
Isolated Proofs of Knowledge and Isolated Zero Knowledge

Ivan Damg̊ard, Jesper Buus Nielsen and Daniel Wichs

August 22, 2007

Abstract

We introduce a new notion called `-isolated proofs of knowledge (`-IPoK). These are proofs
of knowledge where a cheating prover is allowed to exchange at most ` bits of communication
with some external adversarial environment during the run of the proof.

If ` =∞ then an `-IPoK which is also witness hiding is not achievable without additional
setup assumptions. However, we show that for every relation in NP and every polynomial
` there exists an `-IPoK protocol for that relation. The protocols we construct are zero
knowledge (ZK) in the standard sense, i.e., w.r.t. a verifier that communicates only with the
prover during the protocol. The cost of having a large ` is a large communication complexity of
the constructed protocol. We analyze these costs and present a solution which is asymptotically
optimal.

If a cheating verifier is allowed to communicate arbitrarily with an external environment,
it is not possible to construct an `-IPoK which is also ZK with respect to such a verifier. As
another new notion, we define `-isolated zero knowledge (`-IZK) where the verifier is `-isolated.
We show that for every relation in NP and every polynomial ` there exists an `-IPoK protocol
which is also `-IZK.

We describe several applications of `-IPoK protocols under the physical assumption that
one can `-isolate a prover for the duration of the prove phase. Firstly, we can use a wit-
ness indistinguishable (WI) `-IPoK to prevent “man-in-the-middle” attacks on identification
schemes. Previous results for this scenario required all verifiers to register keys under a PKI,
or the ability to fully isolate the prover. Secondly, a WI `-IPoK protocol can be used by a
partially isolated prover to register a public key with another party acting as a verifier (for
example a Certificate Authority) and prove knowledge of the corresponding secret key. In a
companion paper, we show that this allows us to implement arbitrary multiparty computation
secure in the UC framework without setup assumptions (but instead relying on the physical
assumption that a party can be partially isolated for a limited amount of time).

1

Contents

1 Introduction 3

2 Σ-Protocols 4

3 Isolated Proof of Knowledge and Isolated Zero-Knowledge 5
3.1 Relationship Between the Two Notions of Soundness 9

4 Some Impossibility Results 10
4.1 Impossibility of ∞-IPoK and ∞-IZK . 10
4.2 Σ-Protocols are (only) expected `-IPoK, (only) for Very Small ` 11
4.3 Impossibility of Constant-Round Black-Box IPoK 11

5 Some Possibility Results 12
5.1 A Simple Black-Box WI IPoK for NP . 12
5.2 A Constant Overhead, Blackbox WI IPoK for NP 13

5.2.1 Communication Complexity . 15
5.2.2 Completeness . 15
5.2.3 Extractor . 15
5.2.4 The ZK Simulator . 17

5.3 Constant-Round, Non-Blackbox IZK for NP . 17
5.4 From IZK to IPoK + IZK . 19
5.5 Constant-Overhead, Constant-Round IPoK for NP using a Random Oracles 20
5.6 From IPoK + WI to IPoK + IZK . 21

6 Applications of WI IPoK 22
6.1 Preventing “Man-in-the-Middle” Attacks on Identification Schemes 22
6.2 Setting Up a PKI for General UC MPC . 23

7 Future Directions 23

A A Computational Σ-Protocol for any PPT Relation 26

B Σ-Protocols with Large Challenge Space are `-IPoK for Very Small ` 26

C Proof of Theorem 3 30

D Technical Lemmas for the Proof of Theorem 5 30

2

1 Introduction

A proof of knowledge [GMR85, BG92], is a protocol where a prover demonstrates to a verifier that
he has a certain piece of information - typically the witness for some instance of an NP relation.
Soundness of such a proof is usually formalized by asking (loosely speaking) that there is a way
to extract the witness from any prover who successfully convinces the verifier. The definition
implicitly assumes that the prover talks to no one else during the proof. Intuitively, this may
seem necessary to ensure that it is the prover himself who knows the witness – and not someone
else who helps the prover convince the verifier.

Nevertheless, in this paper we will consider a cheating prover who, during the proof, is able to
communicate with some external adversarial entity, called the environment. We will insist that
knowledge soundness still means that a witness can be extracted from the prover himself. From
a technical point of view this means that an extractor is allowed to rewind the prover, but not
the environment.

When the cheating prover can communicate arbitrarily with the environment, this notion can
only be achieved by trivial protocols where the prover essentially hands the witness to the verifier.
The obvious reason is that the witness may be located in the environment and the cheating prover
only acts as a channel between environment and verifier while the environment gives an honest
proof. In such a case, the cheating prover learns nothing more than the honest verifier during the
proof and hence extraction implies that the honest verifier always learns a witness from a single
run of the protocol. This simple attack requires the prover and the environment to communicate
an entire transcript of an honest protocol. We study what happens when such an attack is
prevented by limiting the communication between the prover and the environment to be shorter
than the communication used in the protocol.

One can imagine many ways such a partial isolation could be achieved in practical scenarios.
If the prover is in close proximity of the verifier, they can be expected to communicate orders
of magnitude faster than the prover can communicate with its environment. If in very close
proximity, the fixed speed of light alone can be used to isolate a prover. Alternatively, consider
a prover implemented on a smart card (for example, a smart card performing an identification
protocol). The card reader could try to shield the card completely (i.e. using a Faraday cage)
but this requires significant resources. It might be much easier to only prevent large amounts of
communication. For example, the card reader could measure the energy consumption of the card.
A significant amount of communication takes up a noticeable amount of energy, typically orders
of magnitudes larger than what the card needs for standard operation.

To facilitate a formal study of such settings, we propose a notion of `-isolated proof of knowl-
edge (`-IPoK) where the cheating prover is restricted to communicating only ` bits with the
environment during the run of the proof. The case ` = 0 is essentially a normal proof of knowl-
edge, and is therefore well understood: for every NP relation there exists a zero-knowledge 0-IPoK
protocol, under standard cryptographic assumptions. In practice, the physical setting determines
the level of isolation and hence the communication threshold `. For any such threshold, we would
like to construct an `-IPoK protocol. We therefore consider the notion of a parameterized IPoK,
or just IPoK, which is a compiler that generates an `-IPoK for any value of ` polynomial in the
security parameter κ. Letting C denote the communication complexity of the generated proof
system, we call O = C/` the overhead. We saw that any non-trivial `-IPoK protocol must have
C > ` so an overhead greater than 1 is necessary. We focus on making the overhead as small as
possible. We will construct IPoK compilers which are non-trivial in that they are Zero Knowledge
(ZK) in the standard sense (when the verifier is fully isolated), or at least witness indistinguishable
(WI) which can imply witness hiding (WH).

It turns out to be relatively simple to construct an IPoK with an overhead of O = poly(κ)

3

and with ` + κ rounds of communication. The intuition here is that repeating a 0-IPoK ` + κ
times ensures that there are many iterations where the prover cannot consult the environment
and can therefore only survive if he knows a witness. We introduce novel techniques which allow
us to construct significantly more efficient IPoK protocols. Under appropriate cryptographic
assumptions which we discuss later, we show the following:

1. All NP relations R have a ZK IPoK proof system with constant overhead (but not constant
round).

2. All NP relations R have a ZK IPoK proof system which is constant-round (but not constant
overhead).

3. Under a non-black-box assumption on cryptographic hash-functions, all NP relations R have
a WI IPoK proof system which is constant overhead and constant-round. This assumption
holds in the non-programmable random oracle model.

