Submitted for publication

Formal Certification of Code-Based Cryptographic Proofs

Gilles Barthe Benjamin Grégoire
INRIA Sophia Antipolis - Méditerranée, France

Romain Janvier

Santiagoefla Béguelin

MicrosBfesearch - INRIA Joint Centre, France

{Gilles.Barthe,Benjamin.Gregoire, Romain.Janvier,Santiago.Zanella}@sophia.inria.fr

Abstract

As cryptographic proofs have become essentially unveljab
cryptographers have argued in favor of systematicallyctiiring
proofs as sequences of games. Code-based techniques fanm an
stance of this approach that takes a code-centric view ofegam
and that relies on programming language theory to justiépst
in the proof—transitions between games. While these teciesi
contribute to increase confidence in the security of cryatplic
systems, code-based proofs involve such a large palettnoépts
from different fields that machine-verified proofs seem seagy to
achieve the highest degree of confidence. Indeed, Halewtdras
vincingly argued that a tool assisting in the constructind eerifi-
cation of proofs is necessary to solve the crisis with crgpphic
proofs. This article reports a first step towards the corigieof
Halevi's programme through the implementation of a fullynial-
ized framework for code-based proofs built on top of the Cagpp
assistant. The framework has been used to yield machinsketie
proofs of the PRP/PRF switching lemma and semantic seaofrity
ElGamal andOAEP encryption schemes.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages Processors-Sompilers, Optimization F.3.1 [Logics and
Meanings of Progranis Specifying and Verifying and Reason-
ing about Programs-tegics of programs, Mechanical verification,
Pre- and post-conditions F.3.2 |Logics and Meanings of Pro-
gramg: Semantics of Programming LanguageBenotational se-
mantics, Program analysis

General Terms Languages, Security, Verification.

Keywords game-based cryptographic proofs, compiler transfor-
mations and optimizations, relational Hoare logic, the @oapf
assistant.

1. Introduction

Provable security, whose origins can be traced back to threpr-
ing work of Goldwasser and Micali[22], advocates a mathésaht
approach based on complexity theory in which the goals and re
quirements of cryptosystems are specified precisely, araenthe
security proof is carried rigorously and makes all undedyas-
sumptions explicit. In a typical provable security settinge rea-
sons about effective adversaries, modeled as arbitrabapiiistic
polynomial-time Turing machines, and about their probgbibf
thwarting a security objective, e.g. secrecy; in generalygble se-
curity statements do not refer directly to the probabilitpf the
adversary breaking security, but to its advantdge = |p — p|
over ablind, uninformed adversary. Typically,can be easily com-
puted and by providing an upper bound farone also provides
an upper bound foAdv. In a similar fashion, security assumptions

Please do not distribute this paper directly, but refer eidsto the webpage
http://www-sop.inria.fr/everest/certicrypt where the latest version can
be obtained.]

about cryptographic primitives bound the probability ofypmmial
algorithms to solve difficult problems, e.g. computing déte log-
arithms. The security proof is performed by reduction bywsihg
that the existence of an effective adversary with a certdaatage
in breaking security implies the existence of an effectigodathm
contradicting the security assumptions. Many securitpfgrestab-
lish an asymptotic behavior for the adversaries, and shaivtke
advantage of any effective adversary is negligible w.rdeeurity
parameter, typically the length of keys or messages.

Although the adoption of provable security has significantl
enhanced confidence in cryptographic systems, the crygtbar
community is increasingly wary about security proofs: savpub-
lished proofs have been found incorrect. Even for such hasic
sults as the PRP/PRF switching lemma, subtle errors in piuie
made their way into publication512].

The game-playing technique is a general method to structure
and unify cryptographic proofs, thus making them less eprone.
Its central idea is to view the interaction between an advgrand
the cryptosystem as a game, and to study game transforrmation
that preserve security. In a typical game-based proof, onsiders
transitions of the forn@i —" G’. Denoting byp andp’ the winning
probability of the adversary in gamés and G’ respectively, we
requireh to be a monotonic function preserving negligibility and
such thap < h(p'). By successively refining the initial gani&, to
be analyzed into an ideal gamig, where one can provide a bound
for the probabilityp,,,

h h
Go =" G1— - =" Gy,

one can obtain an upper bound fay, namelypy < h(p»), for
h = hyo---ohy,, and conclude that the advantalydvo = |po —p|
of the adversary in the initial game is negligible providémrhtt
|h(pn) — Pl is negligible.

The game-playing technique is widely applicable, it supgpor
reasoning in both the standard and the random oracle model of
cryptography and has been extensively used for provingrisgcu
properties of a variety of schemes and protocols. Codedh@eh-
niques CBT) is an instance of the game-playing technique that
has been used successfully to verify state-of-the-arttagypphic
schemes, see e.@.]12]; its distinguishing feature is te takode-
centric view of games, security hypotheses and computition
assumptions, that are expressed using (probabilisticeratpe,
polynomial-time) programs. Under this view, game transi@r
tions become program transformations, and can be justified-r
ously by semantic means; for instance, many transformstam
be viewed as common program optimizations (e.g. constamt-pr
agation, common subexpression elimination), and arefipstby
proving that the original and transformed programs arevedgt
w.r.t. indistinguishability. AlthoughtCBT proofs are easier to ver-
ify and are more easily amenable to machine-checking, tleey g
far beyond established theories of program equivalenceeand
hibit a surprisingly rich and broad set of reasoning pritesghat
draws from program verification, algebraic reasoning, amia-

2007/7/28

http://www-sop.inria.fr/everest/certicrypt

bility and complexity theory. Thus, despite the beneficitééa of
their underlying frameworkCBT proofs remain inherently diffi-
cult to verify. In an inspiring paper, Hale\i [26] argues ttfarmal
verification techniques are mandatory to improve trust imga
based proofs, going as far as describing an interface tolddoo
computer-assisted code-based proofs. To the best of owrlkno
edge, however, there is no tool currently available thattetee
needs of cryptographers.

This article describe<ertiCrypt, a framework to construct
machine-checked code-based proofs in the Coq proof astSH.
CertiCrypt achieves many important goals of Halevi's ideal tool.
At the same time, it brings a formal semanticist perspedaiivéhe
design of the tool, and builds upon ideas of FoundationadRear-
rying Code [[4] to achieve the highest guarantees with thdlssta
trusted base. The main characteristicEeftiCrypt are:

Direct and faithful encoding of code-based techniquiesrder to
take advantage of the generality of t8T approach and to
be readily accessible to cryptographers, we have chosen a fo

code-based techniques, but nonetheless nicely illustnatey as-
pects of our work. The third example is far more challengary
involves a large number of transitions as well as some ae¢hnc
game-based techniques that have not been formally jushiéifete.
The justification of some steps in the proof relies on prograsari-
ants which are proved using program verification technigtes
this purpose we have built a Hoare logic and an executabl&egea
precondition calculus foCertiCrypt underlying language. Other
steps in the proof involve properties that are universallgirdified
over all well-formed adversaries. We have therefore matipte-
cisely the notion of well-formedness, which is very ofteft Ien-
plicit in cryptographic proofs, and derived an inductionnpiple
that allows to reason about an unspecified well-formed adwer

2. Basic Examples

The aim of this section is to illustrate the principles@rtiCrypt
on two basic examples of game-based proofs: the PRP/PR&hswit
ing lemma and semantic security ®fGamal encryption. Descrip-

malism that is commonly used by cryptographers to describe tion of the internals oCertiCrypt is deferred to later sections.

games. Concretely, the lowest layer@dtiCrypt is a deep em-
bedding in Coq of an imperative programming language with
random assignments, structured datatypes, and procealise ¢

2.1 The ElGamal Encryption Scheme
ElGamal [20] is a widely used asymmetric encryption scheme, and

The language semantics takes into account non-standard feaan emblematic example of game-based proofs. The proof of its

tures such as complexity of programs, variable usage amd cal
ing policies, that are of paramount importance in cryptpgia
proofs. In additionCertiCrypt provides a library for expressing
common security properties, such as indistinguishahiiitgter
chosen plain-text attack&\D-CPA) for encryption primitives,
and computational hypotheses, such as the Decisional Diffie
Hellmann DDH) assumption.

Support for automated proofé\utomating proof steps is neces-
sary to ensure an efficient use of any formal tool. We havether
fore developed tactics for the most common transformations
all tactics are certified, in the sense that they are proved co
rect with respect to the operational semantics. Transfboms
fall into three main categories; 1) semantics preservigagstfor-
mations, including compiler optimizations such as deacdecod
elimination, code motion, constant propagation and common
subexpression elimination; 2) transformations based dis-in
tinguishability, i.e. a change that cannot be detected avitbn-
negligible probability; and 3) transformations based dlufa
events, where both games behave identically unless arertai
failure occurs, and it is shown that this failure occurs with neg-
ligible probability.

