i.e. in the case of encryption, that it
is not possible to extract a plaintext from a ciphertext without the
decryption key. The symbolic model disposes of effective decision
procedures to reason about protocols, and has been proven sound
w.r.t. the computational model under the assumption that the cryp-
tographic primitives are sufficiently secure. A last objective for fu-
ture work is to machine-check soundness proofs, both because they
are complex and error-prone, and also because a machine-checked
soundness proof could be used in conjunction with a reflective im-
plementation of decision procedures at the symbolic level to gen-
erate correctness proofs of protocols in the computationalmodel.
A first step in this direction has been taken recently by Corin[18],
who provides a machine-checked proof in Coq of the soundness
result in the seminal work of Abadi and Rogaway [2].

Language-based security Language based security is an active
field of research that attempts to achieve security and counter
application-level attacks at the level of programming languages.
Language-based security advocates a rigorous definition ofthe se-
curity goal based on the semantics of programs, and commonly
focuses on non-interference [34], an information flow property that
guarantees the absence of illicit information leakage through pro-
gram execution. A common means to enforce non-interferenceis
through an information flow type system, and many such systems
have been developed for complex calculi and languages. However,
non-interference is too strong a requirement in practice, as many
applications intentionally release information. Computational lan-
guage based security is an extension of language based security that
studies information flow properties in presence of cryptographic
primitives and reconciles programming language security with the
computational model used by cryptographers. Its focus is compu-
tational non-interference, a generalization of non-interference that
allows to leak secret sensitive data after it has been encrypted, pro-
vided the underlying encryption scheme is secure. As with non-
interference, type systems are the prominent means to enforce
computational information flow. We believe that our framework
is sufficiently rich to yield machine-checked proofs of soundness
for the information flow type system of Smith and Alpı́zar [3].
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