Result 1 uses only black-box techniques and is optimal in the sense that we can prove (Theo-
rem 3) that no witness hiding IPoK which is black-box extractable can run in a constant number
of rounds. In fact, the number of rounds has to grow with `. Result 2 uses non-black-box tech-
niques, but only makes standard assumptions. Since all known approaches to using non-black-box
techniques based on standard assumptions are highly inefficient, there is little hope for getting a
constant overhead protocol using this technique. Result 3 then uses the non-programmable ran-
dom oracle model as a non-black-box technique which results parameters that are nearly optimal
in all respects.

We also propose a notion of `-isolated zero-knowledge (`-IZK), where we require that a simula-
tor can simulate any cheating verifier V ∗ which communicates at most ` bits with its environment
during the proof. The fact that V ∗ can communicate with its environment makes it impossible to
use standard rewinding techniques. Again, 0-IZK is essentially equivalent to the standard notion
of ZK and hence it is known that a 0-IPoK which is also 0-IZK exists for any relation in NP.
We will give a simple argument showing that `-IZK protocols with ` ≥ C only exist for trivial
languages. On the positive side, we show how to construct an `-IZK, `-IPoK protocol for any NP
relation R and any ` polynomial in the security parameter κ.

We conclude the paper by mentioning some applications of `-IPoK using the physical assump-
tion that one can `-isolate a prover for the duration of the prove phase. Firstly, we can use a
witness indistinguishable (WI) `-IPoK to prevent “man-in-the-middle” attacks on identification
schemes. Previous results for this scenario required either the ability to completely isolate the
prover, or a PKI in a very strong sense, where all verifiers must register keys in such a way that
we ensure they know their own secret keys. Secondly, a WI `-IPoK protocol can be used by a par-
tially isolated prover to register a public key with another party acting as a verifier (for example a
Certificate Authority) and prove knowledge of the corresponding secret key. In a companion pa-
per [DNW07], we show that this allows us to implement arbitrary multiparty computation secure
in the UC framework without setup assumptions (but instead relying on the physical assumption
that a party can be partially isolated). In some sense, this justifies our choice of considering
partially isolated parties for proofs of knowledge only rather than studying arbitrary multiparty
computation in general, since the latter follows from the former.

2 Σ-Protocols

An NP relation R is a set of pairs (x,w) where (x,w)
?
∈ R can be checked in poly-time in the

length of x. For such a relation we define the witnesses for an instance WR(x) = {w|(x, w) ∈ R}
and the language L(R) = {x|WR(x) 6= ∅}.

4

We use Σ-protocols throughout the paper. A Σ-protocol is given by four PPT ITMs (P, V,S,X).
In a Σ-protocol for relation R, the prover P is given (x, w) ∈ R and the verifier V is given x. The
protocol has three rounds: the prover P (x,w) sends the first message a, the verifier V (x) sends
a uniformly random challenge e ∈ {0, 1}l, and P returns a response z. At the conclusion of the
protocol, V (x) outputs a judgment J = accept or J = reject based only on the conversation
(x, a, e, z). An accepting conversation (x, a, e, z) is one for which V outputs accept. A Σ-protocol
is called complete for R if P (x,w) and V (x) always produce accepting conversations. It is called
special knowledge sound for R if, given two accepting conversations (x, a, e, z) and (x, a, e′, z′) with
e 6= e′, the extractor X outputs w = X (x, a, e, z, e′, z′) such that (x,w) ∈ R. It is called special
honest verifier zero-knowledge for R if for all (x,w) ∈ R the simulator S on input (x, e) produces a
simulated conversation (x, a, e, z) which is computationally indistinguishable from a conversation
produced by P (x,w) on challenge e. It is called statistical special honest verifier zero-knowledge for
R if the distribution of simulated conversations is statistically close to the distribution of conver-
sations produced by (P, V). A Σ-protocol is called a (statistical) Σ-protocol for R if it is complete,
special knowledge sound and (statistical) special honest verifier zero-knowledge for R. We call it
a Σ-protocol with large challenge space if the number of possible challenges is superpolynomial in
the security parameter κ, so that e ∈ {0, 1}l where l = ω(log(κ)).

Many relations in cryptography have statistical Σ-protocols, but not all NP relations are
known to have statistical Σ-protocols. If however there exists perfect binding, computationally
hiding commitment schemes then all NP relations have a Σ-protocol with computational special
honest verifier zero knowledge. For completeness we recall one such construction in Appendix A.
Any Σ protocol can be made into a protocol with large challenge space. This is simply done by
choosing κ independent first messages a = (a1, . . . , aκ), then having κ challenges e = (e1, . . . , eκ)
and giving κ responses z = (z1 . . . , zκ). It is easy to verify that this protocol is complete, special
knowledge sound and (computational) special honest verifier zero-knowledge for R if the original
protocol is as well.

Given two NP relations R1 and R2 one can define R = R1 ∨ R2 by ((x1, x2), w) ∈ R iff
(x1, w) ∈ R1 or (x2, w) ∈ R2. Given two Σ-protocols Σ1 and Σ2 for R1 respectively R2 one
can use the OR-construction [CDS94] to construct a Σ-protocol Σ = Σ1 ∨ Σ2 for R1 ∨ R2. This
Σ-protocol will in addition be witness indistinguishable (WI) in the sense that a proof with instance
x using witness w1 is (at least computationally) indistinguishable from a proof with instance x
using witness w2 for an arbitrary (PPT) cheating verifier V ∗ – even if V ∗ is given w1 and w2.
This in turn implies that the proof is witness hiding (WH) if the relations are hard: A cheating
verifier which can compute a witness for R with non-negligible probability p, after seeing a proof,
by definition computes a witness for either R1 or R2 with probability p. If we let P use a random
witness, wl ∈ {w1, w2}, then because of WI, the cheating verifier will compute the witness w3−l

not used by P with a probability negligibly close to p/2. This would contradict the hardness of
R3−l.

3 Isolated Proof of Knowledge and Isolated Zero-Knowledge

We start by introducing the notions of ∞-IPoK and ∞-IZK, and then discuss how to restrict the
communication. An interactive proof system is defined by the PPT ITMs (P, V). We define the
following notions:

Completeness

For a proof system (P, V) we define completeness by letting some PPT environment Z pick
(x,w) ∈ R and then running (P, V) on (x,w). We require that V accepts with all but negligible

5

probability. For simplicity we consider only protocols running in some fixed number of rounds ρ.
The honest execution proceeds as in Fig. 1. We require that Pr[ExecR

P,V,Z(κ) = 0] is negligible in
κ for all PPT Z.

setup: First all entities are given κ. Then Z is run to produce (x, w) ∈ R. Then (x,w) is input to P
and x is input to V .

execution: Then for r = 1, . . . , ρ the verifier V is activated to produce a message v(r) that is input
to P which is activated to produce a message p(r) that is input to V . Then V is activated to
produce a judgment J ∈ {accept, reject}. The output of the execution is a bit Exec, where
Exec = 1 iff J = accept.

Figure 1: Execution ExecR
P,V,Z(κ) with honest parties.