Complete and independently verifiable prodfertiCrypt bene-
fits from being developed on top of the Coq proof assistant to
go beyond Halevi's vision in two respects. First, it suppdhte
construction of full proofs, whereas Halevi mostly focuses
their “mundane parts”. Second, it permits independentfiveri
ability of proofs by third parties, which is an important riaot
vation behind game-based proofs. Regarding full proGés;
tiCrypt requires that all (complexity-theoretic, group-theargti
probabilistic) side conditions to apply transformatioms jus-
tified within Coq, and also enablesl hocreasoning, e.g. to

semantic security is very direct, see elg.[36], but stilbedies
the most common techniques that arise in more complex proofs

ElGamal inner workings ElGamal is a probabilistic public-key
encryption scheme whose security relies on the assumptian t
computing discrete logarithms in certain cyclic groups isaad
problem. Given a cyclic group of order+ 1 generated by, to
generate a new key pair one uniformly samples an integar
the interval[0..¢] and takest as the private key and = ¢ as
the public one. The ciphertext for a given plaintext(an element
of the group) is(8 = ¢¥,¢ = &Y x m) wherey is uniformly
sampled in[0..q]. Using the secret key it is easy to recover the
plaintext from a ciphertext3, ¢) by computingm = { x 7. As
an encryption schem&|Gamal is composed of three algorithms:

e The key generatoKG() &' 2 & [0..¢]; return (z,¢%)

e The encryption algorithm
Enc(a,m) £ y & [0..q]; return (¢¥, ¥ x m)

e The decryption algorithDec(z, 3, ¢) %' return ¢ x 7.

Semantic security of EIGamal Fig.[l presents a high level view
of the proof thatElGamal is semantically secure (equivalently,
IND-CPA secure) under the Decisional Diffie-HellmdbH) as-
sumption. The objective is to prove that it is impossible &ing
significant information about a plaintext given only a cepend-
ing ciphertext and the public key. This is formally expresasing
two gamel} ElGamal, andElGamal,. Each game begins by gen-
erating a fresh public key, which is given to a probabiligiay-
nomially bounded algorithmA that outputs a pair of messages
(mo, m1). Depending on the game, eithery or m1 is encrypted
and the resulting ciphertext is given to another probatilisoly-
nomially bounded algorithfhA’ which tries to guess which mes-

conclude the proof in case of a sequence of games that endssage has been encrypted by outputting a singlelbitf d = 1,

in a non-trivial game[[27]. Regarding verifiabilitZertiCrypt
inherits from Coq its ability to provide certificates, or pf@b-
jects, that are automatically verifiable with a small trdstere,
namely the type-checker of Coq.

We have appliedCertiCrypt to machine-check three famous ex-
amples of code-based proofs: the PRP/PRF switching lemmha an
semantic security of thElGamal andOAEP encryption schemes.
The first and second examples are basic applications of tie ma

the guess isni, otherwisemq. We say thatlGamal is semanti-
cally secure iff for any pair of adversarie$, A’, the difference

1IND-CPA security can also be described using only one game; both
descriptions are evenly used in the literature. We find thatdescription
using two games eases the presentation.

2Both adversaries are allowed to share state via globalblagaand can
thus be regarded as a single adversary (structuring gamtbssinvay is
common in game-based proofs.)

2007/7/28

GameElGamalg:

z & [0..q);y & [0..q];
(mo, m1) — A(g%);
¢ < g*¥ x mo;

d— A'(g*,9Y,¢)

GameElGamal;:

z & [0..q);y & [0..q];
(mo, m1) — A(g®);
¢ — g™ xm;

d— A'(g*,9Y,¢)

- simplify.
—d inline.

=~d
Adversary Bo(a, 8,5): | GameDDHo: GameDDHy: Adversary Bi(«, 3,9):
(mo, m1) — A(a); z & [0..q); z & [0..q; (mo, m1) — A(a);
¢ «— 8§ X mo; y & [0..¢; y & [0..¢; ¢ — & xmy;
d — A(e, B,C) d — B(g*,9%,9%Y) d—B(g%,9%,9"Y) | d — A'(a,B,0)
return d’ s N return d’
apply DDH.
Rla=1]" | apply BO_PPT || T TRy
Adversary Bo(a, 3,5): | GameDDH;: \2pply B1-PPT. J GameDDH;: Adversary Bi(«, 8, 9):
(mo,m1) «— A(a); z & [0..q]; z & [0..q]; (mo,m1) «— A(a);
¢ — 8§ X mog; y & [0..¢; o 1if N y & [0..¢; ¢ — 6§ xmq;
d — A'(a, 8,0) z & [0..q; SimpIily. z & [0..q]; d — A, B,)
return d’ d < B(g%,9Y,9%) :wriilf d— B(9%,9Y,9%) return d’
implify.
) \\inline.) ~d

GameEIGamal}: GameElGamali:

z & [0..q;y & [0..q]; . N z & [0..q);y & [0..q];

(mo,m1) — A(g®); simplify-head 3. (mo,m1) < A(g®);

z & [0..q]; ¢ < g% X mo; 51mp11fy_ta11: z & [0..q]; ¢ «— g% x mu;

\ @pply mult_uniform.)

d— A'(g%,9%.¢)

d—A(g%,9".¢)

4

~

—d

X

~

—d

Lemma BO_PPT :
Proof ...

PPT BO. j

GameElIGamal?:

z & [0..q];y & [0..q];
(mo, m1) — A(g”);
z & [0..q]; ¢ «— g%
d— A'(g%,9",¢)

Lemma B1_PPT :
Proof ...

PPT Bl.j

Figure 1. Game-based proof &lGamal semantic security

in the probability of outputtingl = 1 (equivalently,d # 1) in
either game is a negligibly function of the security parasrit
ElGamalp ~[4—1] EIGamal;.

The security ofElGamal relies on theDDH assumption[[17],
which states that it is hard to distinguish between tripleshe
form (¢”, g%, ¢*¥) and(¢®, ¢¥, %) wherex, y andz are uniformly
sampled if0..qg]. In our settingDDH is formulated more precisely,
stating that for any polynomial adversafy DDHo ~[4—1) DDHy
(DDHp andDDH; are defined in Fidld1).

Proof The proofis done by showing that both initial games are in-
distinguishable from a third one, namdiyGamals. ForElGamalg
this is achieved using the following sequence of transfoiona:

ElGamaly ~4 DDHp ~[q—1; DDH; ~4 EIGamaI(l) ~, ElGamal®

The transition fromElGamal, to ElGamalj is justified by a re-
duction to theDDH assumption. The transition fromElGamalg

to ElGamal? makes use of an algebraic property of cyclic groups:
when multiplying a uniformly distributed element of the gpoby
another element, the result is uniformly distributed. Efamal;

the sequence of transformations is completely symmetric.

In order to do the reduction to tHeDH assumption it is nec-
essary to construct an adversay such that the distribution of
the value ofd after running game®DH, and ElGamalp is ex-
actly the same (and similarly f@DH; andElGamal}). This is de-
noted byElGamaly ~; DDH, and is proved by applying semantics
preserving transformations using the following tactichanplify,

3The security parameter, implicit in this presentation edeines a cyclic
group of orderg with generatory by indexing a family of groups where the
DDH problem is believed intractable.

that removes common context in both gamssp, that hoists in-
structions when possible in order to obtain a common prefig, a
inline, that inlines a procedure call and optimizes the resulting
code by performing dead code elimination and copy propagati
To justify the reduction we must also prove that the adveréar

is polynomially bounded assuming so afleand . A’. This is eas-

ily done sinceB, is just alinear extension of4 and A’. Then, by
appealing to the assumptiddDH, ~[4—;; DDH; and the tran-
sitivity of the ~[4—4; relation we conclude thdlGamaly ~[g—1
ElGamal.

In the last transition, we eliminate the common context & th
two games with the exception of the instructien& [0..¢], and
then make use of the algebraic property mentioned aboveot@ pr
thatz & [0..¢]; ¢ <« ¢g° x mp andz & [0..¢]; ¢ < ¢* induce
the same distribution og, obtainingElGamal$ ~4 EIGamal®. To-
gether with the result of the previous paragraph, this altmcon-
clude thatElGamalp ~[q—1] ElGamal?, and by a completely sym-
metric argument thaElGamaly ~[4— ElGamal?, thus proving
the desired result.

Comparison with other works ElGamal is a standard example for
security proofs, and has been used by several authors tateli
their work. We briefly comment on three proofs that are clpsel
related to ours. The most recent, and closely related isradier
ization in Coq of a game-based proof BiiGamal semantic secu-
rity by Nowak [31]. While we opt for a deep embedding, Nowak
uses a shallow one, modeling adversaries directly as Catjifuns.
This implies that the resulting framework can only proviiheited
support for proof automation: because there is no specighgy
for writing games, mechanizing syntactic transformatioesomes
very difficult. All in all, the resulting proof is elegant bignores

2007/7/28

complexity issuell.An earlier work by Barthe, Cederquist and Tar-
ento [9] provides a formal proof of security of (signeelGamal

in Coq. The proof is not completely formalized, only the “fmet
matical” arguments are proved. Moreover the proof reliesleal-
ized models (generic model and random oracle model) whée th
proof presented here is done in the standard model of cryptog
raphy. Corin and den Harto@ [119] developed a Hoare-styl®fpro
system for game-based cryptographic proofs. The form&hamot
sufficiently powerful to express precisely the security lgpao-
tions such as negligible advantage or effective adversagynat
modeled. Moreover, there is currently no computer assistéor
reasoning using this logic.