Knowledge Soundness

To define knowledge soundness, we model a cheating prover by replacing P with an arbitrary
PPT ITM P ∗. We assume that the cheating prover is able to communicate with its environment
during the attack on V . This models the scenario where a cheating prover, for instance, might be
able to observe surrounding protocols (of which the proof might be a part) and might be a part of
a larger coordinated attack on these protocols. In addition we now allow the environment to pick
x which is not necessarily in L(R). We augment the game with a PPT extractor X whose goal
is to recover the witness w. It is unreasonable to assume that the extractor is able to compute a
witness from the state of the prover alone, since it is possible that the environment simply gives
the witness to the prover as part of their communication and hence the prover does not “know”
the witness at the beginning of the protocol. However, even in such a scenario, the prover does
know a witness at the conclusion of the proof and hence we should allow it.

setup: First all entities are given κ. Then Z is run to produce x, and x is input to P ∗ and V .

execution: Then for r = 1, . . . , ρ the verifier V is activated to produce a message v(r) that is input
to P ∗ which is activated to produce a message p(r) that is input to V . Besides this P ∗ can at
any time output a message y to Z and get back a reply z. At the conclusion of the ρ rounds,
the verifier V produces a judgement J ∈ {accept, reject}.

extraction: The output of an execution is a bit Extr. If J = reject then Extr = 1. Otherwise we
construct the view σ to be a concatenation of the random coins of P ∗, the messages v(r), p(r)

exchanged between prover and verifier, and all the messages exchanged between prover and
environment. We let w = X (κ, σ). If w ∈WR(x), then Extr = 1 and otherwise Extr = 0.

Figure 2: Strong knowledge soundness extraction: ExtrR
P ∗,V,Z,X (κ)

Strong knowledge soundness: One option for defining knowledge soundness is to require that
the witness w ∈WR(x) can be computed from the view of the prover (including its random coins
and its communication with the verifier V and environment Z) at the conclusion of any accepting
run of the protocol. The extraction game is outlined in Fig. 2. We define strong knowledge
soundness by requiring that for each PPT environment Z and each PPT cheating prover P ∗ there
exists a PPT extractor X such that Pr[ExtrR

P ∗,V,Z,X (κ) = 0] is negligible in κ.

Simulation based knowledge soundness: As the naming suggests, the above notion of
“knowing a witness” is stronger than what is required in many scenarios. We propose an alterna-

6

tive approach that is heavily influenced by the ideas of the Universal Composability framework.
We define a real world interaction between a cheating prover, verifier and environment in Fig. 3.
We compare this to a simulated execution outlined in Fig. 4 where the extractor X replaces the
machines P ∗ and V .

setup: First all entities are given κ. Then Z is run to produce x, and x is input to P ∗.

execution: Then for r = 1, . . . , ρ the verifier V is activated to produce a message v(r) that is input to
P ∗ which is activated to produce a message p(r) that is input to V . Besides this P ∗ and Z can
communicate arbitrarily. At the conclusion of the ρ rounds, the verifier V produces a judgement
J ∈ {accept, reject} which is given to Z. Lastly Z outputs a bit Exec ∈ {0, 1}.

Figure 3: Real world execution with cheating prover: ExecR
P ∗,V,Z(κ).

setup: First all entities are given κ. Then Z is run to produce x, and x is input to X .

execution: The machines X and Z may communicate arbitrarily. At some point, X produces a
judgement J ∈ {accept, reject} and a string w ∈ {0, 1}∗. Lastly, J is given to Z which
outputs a bit Sim ∈ {0, 1}.

Figure 4: Simulated execution with extractor: SimR
X ,Z(κ).

The extractor X is a PPT ITM with protocol access to Z. Specifically, it cannot rewind the
environment. However, it can run an internal copy of P ∗ which it can rewind at will. We have
two requirements:

1. The environment cannot distinguish interactions with P ∗ and V from interactions with X .
Formally, |Pr[ExecR

P ∗,V,Z(κ) = 1] − Pr[SimR
X ,Z(κ) = 1]| is negligible in κ. This ensures

that the extractor produces J = accept with roughly the same probability as an honest
verifier interacting with the cheating prover, even conditioned on the random coins of the
environment.

2. In the simulation game, whenever the extractor gives the judgement J = accept, it also
output w ∈WR(x) with all but negligible probability.

We define simulation based knowledge soundness by insisting that for any PPT environment Z and
any PPT cheating prover P ∗, there exists a PPT extractor X which satisfies the two requirements
above. It is easy to see that an extractor which satisfies the simulation based knowledge soundness
definition is necessary and sufficient to UC simulate the interaction between a corrupted prover
and an honest verifier.

Most of our positive results will have strong knowledge soundness extractors and we will be
explicit when this is not the case. However, to capture the full range of constructions, and to
make our impossibility results as strong as possible, we say that a protocol is ∞-IPoK if it has
simulation based knowledge soundness. We explore the relationship between the two notions in
Section 3.1.

If there exists one X which works for all provers P ∗ and all environments Z, and X only
uses rewinding black-box access to P ∗, then we say that (P, V) is a black-box ∞-IPoK for R.
Sometimes we allow a small cheat and let X run in expected polynomial time in which case we
say that the protocol is an expected ∞-IPoK.

7

Zero Knowledge

We model a cheating verifier by replacing V with an arbitrary PPT ITM V ∗. We assume that
the cheating verifier is able to communicate with its environment during the attack on P . We
model this by allowing V ∗ to communicate with Z. We assume that the execution stops by Z
outputting a bit. The execution with a cheating verifier is given in Fig. 5.

To define zero-knowledge we compare the execution ExecR
P,V ∗,Z to a simulation SimR

S,Z , where
S is an ITM acting as simulator. We want to capture that the proof does not leak any information
on w to V ∗ which V ∗ could not have generated itself. We model the information that V ∗ can
collect by what it is able to output to the environment. The job of the simulator S is then
to demonstrate constructively that whatever V ∗ can leak to the environment could have been
computed by V ∗ without access to P . The details are given in Fig. 6. Because simulation using a
strict PPT simulator is hard, one usually allows a small cheat by letting S be expected PPT. We
say that (P, V) is ∞-IZK for R if, for every PPT environment Z and every PPT cheating verifier
V ∗, there exists an expected PPT simulator S such that |Pr[SimR

S,Z = 1]−Pr[ExecR
P,V ∗,Z(κ) = 1]|

is negligible in κ.

setup: First all entities are given κ. Then Z is run to produce (x, w) ∈ R. Then (x,w) is input to P
and x is input to V ∗.

execution: Then for r = 1, . . . , ρ the cheating verifier V ∗ is activated to produce a message v(r) that
is input to P which is activated to produce a message p(r) that is input to V ∗. Besides this V ∗

can at any time output a message y to Z and get back a reply z. The execution stops by Z
outputting a bit Exec ∈ {0, 1}.

Figure 5: Execution ExecR
P,V ∗,Z(κ) with a cheating verifier.

setup: First all entities are given κ. Then Z is run to produce (x,w) ∈ R. Then x is input to S.

execution: Then S can at any time output a message y to Z and get back a reply z ∈ {0, 1}∗. The
execution stops by Z outputting a bit Sim ∈ {0, 1}.

Figure 6: Simulation SimR
S,Z(κ)

Isolation

The above definition of ∞-IZK, ∞-IPoK is equivalent to that of universally composable zero
knowledge proofs of knowledge, as the cheating party is allowed arbitrary communication with
its environment. We now describe how a corrupted party is isolated from its environment. We
start with the cheating prover in Fig. 2. We do not restrict how much P ∗ and Z communicate
before or after the proof phase. However, from the point where P ∗ receives v(1) until it outputs
p(ρ) we require that P ∗ and Z communicate by writing on two designated tapes in and out. The
tape in is left-to-right write-only for Z and is read-only for P ∗ while the tape out is left-to-right
write-only for P ∗ and read-only for Z. We say that P ∗ is (`Z , `P)-isolated if P ∗ never writes
beyond position `P on out and never reads beyond position `Z on in. We say that P ∗ is `-
isolated if it is (`, `)-isolated. We restrict the cheating verifier in Fig. 5 in the same way, counting
its communication with Z from sending v(1) until receiving p(ρ). We then say that (P, V) is an
(`Z , `P)-IPoK for R if in the definition of knowledge soundness we restrict ourselves to (`Z , `P)-
isolated cheating provers P ∗. Similarly, we say that (P, V) is (`Z , `P)-IZK for R if we restrict the
definition of zero knowledge to only (`Z , `P)-isolated cheating verifiers V ∗. We define black-box
and expected notions as above. We use `-X to denote (`, `)-X.

8

Finally, we define the notion of a parameterized protocol which takes the security parameter
κ and the isolation parameter ` (polynomial in κ) as inputs and produces a protocol which is
secure under `-isolation. A parameterized IPoK for R produces an `-IPoK. We often simply call
a parameterized IPoK an IPoK. Letting C(κ, `) denote the communication complexity of the
produced `-IPoK, we use C(κ, `)/` to denote the overhead of the IPoK. A parameterized IZK, or
just an IZK, for R takes κ, ` as inputs, and produces an `-IZK protocol. The overhead is defined
similarly. An IPoK + IZK compiler produces a protocol which is `-IPoK and `-IZK.

3.1 Relationship Between the Two Notions of Soundness

We show that, as the naming implies, strong knowledge soundness is strictly stronger than sim-
ulation based knowledge soundness. First assume that, for some environment Z and prover P ∗,
there is a strong knowledge soundness extractor X . We construct a simulation based knowledge
soundness extractor X ′ as outlined in Fig. 7. It is easy to see that the simulation is indistin-

1. X ′ runs an internal copy of P ∗ and V . It allows them to interact without interference and
forwards messages from Z to P ∗ and from P ∗ to Z. It stores the transcripts of these commu-
nications as well as the transcript of the protocol with V .

2. At the conclusion of the protocol, the extractor X ′ outputs the judgement J that was produced
by the internal copy of the verifier V .

3. If J = 1 then X ′ constructs the view σ as the random coins of P ∗, the transcript of the proof
with V and the transcript of the communication with Z. It outputs w = X (κ, σ).

Figure 7: Reduction of simulation based knowledge soundness to strong knowledge soundness

guishable from real world execution; in fact Pr[ExecR
P ∗,V,Z(κ) = 1] = Pr[SimR

X ,Z(κ) = 1] since
X ′ faithfully runs the real execution internally. In addition when J = accept, then X ′ outputs
w ∈WR(x) with all but negligible probability since X computes a witness with all but negligible
probability.

We now show that strong knowledge soundness is strictly stronger than simulation based
knowledge soundness under the assumption that there exists a IND-CPA secure dense public key
encryption scheme. Let (E,D) be the encryption and decryption algorithms for such a scheme.
Also, let R be an NP relation which is hard on average.1 Consider the protocol between P (w, x)
and V (x) outlined in Fig. 8.

1. The verifier V (x,w) obliviously samples a random public key pk which it sends to P (x).

2. The prover P sends C = Epk(w) to V .

3. The prover runs a Σ-protocol proof (with large challenge space) that C is indeed an encryption
of a witness for x. Formally the protocol Σ will be a proof for the NP relation R′ which consists
of instances (C, x) and witnesses (r, w) such that C = Epk(w; r) and (x, w) ∈ R. The verifier
accepts if the run of Σ is accepting.

Figure 8: Protocol with only simulation based knowledge soundness.

The protocol is not witness hiding since a cheating V ∗ can chooses the public key pk so that
it does know a corresponding secret key. However, the protocol is HVZK since Σ is HVZK, and
the encryption scheme is IND-CPA so step 2 can be simulated by sending C = Epk(0).

1For example, for any one way function f the relation (x, w) where w is a random string and x = f(w). One
way functions are implied by IND-CPA public key encryption.

9

We show that the protocol is simulation based knowledge sound but not strong knowledge
sound with respect to a completely unisolated prover. In the introduction we mentioned the simple
attack in which the cheating prover simply acts as a channel for an honest proof performed by
the environment. In the definition of strong knowledge soundness, the existence of an extractor
which works for such a prover and environment implies that one may extract a witness from
the transcript of an honest proof alone. Since the protocol is HVZK, this would contradict the
hardness of R and hence a strong knowledge soundness extractor does not exist.

However, the simulation based soundness extractor can run a dishonest proof with P ∗ by
choosing a public key for which it does know a secret key sk (and otherwise acting as an honest
verifier). The distribution of such an interaction is equivalent to that of an interaction with
an honest V and hence cannot be distinguished by the environment from a real interaction. In
addition, the extractor can extract w = Dsk(C). It wins with all but negligible probability since,
if C is not a valid encryption of the witness, the prover and environment together will fail in
giving an accepting run of the Σ-protocol with all but negligible probability.

This example highlights the difference between strong knowledge soundness and simulation
based knowledge soundness. One can interpret simulation based soundness as meaning that the
environment’s communication indeed leaks a witness to the prover, but the prover can choose not
to learn it.

In the introduction we mentioned the simple attack in which a prover acts as a channel for
an honest proof performed by the environment. We argued that the existence of an extractor
that works relative to this attack implies that an honest verifier must learn the witness from an
accepting proof. The argument we gave holds for strong knowledge soundness but, as we just saw,
does not hold for simulation based soundness. However, we can still use the same reasoning to say
that an∞-IPoK with simulation based knowledge soundness cannot be witness hiding. When the
cheating prover simply channels an honest proof performed by the environment, the simulation
based knowledge extractor cannot learn more by interacting with the environment than what a
cheating verifier could learn from a single run of the proof.

4 Some Impossibility Results

In this section we give impossibility results which points forward to some of the later positive
results.

4.1 Impossibility of ∞-IPoK and ∞-IZK

In the introduction (and in Section 3.1) we gave a simple argument showing that one cannot
construct a witness hiding ∞-IPoK without setup assumptions. This means that, in order to
get some meaningful notion of security, we must isolate the prover. We now show that when
the verifier is unisolated, one cannot achieve a zero knowledge proof of knowledge even when the
prover is completely isolated. The proof is based on the techniques used in [CKL03].

Theorem 1 Any relation R in NP which has an (expected) ∞-IZK, (expected) 0-IPoK protocol,
also has an (expected) PPT algorithm which gets a random instance x in the language L(R) and
outputs a witness w such that (x,w) ∈ R.