2.2 The PRP/PRF Switching Lemma

In cryptographic proofs, particularly those dealing witlodkci-
phers, it is often convenient to replace a pseudo-randomyser

tation (PRP) by a pseudo-random function (PRF). The PRP/PRF

switching lemma states that it is indeed justified to do swueh r
placement in a game without significantly changing the athgm
of a polynomial adversary. The intuition is that the proligbof

a game outputting a given value is the same if a PRP is replaced

by a PRF but no collisions are observed, but as explaineédZh [1
the proof is not trivial. Nonetheless, using Lemfla 2 pressii
Sec[#, the proof can be easily doneCiertiCrypt (see Fig[P for a
high level view of the proof). The goal is to prove that thdeliénce

in the probability that an adversary output&hen given oracle ac-
cess to a PRP and when given oracle access to a PRF is negligibl
This statement is encoded @ertiCrypt asGprp ~[4—1] GPRF

(these games are defined in Hi§j. 2), and proved by means of the

sequence of games:
Gprp ~4 Gprp ~4=1] Gprr ~a GPRF

The first and last transitions in the sequence are semaméssiy-
ing transformations used to reformulate the statementarfdim
required to apply Lemmi@ 2. For doing so, we introduce a viiab
bad that is set tarue whenever a collision is found i6's g, and
we reformulateGprp accordingly to be syntactically equal until
bad is set. Then, by applying Lemnlih 2 and proving that the prob-
ability thatbad is set totrue is negligible, we can conclude. It is
important to note that, iQertiCrypt, we explicitly distinguish the
global variables that can be accessed by the adversaryasutie
security parametey, that can be read but not written, and the global
variables that it cannot even read, such as the associ&tan or
the variablebad, while this is usually left unspecified in the litera-
ture.

3. The pWHILE Language

To define games we use a probabilistic imperative language wi
procedure calls; all probabilistic features are encapsdla a set
BZ of basic instructions, which is left unspecified in largetpair
the development. We assume given a)eif variable identifiers,
a partition g, Vioc) Of V of identifiers for global and local
variables respectively, a sét of procedure identifiers, and a set

In the rest of this paper the metavariablesc; range overC;

x, x; overV; e, e; over&; andp, p; over P. Since sequencing
is associative we reuse the notation c. for denoting also the
sequence of two commands. To the purpose of this presamtatio
we instantiate the set of basic instructidsig as follows:

BT V—£& deterministic assignment

V& 0.£] uniform sampling (integer interval)
VY & {0,1}¥\& uniform sampling (bitstrings)

In the following, = & {0,1}° will be used as a shorthand for
z & {0,1}°\0.

Definition 1 (Program) A program consists of a command and an
environment, which maps a procedure identifier to its dextlan,
consisting of its formal parameters, its body, and a retuxpres-
sion (we use an explicketurn when specifying games, though),

decl & {params : list Vioc; body: C; re: E} .

In the the remainder of this section we assume the existdrme o
implicit environmentt.

In the actual development we instantiate values in the lagguo
include booleans, bitstrings, natural numbers, and gréements

as base types and pairs and lists as structured types; sxmes
are instantiated accordingly to include common operatibtsv-
ever, to ease the presentation, in this section we leave them
specified and assume the existence of a funcfifpnthat evalu-
ates an expression in a given memory (a mapping from local and
global variables to values). We give meaning to programs égma

of a small-step semantics, using a frame stack to deal wibepr
dure calls. The small-step semantics relates a deterigistste to

a (sub-)probability distribution over deterministic smt(Fig.[B).
Following Paulin and Audebaufl[5] formulation, (sub-)pabbity
distributions over a seX are represented using the continuation
monad

def

D(X) = (X —[0,1]) —[0,1] .
The unit and bind operators of the monad, satisfying the usual
properties, are defined as
X - D(X) ©xz. A\ fa
i D(X)— (X —-DY)) - DY)
= MMM u(Az. Mz f)

unit
bind

A deterministic state is a triple consisting of a comménd C),
a memory(m : M), and a frame stackF : list frame). Upon a
call (3rd rule in Fig[B), a new frame is appended to the steck;
taining the destination variable, the return expressiothefcalled
procedure, the continuation to the call, and the local mgrabthe
callee. The state resulting from the call contains the bddthe
called procedure, the global part of the memory, a local nigmo
initialized to map the formal parameters to the value of tbieia
parameters just before the call, and the updated stack. Véham-
ing from a call (2nd rule) with a non-empty stack, the top feais
popped, the return expression is evaluated and the reguitine

& of expressions. We define inductively the set of commands by is assigned to the destination variable after previoustoreng the

the following clauses:

T == BI basic instruction
| ifEthenCelseC conditional
| while&doC while loop
| V<PE,...,E) procedure call
C == nil nop
| ZI; C sequence

4See[[TB] for preliminary treatment of complexity in a shalembedding
setting.

local memory of the callee; the continuation taken from tizenfe
becomes the current command. If the stack is empty whemiatur
from a call, the execution of the program has terminated hod t
nothing is done except embedding the final state into the thona
using theunit operator.

The one step execution relatien defines a semantic function
[T : S — D(S); the continuation monad allows us to compose
this semantic function with itself to obtain amstep execution
function[-]»:

[5To

def

= unit S [STn+1 &' bind [ST» [H]l

2007/7/28

GameGpRrp: GameGPRP GameGPRF GameGpRrF:
L—];d— A(bad « false; bad < false; L—1]);d«—A(
— [l d = AQ L—1[; d—AQ
Oracle O(R): Oracle O(R): Oracle O(R): Oracle O(R):
if R € dom(L) ~q | if R € dom(L) Rld=1] if R € dom(L) ~¢ | if R € dom(L)
then S — L[R] then S — L[R] then S — L[R] then S «— L[R]
else S & {0,1}"\L; else S & {0,1}"7; else S & {0,1}"7; else S & {0,1}7;
L~ (R,S):L if S € img(L) if S € img(L) L—(R,S)::L
return S then bad « true; then bad « true return S
S & {0,1}"\L L—(R,S)::L
— (R,S):: L apply uptobad. return S
return S .-

Figure 2. Code-based proof of the PRP/PRF switching lemma

(nil,m, @) ~ unit (nil, m,0)
(nil,m, (z,e,¢,1) :: F) ~> unit (¢, (I,m.glb){z < [e]m}, F)
(z — p(€); ¢,m, F) ~ unit (E(p).body, ({E(p).params «— [é]m}, m.glb), (z, E(p).re,c, m.loc) :: F)
(if e then ¢ else c2; ¢,m, F) ~~ unit (c1; ¢,m, F) if [e]m = true
(if e then ¢y else c2; ¢,m, F) ~~ unit (c2; ¢,m, F) if [e]m = false
(whileedo¢; ¢,m,F) ~~ unit (c, while edo ¢; ¢/, m, F) if [e]Jm = true
(whileedoc; ¢/, m, F) ~ unit(¢,m,F) if [e]m = false
(x —e; ¢,;m, F) ~ unit (¢, m{z — [eJm}, F)
(z & [0.e]; ¢,;m, F) ~ M. Y0 75 fle,;m{z — i}, F) wheren = [e]m
(& {0,1}\ew; e;m,) ~ Ao 300 cronynn ﬁf(q m{x «— bs}, F) wheren = [e]m andL = [eL]m

Figure 3. Probabilistic semantics of pWLE programs

Finally, the denotation of a command in a given initial meynisr
defined to be the (limit) distribution of reachable final meias:

[e] m : DM) E' Af. sup {[(c;m, 0)]n flinat | 7 € N}

where f|fina : M — [0, 1] is the function that when applied to a
state(c, m, F') gives f(m) if it is a final state and O otherwise.
Since the sequencf{(c,m,0)]. flana iS increasing and upper
bounded by 1, this least upper bound always exists and pames
to the limit of the sequence. As an example, it is left as amase
to the reader to verify that the denotatiorofs- [0..1]; y & [0..1]
inm s

A (f(m{z,y < 0,0}) + f(m{z,y < 0,1})

+f(m{z,y —1,0}) + f(m{z,y — 1,1}))

Computing probabilities The advantage of using this monadic
semantics is that, if we use an arbitrary function as a caoation to
the denotation of a program, what we get (for free) as a résitft
expected value w.r.t. the distribution of final memoriespémticu-
lar, we can compute the probability of an evenin the distribution
obtained after executing a commanéh an initial memorym by
measuring its characteristic functi@n: Pr. . [A] % [¢] m 1a.
For instance, the probability of the event y after executing the
command above i§.

Probabilistic termination The semantics is sufficiently expres-
sive to characterize different notions of termination. Fstance,
one can characterize the class of always-terminatilogstess—
programs as the programs satisfying the condition

Lossless(c) %'V m. [¢] m Liue = 1

The probability that a given program does not terminatetintar
from the initial memorym is 1 — [¢] m Lirge.

In game-based cryptographic proofs we are frequently -inter
ested in notions of asymptotic termination depending orcargy
parameter,. To define these notions we have extended our seman-
tics to take into account the cost incurred in executing giaim by
extending deterministic states with an extra parameteesgmting
this cost, i.e. we take distributions ov8rx N instead of simply
overS.

Definition 2 (Probabilistic polynomial time terminatifn A com-
mandc parametrized by, is said to be PPT, denotedPT (¢,)

if there exists a polynomiak such that for every polynomially
bounded memory.,

[e] m (A (m/,n). if n < 7(n) then 1 else 0) = 1

Observe that we cannot simply quantify over every initiahmoey
in the above definition, because by doing so we will rule ousimo
programs from the definition—a single instruction opergtom a
non-polynomially bounded value may take an exponentiag tim
execute. Instead, we quantify over every initial memoriess-
sociating only polynomially-bounded values to variablésnoted

poly(m, n)).

4. Computational Indistinguishability

In CBT proofs itis usually needed to show that two games are com-
putationally indistinguishable w.r.t. some observablergvThis is
expressed by saying that the difference between the pidpaidi

the event occurring in each game is a negligible function séa
curity parameter). Formally, a functionv : N — R is negligible

5This notion is not what is known as expected PPT, it is sjristronger.
Nevertheless both definitions are interchangeable in mysitagraphic
proofs.

2007/7/28

iff
negl(v) £ Ve 3ne.Vn.n>ne= |vn) <n°

Given an indexed family of memorie® : N — M, the difference
in the probability of an eventl between two game§'; andGs is
said to be negligible iff

ME G1 A Gz def negl()\n. |P1"G1’A4(,])[A] — PI‘Gsz(,])[A]l)

Fundamental lemma of game-based proofs A technique very
often used for proving two games indistinguishable is based
what cryptographers cafhilure events This technique relies on
a fundamental lemméhat allows to bound the difference in the
probability of a given event in two games: one identifies &ufai
event and argues that both games behave identically uistiétent
occurs. One can then bound the difference in probabilitynoffaer
event by the probability of occurrence of the failure evengither
game.

Lemma 1 (Fundamental lemma)Let G, and G2 be two gamesd
an event defined of1, B an event defined ofz and F' an event
defined in both games. Prg, ,m[A A =F] = Pra,,m[B A ~F],
then

[Pra, ,m[A] — Pra,,m[B]| < Pra, m[F] 1=1,2

In most code-based proofs, the failure condition is indidaby
setting a global flag variable (usually callédd) to true. This
specialization allows to define a syntactic criterion focideng
whether two games behave equivalently up to the raise othed
condition: we say that two gamés; andG» are equal up-to-bad
and note iuptobad(G1, G2) whenever they are syntactically equal
up to every point where thigad flag is set totrue and they do not
reset thebad flag tofalse afterward. For instance, gam@$ g and
Gprr in Fig.[d satisfy this condition. We have used this syntactic
criterion to implement in Coq a specialization of the funeztal
lemma for game-based proofs.

Lemma 2 (Fundamental lemma—based on reflection)

VG Ga A.
uptobad(G1,G2) A Lossless(G1) A Lossless(G2) =
|[Pra,,m[A] — Pra,,m[A]| < Prg,,mlbad = true] i=1,2

To prove that two games are computationally indistinguittane
can apply this lemma and then show that the probability of the
failure event is negligible in one of the games. The hypahes

the lemma may be proved by reflection in the Coq implementatio
since we provide syntactic criteria for provihgssless whenever

it is syntactically provable (this is the case for progranithaut
loops or recursive functions). Observe that we need to erthait

the termination behavior of both games is the same afteingett
bad to true, requiring both games to heossless is sufficient but
not necessary.

5. Computational Equivalence

In this section, we present a general notion of program edgrice
for pWHILE programs.

5.1 Probabilistic Relational Hoare Logic (pRHL)

A particular but useful way to prove that the difference i th
probability of occurrence of an evertin two games is negligible
is to prove that this probability does not change at all,heetivo
programs are equivalent w.r.t. the eveht

G1~a Ga © Vm,Prg, m[A] = Pra,.m[A]

Unfortunately this property is not contextual, the trainsibetween
G1 and G2 is generally a local replacement of a pdftby a
part P’ in the main code or the code of a procedure, &hdnd

P’ are not necessarily observationally equivalent, they roegy
to be equivalent in the context where the replacement is.done
However, it is often sufficient to characterize the contelrere the
replacement is valid by a precondition and a postconditiar the
memories before and after the evaluation of the replaced par

A judgment G1 ~ G2 : ¥ = & in our probabilistic rela-
tional Hoare Logic relates the evaluation of a programto the
evaluation of a progrartrs. If the two programs are deterministic,
it states that, for any initial memories; andm. satisfying the pre-
conditionmi ¥ mo, if the evaluations o€7; andG, starting from
m andme terminate with final memories);, andmy respectively,
thenm ® m5 holds. So, restricted to deterministic programs, our
equivalence relation corresponds to the Relational Hoaggd of
Benton [138]. Unfortunately, the probabilistic case is mdificult
since the semantics maps programs and initial memoriessto di
tributions over memories and thus one needs to considerarda
over distributions instead of simply relations over meresri

Definition 3 (Meaning of pRHL judgments)
e Two functions are equivalent w.r.t. a predicabdff:
fr~ag def V' mima.m1 ®me = f(m1) = g(ma2);
¢ This notion is extended to distributions as follows:
di~vads EVfg frag=d f=dog;

e Two programs; and G2 are equivalent w.r.t. a precondition
¥ and a postconditiom iff:

EGi~Go: U= &

V'mima. m1 ¥ ma = [G1] m1 ~a [G2] ma .

Using this definition we can derive the system in Elg. 4, cgwond-
ing to the inference rules of RHL iAT13]. The major differengith
RHL is that pRHL judgments talk about probabilistic progsaim-
stead of deterministic ones, and that pre and postcondidos not
restricted to a particular syntax, they can be any relati@m mem-
ories expressible in Coq.

The [R-Rand] and [R-Case] rules do not appear in RHL. The
former deals with random assignments, whéfeand d. stand
for expressions denoting distributions. We require thaa igiven
memory they evaluate to the same distributiorDifval), and that
the postcondition holds no matter which value in the suppbrt
the distribution is used to update the memories in each progr
The latter rule permits to do a case analysis on the evatuatio
an arbitrary relation in the initial memories. Togetherhwséimple
rules in the spirit of
def Ferme: W =@
Fifethencielseco ~c: U = &

it subsumes [R-Cond] and allows to derive a judgment showviag
equivalence ofif e then ¢1 else ¢2) and (if —e then ¢z else ¢1),
which is otherwise not possible.

Rather than defining the rules for pRHL and proving them
sound w.r.t. the meaning of judgments, we place ourselves in
semantic setting and derive the rules as lemmas. This allows
easily extend the system by deriving extra rules, or eversort
to the semantic definition if the system reveals insuffigi¢mis
avoiding completeness issues.

mi1 U ma m1 W ma A [e]ma

5.2 Mechanizing Equivalence Proofs

Hand building derivations in pRHL to prove program equivake
is tedious. However, by restricting pre and postcondititmeela-
tions based on equality over a subset of program variablesiny
equivalence becomes a semi-decidable problem.

To proveGi ~4 G5 it is sufficient to determine the set of
variablesO on which the eventd depends and find another set

2007/7/28

FE1701 NE27CQZ(I>:>(I:',

FEi,ci ~ Eych:d = o

F Ey,nil ~ By, nil : @ = & [R-Skip

FFEi,x1 e~ FEy,x0«—e2:

m1 U ms & [di]mi = [da]ma A Yo € supp([di]ma). (mi{z1 — v}) ® (mafzs — v})

FEi,c15¢) ~ Ea,caich : & = &

[R-Seq

(Am1ma. (mi{x1 « [er]mi}) © (ma{ze «— [e2]m2})) = @ [R-Asg

[R-Rand

}—El,:cl S dy NE27CE2 &

}—El,c1 NEQ,CQ .
- E17C,1 NE27C,2 :

do: VUV =&

(Amima.m1 ¥ ma A Jer]mi A [e2]mz) = @
()\ mi1mo.mi1 V¥ ms A —‘[[61}]7)’11 A\ ﬁ[[@g]]’lﬂz) = o

F Ey,if e; then ¢ else ¢} ~ Eo, if es then ¢z else ¢ :