Proof: Consider a corrupted verifier V ∗ which acts as a channel between the honest prover P and
environment Z. The environment Z internally runs the code of the honest verifier to produce
the challenge messages. It outputs 1 if the proof is accepting and 0 otherwise. For any protocol,
the completeness property ensures that the environment will output 1 with all but negligible
probability. The simulator S simulating the corrupted verifier in the ideal world only gets x but

10

does not get w. In order for the simulator to succeed, it must run an accepting proof with the
environment with all but negligible probability. Hence, since the protocol is 0-IPoK, there is an
efficient extractor which can extract a witness from the simulator S with probability 1−negl(κ).
The extractor and simulator together form a (expected) PPT algorithm which gets input x and
can, with all but negligible probability, extract some witness w. QED

This result shows us that we cannot get full ZK by just isolating the prover. However, we will
show that one can still get non-trivial `-IPoK protocols which are zero knowledge in the standard
sense or at least witness indistinguishable.

4.2 Σ-Protocols are (only) expected `-IPoK, (only) for Very Small `

We explore for which isolations one can expect a simple Σ-protocol to be an `-IPoK.

Theorem 2 If there exist perfectly binding, computationally hiding commitments, even a Σ-
protocol with large challenge space for relation R need not be a black-box, strict 0-IPoK for R.
However, any such protocol is black-box, expected (O(log(κ)),∞)-IPoK for R and also black-box,
expected (∞,O(log(κ)))-IPoK for R.

It is well-known that a Σ-protocol with large challenge space is a black-box, strict PoK in the
standard sense and hence this result shows that there is some subtle difference between standard
PoK and 0-IPoK. In the standard sense of PoK, the usual strict PPT extractor for a Σ protocol
runs the prover once honestly then rewinds and tries one random alternate challenge hoping to
get two accepting conversations. It has a non-negligible probability of success which is amplified
by repeating the above process several times with fresh random coins for the prover.

In our setting this cannot be done since even a 0-isolated cheating prover can communicate
with the environment prior to the start of the proof and hence the environment can determine the
randomness of the prover. The extractor is prevented from running many independent instances
of the proof since it cannot rewind the environment. In Appendix B we give a general result,
showing that if there exist perfectly binding, computationally hiding commitments, then there
also exists a Σ-protocol which is not a strict, black-box 0-IPoK.

The usual expected PPT rewinding extractor (in the standard sense) for a Σ protocols simply
runs the cheating prover on alternate uniformly random challenges until it answers two of them
correctly. This extractor only rewinds to the challenge portion of the proof and does not need
to start the prover with fresh randomness. Hence it is also satisfies our definition of an expected
PPT strong knowledge soundness extractor for a 0-isolated prover, and so a Σ protocol with a
super-polynomial challenge space is indeed an expected 0-IPoK.

The intuition behind the results that a Σ-protocol with super-polynomial challenge space is
black-box, expected (O(log(κ)),∞)-IPoK and black-box, expected (∞,O(log(κ)))-IPoK is that
a Σ-protocol is a black-box, expected 0-IPoK and that O(log(κ)) bits of communication should
not help a PPT machine as they can be guessed. So, a Σ-protocol is O(log(κ))-IPoK. Then one
observes that allowing more communication in one direction does not make the channel strong
enough to violate IPoK.

Given these intuition, the proofs are fairly straight forward, and can be found in Appendix B.
In the next section we show that once ` becomes super-logarithmic, we can no longer expect a Σ
protocol to be an `-IPoK, at least not with a black-box extractor.

4.3 Impossibility of Constant-Round Black-Box IPoK

We prove that no black-box IPoK compiler can run in a constant number of rounds. In fact, we
prove the following stronger result.

11

Theorem 3 Any black-box construction of a witness hiding (expected) IPoK compiler, parame-
terized by the communication threshold ` and the security parameter κ, with ρ rounds of commu-
nication must satisfy `/ρ = O(log(κ)).

This is result implies that once ` is super-logarithmic (` = ω(log(κ))), then no protocol with
O(1) rounds can be a witness hiding `-IPoK.

We give a high level sketch of the proof and defer the full proof to Appendix C. For any
protocol with sufficiently few rounds of communication, we define a prover P ∗ and environment
Z which share a (hardcoded) secret key. The prover has a hardcoded witness w which it uses
to follow the protocol honestly. However, it also “checks in” with the environment prior to
outputting any protocol message. This is done by P ∗ computing a short (length `/ρ) digest of
its view of the protocol thus far, sending it to Z, and having Z reply with an authentication tag
(also length `/ρ) for this digest using the shared secret key. An extractor can rewind P ∗ and
send some modified challenge. However, this will produce a different view. Hence, in order for
the extractor to get any additional information via rewinding, it has to be able to efficiently find
a collision (two views with the same digest) or guess the authentication tag. This is only possible
if `/ρ = O(log(κ)).

5 Some Possibility Results

5.1 A Simple Black-Box WI IPoK for NP

Given any NP relation R, let Σ be a computational Σ-protocol for R. We present a simple
construction of an IPoK compiler for R using the protocol Σ. For any ` and κ, let Σ∗ be the proof
system where Σ is run ρ = ` + κ times in sequence with one-bit challenges: For r = 1, . . . , ρ, first
P computes the first message ar for Σ and sends it to V . Then the verifier sends a uniformly
random er ∈ {0, 1} and P returns the response zr to V . The verifier V accepts iff (x, ar, er, zr) is
accepting for all r = 1, . . . , ρ.

Theorem 4 The proof system Σ∗ is an `-IPoK for R. In addition, it is 0-IZK.

It is well known that there is an expected PPT simulator which simulates many repetitions of a
Σ-protocol with 1 bit challenges for any isolated malicious verifier V ∗. Hence the above system
is 0-IZK. This also implies that it is witness indistinguishable (WI).

To see that Σ∗ is `-IPoK, let P ∗ be any cheating prover for ExecR
P ∗,V,Z(κ). The strong

knowledge soundness extractor gets the transcript of a random accepting execution. Then, for
each r = 1, . . . , ρ, it rewinds P ∗ to the point just before er was sent to P ∗ and sends er ′ = 1− er

instead. If P ∗ sends anything to Z, then the extractor aborts the work on round r. Otherwise,
it runs P ∗ and gets a response zr ′. If (x, ar, er ′, zr ′) is accepting, then we can use the special
knowledge soundness of Σ to compute w ∈WR(x). Otherwise, the extractor proceeds to the next
round. If no round yields w ∈WR(x), then it gives up.

Clearly X is PPT. We want to show that the probability that P ∗ yields an accepting execution
which X cannot extract is negligible; We call such an execution a winning execution since on such
executions Z and P ∗ win the extraction game outlined in Fig. 2.

First let us frame the problem more abstractly. The random coins of P ∗ and Z together
completely determine a strategy of how P ∗ responds to the challenges posed by V . We model
such a strategy as a binary tree T . The edges of the tree represent the two possible challenges
the verifier can send at any point in the protocol. The nodes of the tree represent the possible
views of the prover P ∗ at various stages in the protocol. An execution of the protocol between
P ∗ and V corresponds to a random path from the root of the tree to a leaf.

12

We call a node e-correct if the prover that finds itself in the state represented by that node gives
the correct response (one on which the verifier does not reject) for the challenge bit e ∈ {0, 1}.
Otherwise we call the node e-incorrect. Similarly we call a node e-communicating if, on the
challenge bit e, the prover communicates with the environment before giving a response.

Now let us look at the paths in the tree T that correspond to winning executions. For any
node N along such a path, let e be the challenge bit that corresponds to the outgoing edge of N
which lies on the path of the winning execution and let ē = 1− e. Then

1. N is e-correct. This has to be the case since the path is accepting.

2. N is ē-incorrect or is ē-communicating. This has to be the case since otherwise the extractor
would be able to extract a witness from this execution.