(Am1ma.m1 W ma A fei]mi = [ex]me) = ©

[R-Cond

mi P’ mo d:Ef mi1 ® ma A [[61}]7)’11 = [[62]]7712 FFEi,c1~ Fa,co: ()\m1 mo. m1 ® ma A [[61]]7711 A [[62]]7712) = 9’ R-WhI
F E1,while e; do ¢ ~ Ea,while e2 do co : &' = (Am1 ma. m1 ® ma A =[e1]m1 A —[e2]m2) []
FGi~Gy: UV =& VYmime.miVUme=mi ¥V ma VYmima. mi® mo=midme R-Suj
[G1 ~ G2 U= P

PG~ G5O SYM(Y) SYM(®) PG ~Gri¥ @ FGa~Gyi¥ @ PER(Y) PER(®)
- -Tr
F G~ G U= D [R-Syni FGi~Gs U= o [R-TH

FGi~Ga:(Amime.mi Uma Amy ¥ ms) =& +Gi~Ge: (Amima.mi ¥mae A—(mi ¥ ms)) = Q)[R Case

FGy~Ge: V=&

Figure 4. Selection of derived rules for pRHL

I of variables such that the following holds:
FGiob G & EGI~Gy:

wherem; =x ma ¥ V2 € X. mi 2 = my z. Unfortunately

this is too restrictive as showed by the example:

== =0,

p(w) :if w < 5 thenr «— w + x else r «— w; return r
p(w) : return w
main() : x «— 0; ¢

Under the hypothesis that global variahteis equal to 0 at the
beginning of the body op, it is easy to prove that both versions
of the procedure are equivalent (use constant propagation, o
copy propagation and dead code elimination). Thereforéhef
codec preserves the invariatitz = 0), one can show that the two
programs are equivalent. To that end, we first define theviitio
predicatl

def
mi=x,, M2 = mi=xmaAp(mi)Ae(ms),

and then specialize our equivalence relation as follows
1 def

’:HP G1 ~0 G2 =

In general, the global invariant is not satisfied by the &hithem-

ories of the games, it is only established after reachingrtaice
point in the execution of the programs. To show that the iavar
holds we have implemented in Coq a certified weakest pretiondi
calculus for probabilistic programs (without loops).

Note that the instantiation of the previous judgment wita th
same command-(, E1,c ~5 E»,c) is a generalization of the
type system for secure information flow of Volpano and Sniiffij |
Given a set of input variables it is semi-decidable to find a set of
output variables for which the previous judgment is sountdean
be done using a calculus of variable dependencies. The i=s@Eve
problem is also semi-decidable. We have constructed gbgfiiinc-
tions calledeqobsin (eqobsOut) that given a se© (I) of output

FGi~G2:=1,= =0, -

6Since we are interested in doing interprocedural optiriinat we con-
sider invariantsp depending only on global variables.

(input) variables compute a sét(O) of input (output) variables
which is sufficient to ensure,, E1,c ~5 E2, c holds.

Interprocedural analysis The main difficulty in implementing
the algorithms described in the previous paragraph is dubeo
presence of procedure calls in our language. Each timessera
procedure call, the algorithm should be able to computeriati
(output, resp.) set of variables whose equality is guaezhbg the
call as well as telling whether the call preserves the imvariwith-
out recursive calls, this can be done by a recursive inspeofithe
procedure bodies, with the exception of adversaries (wbode is
unknown). To resolve the problem we assume given a partiatfu
tion providing information about the code of the procediingsoth
programs. This function can be seen as an environment inea typ
system. The correctness of our algorithms rely on the coress
of this function. For each procedusewe store three different kinds
of information about its declaration in both environmentbether
the procedure is lossless, which global variables it do¢snual-
ify, and a triple composed of a subdetof the formal parameters,
and two setd,,, O,, of global variables. The validity of this triple is
semantically expressed as:

I,uI

3 01. ’:Ap E17 E1 (p).body :OPUOI EQ, E2 (p).body
A [Er(p)-re] ~=o,00, [E2(p)-re]

Loosely speaking, the above formula states that the invarga
preserved, and that equality ovigrandI, is sufficient to guarantee
that both versions gf return the same value and result in memories
that are equal w.r.0,,. In Sec[® we describe a method for deriving
this information for an unknown adversary from the inforimatof

its oracles.

Transformations based on variable dependencies The eqobsin
andeqobsOut functions are key stones of a variety of other trans-
formations that we have certified. A transformation thab\afl to
eliminate a common context when proving two programs eguiva
lent is based on the following rule, which is easily derieafsbm

2007/7/28

rule [R-Seq]:

I
FAP E1,C1 >~ E2701
l_LP El,CQ

Fo E1,c15c2;¢3

F E1703

_O/ EQ, C2

~0’
~0 E2703

I /
~o B2, c15¢55¢3

The main difficulty to apply this rule is to find andO’. Givenc

andc’, the common context;, c3, and setd’ andO’ satisfying the
premises can be found automatically. This leads to the fiegbl
rule:

/ g /
(I 0270270) F(p E1702 :O’ E2702
Fo Br,c~b By

where context is a certified algorithm built usingqobsin and
eqobsOut. Using the same idea, we have constructed certified
algorithms for removing only a common prefix or suffix.

context(l,c,c’,0) =

domainD (a semi-lattice) for the analysis, transfer functions r a
signment and branching instructions, and an operatorfoamag
expressions in the language into their optimized versiasmg the
result of the analysis), the functor automatically corssuhe cer-
tified optimization function

optimize:C — D —-Cx D.

When given a command and an elemend € D, this function

transforms: into its optimized versior’ assuming the validity of

d. In addition, it returns an elemedt € D which is valid after

executing: (or ¢’) and allows to recursively apply the optimization.
The technique used to prove the correctness of the optimizer

is a mixture of the techniques presented[in [29, 14] [EBE.

proving the correctness of an optimization, we first needpress

the validity of the information contained in the analysigrdon,

i.e a predicaté/alid(d, m) expressing the agreement between the

In many steps in game-based proofs one faces the problem ofcompile time abstract valuesrand the runtime memony.. Then,

proving the equivalence of two games which are syntacyieajual
up to code-motion. We have constructed a function testingtidr

a sequence of two pieces of code in a program can be swapped.y, . |et

Using this function we have constructed a certified algarithat
given two commands, repeatedly hoists common instructions
obtain a maximal common prefix, which can then be eliminated
using the previous rule. Its correctness is based on the rule

I I
[E1,Cl 2011 E2,01 [E1,CQ 2022 EQ,CQ

O01N02=0 O1NIs=0 O:2NI; =0
NOtMOdify(Ei7cl7.[2U02) NOtMOdify(Ei,Cz,IlLJOﬂ 1=1,2

|— El,c1, Co X~

LU,

0,00, Ez, C2; C1

In the rule aboveNotModify(E, ¢, X) is a predicate expressing
that variables inX are not modified by the commandin the
environmentF. It is semantically defined as follows:

NotModify(E, ¢, X) %'
YV fm. [E, c]]mf [E,c]m Am'.f{X «— m})

For mechanizing the application of the rules, we have impleted
an algorithm computing a sound under approximation of thie va
ables in a given set that are not modified by a portion of cdus i&
done by traversing the code and removing assigned vari&iles
the set, except for self-assignments).

Our algorithm for performing dead code elimination removes
portions of code that do not affect the output variables icbns
ered, so it actually behaves more like an slicing algorittmu,
performs at the same time other transformations: branctiigire
ing, self-assignment elimination and branch coalescieplécing
if e then c else ¢ by ¢). Its correctness relies on the rule

NotModify(FE1,c, X) Lossless(F1,¢) fv(p) C X
Fo Er,c~% Eo,nil
We have also constructed certified algorithms for inlinimgge-
dure calls and performing a simple variant of register altimn.

Together with the optimizations presented in the next paray
this results in a powerful tool for proving program transhations.

Transformations based on program analyses Many of the trans-
formations appearing in game-based cryptographic promfsbe
performed using common compiler optimizations, we haveémp

mented and proved correct in Coq the most common ones: copy proofs.

propagation, common subexpression elimination, congieopa-
gation. As usual, program optimizations are done in twoesag
first, an analysis of the program collects abstract valupesent-
ing the compile time approximation of the different express
contained in the program; then an optimizer uses this indgion to
transform the program. All optimizations have been impletad
in a generic way using the module system of Coq. Given anadistr

the correctness of the optimizer is expressed in terms oftdLpR
judgment:
(c',d"):=optimize(c,d) in - E,c ~ E, ¢
wherem, =4 ma %" m; = mq A Valid(d, m1). The following
useful rule can be derived:
VYm1 ma. m1 W me = Valid(d, m1)
optimize(ci, d) = (i, d) FEi,ci~ FEaco:
[E1701 ~ EQ,CQ U=

When implementing a classical analysis (not an inter-pfora
analysis), the analysis loses all information about theievabf
global variables after a function call. In our context itisgortant
to keep this information. We do so by reusing the same inftiona

that is used for transformations based on variable depereteas
presented above.