Now assume that two winning paths diverge from a node N . Then by property 1, N is 0-correct
and 1-correct. By property 2, it then follows that N is 0-communicating and 1-communicating.
But there can be at most ` such nodes on any path since the prover can communicate at most `
times. This shows that the (non-regular) subtree of T containing only winning paths contains at
most 2` paths. There are 2κ+` total paths in T and hence the probability of choosing a winning
path is upper bounded by 1/2κ. We note that the above bound holds for any tree T and hence
the probability of a bad execution occurring in a tree randomly chosen using the coins of P ∗ and
Z is also upper bounded by 1/2κ which is negligible in κ.

5.2 A Constant Overhead, Blackbox WI IPoK for NP

We now describe a black-box IPoK which has a constant overhead. For any relation R, let Σ be
a Σ-protocol for R with conversations (x, a, e, z). We use Σ as a building block from which we
compile our `-IPoK protocol. The prover in the protocol chooses a first message a and computes
the answers z(0), z(1) corresponding to the challenges e = 0, 1. The prover then commits himself
to a specific secret sharing of z(0) and of z(1). Then there is a read phase which proceeds in many
rounds on each of which the verifier gets to see one of the shares of z(0) or of z(1). Lastly, the
verifier asks for an opening to one of the commitments and uncovers the entire sharing of z(e) for
e = 0 or e = 1. The verifier confirms that the shares received in the read stage correspond to
the committed sharing and that (x, a, e, z(e)) is a valid conversation for Σ. The extractor recovers
a witness by rewinding to each of the rounds in the read phase and recovering the shares of
both codewords. Intuitively, there will be enough rounds to ensure that the prover is unlikely to
communicate on many of them and so the extractor recovers enough shares to reconstruct the
secret. However, by the privacy of the sharing scheme, the verifier does not get enough shares in
the actual protocol learn anything about the unopened response. The detailed protocol is shown
in Fig. 9.

The protocol uses a perfectly binding commitment scheme which can commit to m bits using
a O(m)-bit string. It also uses a family of secret-sharing schemes SSS over some finite field
GF(2v). We write a secret sharing of a message z as (Z[1], . . . , Z[N]) = SSS(z; r), where r is the
randomness used. Here, Z[i] are the shares and they are elements in the field GF(2v). Below we
call (Z[1], . . . , Z[N]) a codeword.

We assume that there exists a constant α > 0 such that for any N there is an instantiation
of the secret sharing scheme which shares a message consisting of αN field elements and has a
privacy threshold αN (any αN shares of the codeword reveal no information about the shared
secret). In addition, the sharing allows efficient reconstruction when any αN of the shares Z[i]
are lost (i.e. replaced by ⊥). We call α the rate of the secret-sharing scheme. We could have
postulated different rates for all the parameters, but since we only need them to be constant,
working with one common rate greatly simplifies notation. Schemes of this type, where there is a

13

• The input to the prover is (x, w) ∈ R, and the verifier gets x.

• The following interaction is repeated for m = 1, . . . ,M :

1. We first have a commit phase. The prover computes:

(a) A random first message am for Σ.

(b) A response z
(e)
m to first message am and challenge e for e ∈ {0, 1}.

(c) A secret sharing Z
(e)
m = SSS(z(e)

m ; r(e)
m) of the secret z

(e)
m using randomness r

(e)
m (the

value Z
(e)
m is a codeword of N field elements which we denote by Z

(e)
m [n] for n =

1, . . . , N)

(d) a commitment c
(e)
m to the pair (z(e)

m , r
(e)
m).

The prover sends (am, c
(0)
m , c

(1)
m) to V .

2. We now have a read phase of N rounds, where in each round n = 1, . . . , N the verifier is
offered to read the n’th field element in one of the codewords Z

(0)
m or Z

(1)
m . Formally, for

n = 1, . . . , N

(a) V chooses a challenge e ∈ {0, 1,⊥} with probability distribution Pr(0) = Pr(1) = α/2,
Pr(⊥) = (1− α).

(b) If e 6= ⊥, P sends the field element Z
(e)
m [n] to V . Else it sends back ⊥.

If during this the verifier tries to read more than αN field elements in a single codeword
Z

(e)
m , then the prover stops the protocol, and the verifier rejects.a

3. Lastly, there is a verification phase, where the verifier is allowed to see the opening to one
of c

(0)
m or c

(1)
m to check that during the read phase it got valid shares of a valid response:

(a) V sends a uniformly random challenge b ∈ {0, 1} to P .

(b) P sends an opening of c
(e)
m to V which then recovers (z(e)

m , r
(e)
m).

(c) V verifies that

i. The shares of z
(e)
m received during the read stage were calculated correctly from

the sharing Z
(e)
m = SSS(z(e)

m ; r(e)
m).

ii. The conversation (x, am, b, z
(e)
m) is an accepting conversation of Σ.

aBut this happens only with negligible probability.

Figure 9: The Constant-Overhead Protocol

large gap between the number of shares that maintain privacy and the number of shares needed
to reconstruct, are often called “ramp schemes” and have the advantage that share size can be
made significantly smaller than the size of the secret.

A well known ramp scheme can be constructed by modifying Shamir secret sharing so that
the shares are defined by evaluating a polynomial of degree 2αN −1 in which the secret makes up
the top αN high degree coefficients and the remaining coefficients are random. This scheme has
αN privacy and 2αN shares can reconstruct so we just need N ≥ 3αN or equivalently α ≈ 1/3.
To get codewords of length N we also need that v = log2(N) which (as we will see later) will not
give us a constant round scheme. However, it is also possible to use ramp secret sharing schemes
over small (constant sized) finite fields which were studied in [CC06], [CCGHV07]. In particular,
the result of [CCGHV07] shows how to use algebraic geometric codes to get a scheme with α = 5

21
in the finite field GF(2v) with v = 6. The code is based on the curves of Garćıa and Stichtenoth
for which there are efficient constructions.2

2Unfortunately, such codes do not exist for all N . However, for any N there is an N ′ in the interval N ≤ N ′ ≤ 8N
for which we can construct such a code. We ignore this subtlety in further discussion since it means at most a

14

To simplify analysis we assume that the communication complexity of the original Σ protocol
is f(κ). In the protocol we pick

N ≈ max(α−1f(κ) , 4−1α−1`/κ) (1)
M ≈ (βL + βF + 1)κ + 1 (2)

where we define the constants

βL ≈ 16α−1 log2(e) , βF ≈ −1/ log2(α/4) (3)

Then SSS allows us to share a message consisting of αN ≥ f(κ) field elements, each of length
v bits, which gives the capacity of at least f(κ) bits and hence enough to share a response z of
the protocol Σ.

5.2.1 Communication Complexity

The communication complexity of all the commit phases and all of the verification phases is
O(Mf(κ)) The communication complexity of a single read phase is simply (v + 2)(N) since it
takes 2 bits to encode the challenge e and v bits to encode the response. The communication
complexity of all the read phases is then MN(v + 2). Since N ≥ f(κ), the total communication
complexity of the protocol is then O(MNv). Under the assumptions that ` ≥ 4κf(κ), equation
(1) just becomes N ≥ 4−1α−1`/κ. Assuming, in addition, that v is constant, the communication
complexity of the protocol simply becomes O(`) which means that the protocol has a constant
overhead for large enough `.

The round complexity of the protocol is O(MN) which, under the above assumptions on `
and v, is also O(`).

5.2.2 Completeness

It is clear that and honest prover and an honest verifier generate an accepting conversation as
long as the verifier does not try to read more than αN positions in the same codeword. The
expected number of field elements an honest verifier reads in a particular codeword is (α/2)N .
Using the Chernoff bound, it is easy to see that the probability of reading more than αN elements
in a single codeword is negligible in N and hence also in κ. Using union bound, we see that the
probability of this happening for any one of the possible 2M codewords is still negligible in κ.

5.2.3 Extractor

The strong knowledge soundness extractor X is outlined in Fig. 10.
We analyze the probability that a prover P ∗ working with the environment Z succeeds in

producing an accepting conversation with an honest verifier V , but the extractor X subsequently
fails to recover a witness. We say that P ∗ and Z win the extraction game if the above event
occurs. Assume that there exist Z and P ∗ which win the extraction game with probability p. This
probability is taken over the random coins of Z, P ∗ and V (but extraction is deterministic). Then
there is some particular value of the coins of Z and P ∗ for which they win the extraction game with
probability at least p. In other words, if there exists Z and P ∗ which win the extraction game with
non-negligible probability, then there also exist deterministic Z and P ∗ which win the extraction
game with non-negligible probability. For the sake of an easier analysis we will therefore assume
that Z and P ∗ are deterministic. We define an execution E as a random conversation between
P ∗ (acting together with Z) and V where the randomness is taken only over the random coins

small constant blowup of our parameters.

15

1. The extractor is given x and black-box rewinding access to a prover P ∗ with some initial ran-
domness ω that produced an accepting conversation with V . In addition, the extractor gets the
transcript of the original accepting conversation. It then tries to reconstruct as much as possible
of the 2M codewords Z

(e)
m .

2. For each epoch m = 1, . . . ,M and each index n = 1, . . . , N , the extractor rewinds the prover
to the state it was in right prior to step 2 (a) of the protocol. For each of the challenge bits
e = 0, 1:

• The extractor sends the challenge e to the P ∗.

• If the prover P ∗ attempts to communicate with the environment before sending a response,
the extractor counts this share as a loss and sets Z

(e)
m [n] := ⊥.

• Otherwise, the prover sends a response s ∈ GF(2v) and the extractor sets Z
(e)
m [n] := s

3. After this, each of the 2M codewords Z
(e)
m have been defined with some shares containing the

loss symbol: Z
(e)
m [n] = ⊥.

4. For each m the extractor attempts to reconstruct z
(0)
m , z

(1)
m using the codewords Z

(0)
m , Z

(1)
m

respectively.a If it succeeds, and both (x, am, 0, z
(0)
m), (x, am, 1, z

(1)
m) are accepting conversations,

then the extractor uses special knowledge soundness of Σ to compute the witness w. Otherwise
(if the above does not happen for any m) the extractor fails.

aThis is not an optimal extraction strategy since the extractor ignores the fact that one of z
(0)
m , z

(1)
m was

revealed during the verification phase of the accepting proof. However, the outlined strategy is easer to analyze.

Figure 10: The Strong Knowledge Soundness Extractor X

of V only. We define E to be the set of all possible executions. Since extraction is deterministic,
an execution completely defines the extraction process and, in particular, completely determines
weather the extractor succeeds.

We define some subsets of E . Let the accepting executions A be the subset of executions in
which V accepts, and let the bad executions B be the subset of executions on which the extractor
fails to extract a witness. Then A ∩ B is the set of accepting executions in which the extractor
fails to extract. It is therefore sufficient to prove the following theorem:

Theorem 5 For any deterministic strategy of a prover and an environment, we have Pr[A∩B] ≤
(3)2−k.

We start with some definitions. For a given execution E ∈ E , an epoch m denotes the portion
of the conversation that corresponds to steps 1 through 3 of the protocol for a particular choice
of m ∈ 1, . . . ,M .

For a given epoch m = 1 . . . , M , a challenge round n = 1, . . . , N , and a bit e ∈ {0, 1} we
define the share Z

(e)
m [n] ∈ GF(2v) ∪ {⊥} to be the share recovered by the extractor. Together,

these shares define the codeword Z
(e)
m recovered by the extractor.

We call Z
(e)
m a faulty codeword if one or more of the shares Z

(e)
m [n] is not consistent with the

secret sharing SSS(z(e)
m ; r(e)

m), where (z(e)
m , r

(e)
m) is the value contained in the commitment c

(e)
m sent

by the prover in the original proof.3 Since the commitment scheme is perfectly binding, this
notion is well defined, even though the extractor does not know which shares are faulty. We call
m a faulty epoch if either of the codewords Z

(0)
m , Z

(1)
m is a faulty codeword.

3Technically, we also include some border cases in this notion, such as the prover aborting or responding with
garbage on the challenge e. In these cases the extractor can just set the share to be 0 and we call it a faulty share
as well.

16

We call Z
(e)
m a lossy codeword if more than αN of the shares Z

(e)
m [n] contain the value ⊥. We

call m a lossy epoch if either of the codewords Z
(0)
m , Z

(1)
m is a lossy codeword.

We call an epoch m an invalid epoch if one of the commitments c
(e)
m for e = 0 or e = 1,is a com-

mitment to some (z(e)
m , r

(e)
m) such that the conversation (x, am, e, z

(e)
m) is not a valid conversation

in Σ.
We call an execution faulty if it has more than (βF)κ faulty epochs. We call an execution

lossy if it has more than (βL)κ lossy epochs and we call an execution invalid if it has more than
κ invalid epochs. We use F , L and I to denote the set of faulty, lossy and invalid executions
respectively.

Lemma 6 A bad execution is either faulty, lossy or invalid. I.e., B ⊆ F ∪ L ∪ I.

Proof: We show that F ∪ L ∪ I ⊆ B. So, assume that E ∈ E is not faulty, lossy or invalid. Then
there are at most (βF + βL + 1)κ faulty lossy or invalid epochs and hence there is at least one
epoch which is neither faulty nor lossy nor invalid. In this epoch both of the codewords Z

(e)
m have

at most αN loss symbols and no faulty shares. Using the properties of the sharing, the extractor
then correctly recovers both z

(0)
m and z

(1)
m which correspond to the committed responses. Since

the epoch is also not invalid, these responses form two accepting conversation (x, am, e, z
(e)
m) and

hence the extractor recovers a witness w. This means that E ∈ B. QED

Using the above lemma we see that

Pr[A ∩ B] ≤ Pr[A ∩ (F ∪ L ∪ I)] ≤ Pr[A ∩ F] + Pr[A ∩ L] + Pr[A ∩ I]

In Appendix D we show that the three probabilities on the right hand side of the above equation
are each bounded by 2−κ which completes the proof of Theorem 5.

5.2.4 The ZK Simulator

Lastly we show that the protocol is 0-IZK which in turn implies that it is WI. Here we simply
modify the usual simulator for simulating many repetitions of a Σ protocol with 1-bit challenges.
On each epoch m, the simulator uses the special HVZK property to produce a random conversation
(a, e, z) for Σ where e is a random bit. It then, in addition, produces a random secret sharing
SSS(z; r) and a commitment c

(e)
m to (z, r). In addition it produces a commitment c

(1−e)
m to some

garbage. It then sends (a, c
(0)
m , c

(1)
m) to V ∗. The simulator and the verifier then run the read phase

of the protocol in which the simulator responds with random field elements for the challenges
1− e and with secret shares of SSS(z; r) for challenges e. Lastly, in the verification phase if the
verifier V ∗ sends the challenge e then the simulator honestly opens c

(e)
m and goes on to the next

round. On the other hand, if V ∗ sends the challenge 1− e then the simulator rewinds V ∗ to the
beginning of the round and tries again.