X = Xy

U=

5.3 Building Automatic Tactics

The meta theory of the Coq theorem prover is based on the Calcu
lus of Inductive Constructions, a functional programmiagduage
with dependent types. In this type system type programsare c
pared up tg3-equivalence. In practice, this allows to replace deduc-
tion by computation. The idea is the following, to prguéme(17)

one can first write a programest dividing its inputn by all num-
bers betweef andn — 1, and returningrue iff no division is exact,
second prove the correctness of the test:

Vn. test(n) = true = prime(n)

Last, to proveprime(17), apply the correctness lemma to 17 and
to a proof of the propositionest(17) = true. Sincetest(17)
reduces tarue, the proposition ig3-equivalent to the proposition
true = true which is trivial. This proof technique is called proof
by reflection and has been used for many applicationd 2254,
CertiCrypt is strongly based on this proof technique. Most of the
tactics provided to the user boil down to the application hf t
correctness lemmas of one or more of the certified algoritwens
have constructed.

6. Reasoning about Adversaries

The notion of adversary is generally left implicit in crygtaphic

In the literature, most of the time the only conditio
imposed to adversaries is that their (expected) running tisn
bounded by a polynomial on the security parameter. In sorpesca
extra conditions forbidding repeated or malformed quetdesra-
cles are imposed. In any case, little care is taken to exlplistate
the access rights of adversaries to global variables omtoepiures.
However, these issues cannot be ignored if one wants to fiyrma
justify security; for instance, if security relies on a scshared

2007/7/28

among the oracles using a global variable, any adversaty thet
right to access this variable may trivially break security.

Given a set of procedure identifief® (the procedures that may
be called by the adversary), and sets of global varialegthose
that can be read and written by the adversary) @Gnd(those that
the adversary can only read), we say that an adverdaig/well-
formed in an environmenk if the judgment-,,¢ .A can be derived
in the type system:

. IFi:I" I'kec:O
I il 1 T 7¢O
Writable(z) fv(e) C 1 Writable(z) fv(d) C T

Itz —e:TU{x}
fvie)C T ITke¢:0; i=1,2
I+ if ethen ¢y else c2: O1NO2 I+ whileedoc: I
fv(€) C I Writable(z) o€ O
Itz —o(e):1U{z}
GaUGroUAg.params E Ag.body:O fv(Ag.re) C O
Fot A

whereWritable(z) %' Local(x) V z € G4, andAx andog stand

for E(A) and E(o0) respectively. The rules above guarantee that
each time a variable is written by the adversary, the aduwelsas

Itz & d:TU{z}
fvie) CT ITke:l

the right to do so; and that each time a variable is read by the

adversary, it is either a global variable the adversary hasight
to read or a local variable previously initialized. In evelsrivable
judgment of the forn? - ¢: O, it is the case that C O.

In order to apply the mechanized tactics described in the pre
vious sections in the presence of unknown adversaries, aek tioe
provide information about the adversaries in the same wayeas
do for other procedures. For oracles, and in the absencecof-re
sive calls, this information can be constructed incremngéad in
an automatic way by reusing the functions presented in[S8c. 5
Once the information for the oraclesdis computed, we provide
a function that computes the needed information for a welried
adversary (the code of the adversary should be the samehirehet
vironments). This is achieved by takifig), ., NotModify (o) \ G.a
as the set of variables known to be not modified by the advwersar
In addition, we build a triplg(11, 1.4, 0.4) satisfying the specifi-
cation given in Sed]5. We takg as the whole set afi’s actual
parameters. The needed input global varialileshould contain
at leastg 4 U G, (the adversary may depend on them) as well as
the set of needed input global variables of the oracles tlzgt ime
called by the adversary, since the result of the oracle—ansl of
the adversary—may depend on these global variables. In smynm
it suffices to take

def

IA = UIoUgAUgro

0O

Note that, because we make absolutely no assumptions dimut t
order in which the adversary calls the oracles, for eachalsbei

x € 14, we cannot do better than requiring every oracle to either
not modify z, or to ensure equality on after its execution in both
environments. This way, we can guarantee that after anranpit
sequence of calls to the oracles, equality adygiis preserved.

When quantifying over an adversa#gyin a cryptographic state-
ment, we therefore assume its well-formedness as well astsha
running time is polynomial in the security parameter underhy-
pothesis that the oracles in the environment are so.

7. A More Elaborated Example: OAEP

The most advanced application©értiCrypt is a proof of security
of OAEP, a widely used padding scheme whose history perfectly
illustrates the difficulty in achieving a correct proof. &etl, it was
initially believed that OAEP wakND-CCA?2 securel[Ill], but it was

later discovered it was onllND-CCA1 securel[3b], a weaker se-
curity notion. However, in combination with a well chosercp-
tion scheme, it is possible to recoudD-CCA2 security, as it is
the case for RSA-OAEF[21].

OAEP is parametrized by an encryption scheme whose key gen-
eratorF is also used as key generator foAEP. This encryption
scheme must act as a permutation. To achieve such a highofevel
security, OAEP adds randomness into the plaintext and uses two
functionsG and H to mask it before applying a non-invertible en-
cryption scheme such as RSA.

We consider the proof tha@AEP is IND-CPA secure in the
random oracle mode[T10]. In this model, one-way functiors a
simulated by oracles that log their responses to previoasieg)
and when given a new query answer with a randomly sampled
value. The two functionss and H used inOAEP are represented
by such random oracles.

In [I27] itis shown that, if the probability of inverting a rdamly
sampled encryption key is negligible, therOAEP is IND-CPA
secure. This means that, if the underlying encryption giaiused
by OAEP ensures that without knowing the decryption key, one
cannot obtain the whole plaintext given its ciphertextntlising
OAEP itis unfeasible to obtain information even about portiohs o
the plaintext.

Theorem 1(OAEP semantic security)

VAA M. Eoaep bFwi AN Eoaep Ew A'A
PPT(A,n) A PPT(.A/, n)
= M + OAEP, ~|,_,, OAEP;

whereM : N — M is a family of polynomially bounded memories
indexed by the security parametgrand Eoaep is the environment
of the two initial gameDAEP, and OAEP; (not shown in this

paper.)

Proof This proof exemplifies nearly all the game transitions pre-
sented in[[12] and is more involved than most proofs appgarin
in the literature. The whole proof consists of a main seqeesfc
nearly 30 transitions, some of them being justified by anosee
guence of transitions of their own. Due to space constraivesio
not fully present the proof here, but we instead explain itaitle
two non-trivial transformations. At some point in the proafter
introducing a failure event and applying Lembla 2, we became i
terested in proving that the probability of the evébad = true)

in a certain gamenit;s is negligible. To prove this, it is conve-
nient to first transform the game into a simpler one, weredaisier

to bound this probability. Figuld 5 illustrates the prooftloé first
simplifying transition, where we prove the equivalencetwhad

of the gamesinit,s andiniti1s. The overall objective of the tran-
sition is to remove(S’, HS') from the initialization of L in the
main code, and to modify accordingly the codebfo preserve the
same behavior by returning directlyS’ upon a queryS’. In the
justification of this transition most transformations aome in the
oracle H; we present its various versions in the figure. Although,
thebad flag is only set in th& oracle, we do not present it here be-
cause it remains unmodified in every step of the sequencéaGlo
variablesS’ and HS’ correspond to a query and its response, re-
spectively, made to oracl# at the beginning of the gamé.x is

a global variable representing a log of the queries madé tmd
their corresponding answers, and hence in the two gamesithe v
of Ly is not necessarily the same. In particular, if the adversary
never makes a query’ to H, the pair(S’, HS") will not appear in
Ly in gameinitie.

In order to prove the transition, we first introduce an interm
diate game containing ghostvariable L;, representing the vari-
ableLy in (initis, His). In the second transformation we replace
occurrences of.y by L; using the invariantLy = L’;. Once

2007/7/28

Oracle Hy5(S): Oracle H{(S): Oracle H{’;(S): Oracle H{4(S):
r & {0,1}7; r & {0,1}7; r & {0,1}7; r & {0,1}7;
if S =25 if S =29 if S =9 if S =25
then if S € dom(Lg) then if S € dom(Lg) then if S € dom(L’;) then if S € dom(Lg)
then r — Ly[S] then r — Ly[S] then 7 — L/, [S]; then r — Ly[9]
else Ly «— (S,r):: Ly else Ly «— (S,r) :: Ly; if S ¢ dom(Lp) elser «— HS’;
else if S € dom(Lp) Ly — (S,7) = Ly then Ly < (S,r) :: Ly Ly — (S,r) = Ly
then r «— Ly[9] else if S € dom(Lp) else Ly «— (S,r) :: Ly; else if S € dom(Lp)
else Ly «— (S,r) = Ly then r — Ly [95] Ly — (S,7) = Ly then r — Ly [95]
return r else Ly < (S,7) :: Ly; | elseif S € dom(L%;) else Ly < (S,r) :: Ly;
Ly —(S,r) = Ly then 7 — L/, [S] Ly —(S,r) = Ly
return r else Ly «— (S,r) :: Ly; return r
Ly —(S,r) = Ly
return r
Orgcleofiwp(fs‘). Gameinitys: Gameinit/, s Game init//y: Gameinitig:
:;(S_'—{ S’,, I bad « false; bad « false; bad « false; bad « false;
e € dom(Lan) G I = FE: | G = F O | () = FO | (570 — F (b
thenr<—LH[S} S ‘li{oyl} p; S ‘?;{071} p; S %{0,1} p; S ‘?;{071} p;
clser — HY' HS" & {0,1}7; HS" & {0,1}7; HS" & {0,1}P; HS" & {0,1}7;
e (8 HS | L — (S HSOL | L — [L — [
Ly « (S,r) = Ly §7 ’ AE / ’ AR
. — [(S",HS")]; | L%y < [(S",HS)]; | .-
else if S € dom(Ly) (m) — A(S): H H () — A(f);
then r «— LH[S] 0,1) A) A) mo,m1 y
else Ly — (S,r) =Ly || 7 4rror (mo,m1) — A(f); | (mo,ma) — A(f); | .
return r d— A (Y d— A(Y")
de— A(Y) de— A'(Y")
o1 B Ly =1 o2 B Ly\S' = L)\S' ALY[S') = HS' A (S € dom(Ly) = Ly[S'] = HS')
) " #1 " " P2 . o
wnit1s ~pag mnity g ~bag 17;}215 ~pag 17;}2/;5 ~pag 17;}225 ~pad W;}jés

dead_code.
eqobs_in.

dead_code.
eqobs_in.

dead_code.
eqobs_in.

Figure 5. The proof of a transition foODAEP

this is done, we are able to modify the initialization bf; in
(init!s, H1s) while still preserving the overall behavior, since the
output of H is now independent froni ;. We then prove the in-
variant oo defined in Fig[b, which states thaty and L’y map
gueries to the same values except maybeSfoiThis allows us to
replace occurrences df; by Ly and modify oraclel] accord-
ingly to preserve its behavior. The purpose of the last ttiamsis
simply tocleanthe game by removing the ghost varialhlg .
Although we have described ertiCrypt all the transitions in
the proof of OAEP semantic security, we have not proved all of
them: two transitions involving interprocedural code-imottech-
niques not yet implemented @@ertiCrypt remain unproved. Nev-
ertheless, we believe that the effort needed to implemeamh tim
CertiCrypt is not significant and we expect to do it soon.

8. Related Work

For clarity, we distinguish between verification tools anethods
for cryptographic proofs, and relevant formalizationg thave not
been developed on purpose for cryptographic proofs.

Dedicated tools Most dedicated tools focus on verifying proto-
cols in the symbolic model, there are only a few tools thatjol®
guarantees w.r.t. the computational model.

CryptoVerif [15] is a dedicated tool developed by Blanchet to
support game-based proofs; it was initially developed fatg
col verification but was later applied to proofs of cryptquia
schemes, e.g. the unforgeability of the FDH signature sehasa
suming the existence of one-way permutatidnd [1B}ptoVerif
performs an heuristic-based search on a library of (usaviged

10

and predefined) transformations to try to generate a sequefic
games for a proof, but gives little attention to whether ta@sfor-
mations are computationally sound, while our frameworlesebn

the user to supply the sequence of games but instead put the em
phasis on verifying that the whole proof is computationalhynd.

We believe the two approaches are complementary and can bene
fit from each other: compilin@ryptoVerif sequences of games to
CertiCrypt is an interesting research direction.

Backes and Laud]7] have developed a dedicated tool to me-
chanically analyze protocols in the Backes-Pfitzmann-Wetid
cryptographic library[[32(18] against simulatability-leassecurity
conditions. They use type-based program analyses for &gsoc
algebra inspired from the spi calculli$ [1] and prove autisaby
the correctness of a number of protocols from the literatOnee
important difference wittCertiCrypt (andCryptoVerif) is that the
tool of Backes and Laud provides a proof of security in a sym-
bolic rather than computational model; however, one caiveler
complexity-theoretical guarantee by appealing to the dness of
the symbolic model. Similarly, several formalizatiofsl[BBof the
symbolic model of BPW cryptographic library have been agdile
in various theorem provers, but without proving computaio
soundness.

Methods In addition to the above tools, there are recent propos-
als of formalisms to prove security of cryptographic praisc so
far lacking tool support. Roy, Datta, Derek and MitchEIl[Bave
identified conditions under which trace properties ensorapm-
tational guarantees for secrecy and authentication piiepelVith
this approach, proofs can be done by induction. The autlepat
that their technique is powerful enough to apply it to Kedseand

2007/7/28

IKE. Corin and den Hartod [19] developed a probabilistic Hoa
logic, which is more expressive than the simple (not refetip
Hoare logic we use to reason about programs, and used itve pro
ElGamal semantic security; no tool support nor further examples
have been presented since then. As said in Bec. 2, their bygic
itself is not sufficient to carry arbitrary code-based psoof

Machine-checked libraries CertiCrypt relies on diverse mathe-
matical concepts and theories that have been modeled footke
sake, including probabilities, group theory, polynomigisogram-
ming languages semantics, program equivalence, Hoareslagid
generation of verification conditions, and compiler op#ations.
It is not possible to review all the relevant work here, butfaeus
on the most directly related formalizations. The most reabale,
is the Coq library for representing (sub-)probability dimitions of
Paulin-Mohring and Audebaufl[5] which we reuse to constouct
framework. Hurd et al[128] developed a mechanized theotjén
HOL theorem prover for reasoning about pGCL programs, a-prob
abilistic extension of Dijkstra’s guarded command language-
sented in Mclver and Morgaf [B0]. Their work focuses on using
weakest (liberal) precondition calculus for proving palrtorrect-
ness properties expressed as Hoare triples in a probabitgic.
Despite having very strong theoretical foundations, thenework
is less appealing for carrying program transformations ibgquire

a relational Hoare logic rather than a standard one.

9. Conclusion and Future work

We have develope(@ertiCrypt, a fully formalized framework for
machine-checked game-based proofs, and applied it to phave
PRF/PRP switching lemma, andiD-CPA security of EIGamal
and OAEP encryption schemes. About 6000 lines of Coq in the
development are dedicated to formalize the semantics andrap
the lemmas corresponding to the rules of pRHL; roughly 10000
lines to defining and proving correct the reflection-basetids;
about 700 to the proof oElGamal IND-CPA security; and 5000
lines for the proof of security dDAEP. It is worth noticing that in
these two last proofs, more than one third of the lines aretgpst
in defining the sequence of games. The complete Coq devetdpme
isavailable ghttp://www-sop.inria.fr/everest/certicrypt!
CertiCrypt is the most advanced tool of its kind, and consti-
tutes a significant first step towards the completion of Halg@vo-
gramme. Nevertheless, numerous research directionsmembae
explored.

Code-based game proofs Our most immediate priority is to en-
hance proof automation: while our framework already presidu-
tomated support for semantics-preserving transformstiand the
fundamental lemma of game-playing, we still need to develop
tomated tactics to compute the complexity of a program anchéo
the probability of an event in a final game. In order to asskess t
benefits of the tactics we develop, we intend to machineictirex
proof of an exact bound for the security of 3DESI[12].

One of our priorities in makingertiCrypt more user-friendly
is to add an extensive library of lemmas for proving transi@r
tions based on algebraic properties (e.g. equationalyteocyclic
groups), but also more complex transformations, such asfog
mations strongly related to the random oracle model (eagetipre-
sented in Sed]7). For some specific transformations in emner
work, we need to introduce intermediate games. We beliege th
these games could be constructed automatically in most.chse
the long term, a (minimalist) interface to ease the writihgames
and their corresponding proofs should be developed. Baseal o
user-defined sequence of games, this interface should bet@bl
automatically generate the skeleton of a proof since thefprb
each transition follows the same schema: build the infoionéor

11

the procedures in the environments, prove its correctia@ssthen
prove the transition using automated tactics.

In parallel, we are currently working on integrating arrays
within the framework. Dealing with arrays involves a majech-
nical hurdle: inference of frame conditions, i.e. the patshe
memory that are modified by a program, becomes more difficult
to achieve—precise and automated inference of frame gonsdlit
is essential for ensuring an appropriate level of automatite
extension to arrays, and its application to Halevi and Rayésw
tweakable enciphering scheme, are currently under devedop
and will be reported elsewhere.

Computational soundness of symbolic cryptography The focus
of our work is to use a general purpose proof assistant tdyveri
cryptographic proofs in the computational model. Alteively,
one can develop dedicated tools to perform proofs autoaibtic
to the exception ofCryptoVerif, such tools operate on the sym-
bolic model, that abstracts from the computational modehgy
suming perfect cryptography, i.e. in the case of encryptibat it

is not possible to extract a plaintext from a ciphertext withthe
decryption key. The symbolic model disposes of effectiveisien
procedures to reason about protocols, and has been provad so
w.r.t. the computational model under the assumption trettip-
tographic primitives are sufficiently secure. A last ohjexfor fu-
ture work is to machine-check soundness proofs, both bedhey
are complex and error-prone, and also because a machiokeche
soundness proof could be used in conjunction with a refledtis
plementation of decision procedures at the symbolic levgjen-
erate correctness proofs of protocols in the computatioradel.

A first step in this direction has been taken recently by C[iid],
who provides a machine-checked proof in Coq of the soundness
result in the seminal work of Abadi and RogawB} [2].

Language-based security Language based security is an active
field of research that attempts to achieve security and eount
application-level attacks at the level of programming lzenges.
Language-based security advocates a rigorous definititmecfe-
curity goal based on the semantics of programs, and commonly
focuses on non-interferende34], an information flow propthat
guarantees the absence of illicit information leakageutbhopro-
gram execution. A common means to enforce non-interference
through an information flow type system, and many such system
have been developed for complex calculi and languages. Howe
non-interference is too strong a requirement in practisenany
applications intentionally release information. Compiotzal lan-
guage based security is an extension of language basedtpttair
studies information flow properties in presence of crypapgic
primitives and reconciles programming language securitly the
computational model used by cryptographers. Its focus rspen
tational non-interference, a generalization of non-iet@nce that
allows to leak secret sensitive data after it has been etedypro-
vided the underlying encryption scheme is secure. As with no
interference, type systems are the prominent means to cenfor
computational information flow. We believe that our framekvo
is sufficiently rich to yield machine-checked proofs of sdness
for the information flow type system of Smith and Alpizar.[3]

References

[1] M. Abadi and A. Gordon. A calculus for cryptographic pwobls:
The spi calculusinf. Comput, 148(1):1-70, 1999.

[2] M. Abadi and P. Rogaway. Reconciling two views of cryptaghy
(the computational soundness of formal encryptiodhurnal of
Cryptology 15(2):103-127, 2002.

[3] R. Alpizar and G. Smith. Secure information flow with dam
assignment and encryption. Broceedings of the 4th ACM Workshop
on Formal Methods in Security Engineerirgages 33—44, 2006.

2007/7/28

http://www-sop.inria.fr/everest/certicrypt

[4] A. W. Appel and A. P. Felty. A semantic model of types andchiae
instructions for proof-carrying code. IRroceedings of the 27th
ACM Symposium on Principles of Programming Languagesges
243-253, 2000.

P. Audebaud and C. Paulin-Mohring. Proofs of randomized
algorithms in Cog. IrMathematics of Program Constructionolume
4014 of LNCS 2006.

[6] M. Backes and C. Jacobi. Cryptographically sound andhimee
assisted verification of security protocols. 26th Symposium on
Theoretical Aspects of Computer Scieneages 675-686, 2003.

[7] M. Backes and P. Laud. Computationally sound secrecyfpro
by mechanized flow analysis. IRroceedings of the 13th ACM
Conference on Computer and Communications Secyritges 370—
379, 2006.

[8] M. Backes, B. Pfitzmann, and M. Waidner. A composable €ryp
tographic library with nested operations. ACM Conference on
Computer and Communications Securjtpges 220-230, 2003.

G. Barthe, J. Cederquist, and S. Tarento. A machinekatec
formalization of the generic model and the random oracle ehod
In 2nd International Joint Conference on Automated Reasoning
pages 385-399, 2004.

[10] M. Bellare and P. Rogaway. Random oracles are practi&al
paradigm for designing efficient protocols. Broceedings of the
1st ACM Conference on Computer and Communications Security
pages 62—73, 1993.

[11] M. Bellare and P. Rogaway. Optimal asymmetric encomti In
Advances in Cryptology — EUROCRYPT'94, Prgmages 92-111,
1994.

[12] M. Bellare and P. Rogaway. The security of triple entigyp and
a framework for code-based game-playing proofs.Ptaceedings
of the 25th International Cryptology Conferenamlume 4004 of
LNCS pages 409-426, 2006.

[13] N. Benton. Simple relational correctness proofs fatistanalyses and
program transformations. Proceeding of the 31th ACM Symposium
on Principles of Programming Languagezages 14-25, 2004.

5

—_

9

—

[14] Y. Bertot, B. Grégoire, and X. Leroy. A structured apach to proving
compiler optimizations based on dataflow analysisinternational
Types for Proofs and Programsi, Worksh&/NCS, pages 66-81,
2006.

[15] B. Blanchet. A computationally sound mechanized préeesecurity
protocols. InNIEEE Symposium on Security and Privapages 140—
154, 2006.

[16] B. Blanchet and D. Pointcheval. Automated securityofsavith
sequences of games. Proceeding of the 26th Annual International
Cryptology Conferencepages 537-554, 2006.

[17] D. Boneh. The decision Diffie-Hellman problem. Rtoccedings
of the 3rd Algorithmic Number Theory Symposjwolume 1423 of
LNCS pages 48-63. Springer, 1998.

[18] R. Corin. Computational soundness of formal encrypiio Coq.
In Informal Proceedings of the 3rd Workshop on Formal and
Computational Cryptography2007. To appear.

[19] R. Corin and J. den Hartog. A probabilistic Hoare-stidgic
for game-based cryptographic proofs. mmoceedings of the
33rd Internatioanl Colloquium on Automata, Languages and
Programming pages 252—-263, 2006.

[20] T. EIGamal. A public key cryptosystem and a signatuieesce based
on discrete logarithms. IRroceedings of the 4th Annual International
Cryptology Conferengepages 10-18, 1985.

[21] E. Fujisaki, T. Okamoto, D. Pointcheval, and J. Ster8AROAEP is
secure under the RSA assumptidiournal of Cryptology17(2):81—
104, 2004.

[22] S. Goldwasser and S. Micali. Probabilistic encryptiagh Comput.
Syst. Scj.28(2):270-299, 1984.

[23] G. Gonthier. A computer-checked proof of the Four Coldheorem.

12

http://research.microsoft.com/~gonthier.

[24] B. Grégoire and A. Mahboubi. Proving equalities in ancoutative
ring done right in Coq. IrProceedings of the 18th International
Conference on Theorem Proving in Higher Order Logieslume
3603 ofLNCS pages 98-113, 2005.

[25] B. Grégoire, L. Thery, and B. Werner. A computationppeoach
to Pocklington certificates in type theory. Rroceedings of the 8th
Symposium on Functional and Logic Programminglume 3945 of
LNCS pages 97-113, 2006.

[26] S. Halevi. A plausible approach to computer-aided tagpaphic
proofs. Cryptology ePrint Archive, Report 2005/181, 2005.

[27] S. Halevi and P. Rogaway. A tweakable enciphering model
Proceeding of the 23th Annual International Cryptology &wence
pages 482-499, 2003.

[28] J. Hurd, A. Mclver, and C. Morgan. Probabilistic guadd®mmands
mechanized in HOLTheor. Comput. S¢i346(1):96-112, 2005.

[29] X. Leroy. Formal certification of a compiler back-end; pro-
gramming a compiler with a proof assistant. Rroceeding of 33rd
Symposium Principles of Programming Languagesges 42-54,
2006.

[30] A. Mclver and C. Morgan.Abstraction, Refinement, and Proof for
Probabilistic SystemsSpringer, 2005.

[31] D. Nowak. A framework for game-based security proofsyg@ology
ePrint Archive, Report 2007/199, 2007.

[32] B. Pfitzmann and M. Waidner. Composition and integritggervation
of secure reactive systems. ACM Conference on Computer and
Communications Securitpages 245-254, 2000.

[33] A. Roy, A. Datta, A. Derek, and J. Mitchell. Inductive guf
method for computational secrecy. Cryptology ePrint ArehReport
2007/165, 2007.

[34] A. Sabelfeld and A. Myers. Language-based informatlow
security. IEEE Journal on Selected Areas in Communications, 21(1)
pages 5-19, 2003.

[35] V. Shoup. OAEP reconsidered. Rroceeding of the 21th Annual
International Cryptology Conferencpages 239-259, 2001.

[36] V. Shoup. Sequences of games: a tool for taming conmtylemi
security proofs. Cryptology ePrint Archive, Report 20B232004.

[37] G. Smith and D. Volpano. Secure information flow in a mtiiteaded
imperative language. IRroceedings of the 25th ACM Symposium on
Principles of Programming Languagegsages 355-364, 1998.

[38] C. Sprenger, M. Backes, D. A. Basin, B. Pfitzmann, and Midier.
Cryptographically sound theorem proving.Rroceedings of the 19th
IEEE Computer Security Foundations Workshppges 153-166,
2006.

[39] The Coq development team. The Coq Proof Assistant Reber
Manual v8.1, 2006. Available atttp://coq.inria.frl

2007/7/28

http://research.microsoft.com/ ~gonthier
http://coq.inria.fr

	Introduction
	Basic Examples
	The ElGamal Encryption Scheme
	The PRP/PRF Switching Lemma

	The pWhile Language
	Computational Indistinguishability
	Computational Equivalence
	Probabilistic Relational Hoare Logic (pRHL)
	Mechanizing Equivalence Proofs
	Building Automatic Tactics

	Reasoning about Adversaries
	A More Elaborated Example: OAEP
	Related Work
	Conclusion and Future work