This is an expected polynomial time simulation. It is indistinguishable from a real execution
by the hiding property of the commitment scheme and the privacy property of the secret sharing
scheme.

5.3 Constant-Round, Non-Blackbox IZK for NP

In this section we sketch a non-black-box construction of an `-IZK, 0-IPoK for NP based on
standard assumptions. The construction is highly inefficient, and thus primarily of theoretic
interest. The construction is obtained by a straight-forward modification of Barak’s non-black-
box zero-knowledge proof. Although we are mostly interested in IPoK protocols where the prover

17

is partially isolated but the verifier is not, we will use the construction of a 0-IPoK, `-IZK protocol
as a building block for later constructing an `-IPoK which runs in a constant number of rounds.

We will give the protocol only for cheating verifiers for which the code can be described with
some fixed polynomial number of bits κa and which uses only a fixed polynomial number of random
bits κb. A similar protocol was given by Barak for the standard setting (corresponding to full
isolation). As in [Bar] our basic protocol uses only perfect binding commitments. Generalizing
our protocol to tolerate arbitrary poly-time cheating V ∗ can be done exactly as in [Bar], by
additionally assuming a collision resistent hash function.

Assume that we have a perfect binding commitment scheme commit, which can commit to
any polynomial number of bits. For fixed integers a, b ∈ N, the protocol is given in Fig. 11.

1. The prover computes c1 = commit(0(a+b)κ; r1) and sends c1 to V .

2. The verifier selects a uniformly random string r ← {0, 1}`+κ and sends it to P .

3. Then P gives a WI 0-IPoK of a witness w′ = (w,M, r1, comm) for the relation R′ with instance
x′ = (x, c1, r) such that either (x,w) ∈ R or M ∈ {0, 1}(a+b)κ, c1 = commit(M ; r1), comm ∈
{0, 1}` and M is a description of TM M : {0, 1}κ×{0, 1}` → {0, 1}`+κ for which M(c1, comm) =
r.

Figure 11: Constant round 0-IPoK, `-IZK protocol

Knowledge Soundness. We prove that the protocol is 0-IPoK. Since the prover is com-
pletely isolated, we can use extraction to extract the proof in Step 3. This gives us either w
such that (x,w) ∈ R (in which case the extraction succeeds) or (M, r1, comm) such that c1 =
commit(M, r1), comm ∈ {0, 1}` and M is a description of TM M : {0, 1}κ × {0, 1}` → {0, 1}`+κ

for which M(c1, comm) = r (in which case the extraction fails). To see that the second case
happens with negligible probability, note that c1 fixes M , as commit is perfect binding. So,
M : {0, 1}κ × {0, 1}` → {0, 1}`+κ and c1 were fixed before r was send. So, before r was sent
there existed at most 2` strings r′ for which r′ = M(c1, comm) for some comm ∈ {0, 1}`. Since
r ∈ {0, 1}κ+`, r hits one of these strings r′ with probability at most 2−κ.

Non-Blackbox Isolated Zero-Knowledge. We prove that for any PPT environment Z and
any PPT verifier V ∗ that can be described with κa bits and which uses at most κb random bits,
there exists an `-IZK simulator S. For notational convenience we assume that the communication
between V ∗ and Z is of the form where V ∗ sends arbitrary messages to Z which then returns
single bit replies. We do not restrict the number of bits sent by V ∗ to Z, but require that at most
` bits are sent from Z to V ∗ and hence the restriction that Z sends only one bit replies can be
made without loss of generality as V ∗ can send the same message to Z multiple times.

The simulator S is given V ∗ and x as input, where V ∗ is described using a κa-bit string. It
then defines a TM M : First pick rV ∗ ∈ {0, 1}κb

and hard-code V ∗ and rV ∗ into M . On input
(c, comm), M proceeds as follows: It runs V ∗ with randomness rV ∗ and input c as if coming from
P . Whenever V ∗ sends a message intended for Z, it ignores this message and inputs the next bit
from comm to V ∗ as if coming from Z. When at some point V ∗ outputs r ∈ {0, 1}κ+` intended
for P , the machine M outputs r. This described a TM M : {0, 1}κ × {0, 1}` → {0, 1}κ+`. Since
rV ∗ is κb bits long and V ∗ can be described using κa bits, we can describe M using κa + κb bits.
The simulator S then computes c1 = commit(M ; r1). Then it runs V ∗ with the randomness rV ∗

previously hard-coded into M and sends c1 to P ∗. Then S runs V ∗ with Z. Whenever V ∗ sends
a message intended for Z, S sends it to Z to get back a bit, which it inputs to V ∗. When at
some point V ∗ outputs some string r′ ∈ {0, 1}κ+` intended for P , then S records the bits comm

18

so far sent from Z to V ∗, and pad comm to have length `. Note that by definition of M we
will have that M(c1, comm) = r′ for the r′ just sent by P ∗. So, now S can give the proof in
Step 3 using the witness (ε,M, r1, comm). Using the fact that the or-proof is WI, the simulation
is indistinguishable from a real execution.

5.4 From IZK to IPoK + IZK

Given any 0-IPoK, `-IZK proof for NP we can construct a proof for NP which is `-IPoK and `-IZK.
The construction uses a perfect binding commitment scheme and a dense public-key encryption
scheme. For notational convenience we assume that all κ-bit strings are public keys. The protocol
is described in Fig. 12. The protocol only has simulation based knowledge soundness but not
strong knowledge soundness.

1. The verifier sends c = commit(v; r) to P for a uniformly random v ∈ {0, 1}κ and a randomizer
r and gives a 0-IPoK `-IZK proof of (v, r) for which c = commit(v; r).

2. If the proof succeeds, then the prover sends a uniformly random p ∈ {0, 1}κ to V .

3. V sends v to P and gives a 0-IPoK `-IZK proof that there exists r such that c = commit(v; r).

4. If the proof succeeds, then both parties define a public key pk = p⊕v and P sends C = Epk(w; s)
to V .

5. Then P gives a 0-IPoK `-IZK proof that there exist (w, s) such that C = Epk(w; s) and (x,w) ∈
R.

Figure 12: From 0-IPoK, `-IZK to `-IPoK, `-IZK

Theorem 7 Assuming the existence of a perfectly binding commitment scheme and an IND-CPA
secure dense public-key encryption scheme, there exists a constant-round IPoK + IZK compiler
for NP. The constructed IPoK only has simulation based knowledge soundness.

Proof: We first describe the simulation based knowledge soundness extractor. The extractor runs
an internal copy of P ∗ and interacts with it by pretending to be a verifier. In the first step,
the extractor X lets c = commit(v; r) for a random v and gives the first 0-IPoK `-IZK proof
honestly. Then when V ′ receives p from P ∗, it samples a uniformly random key pair (pk, sk),
sends v′ = p⊕ pk and simulates a proof to P ∗ that there exists r such that c = commit(v′; r). If
P ∗ then gives an accepting proof, the extractor X outputs a judgement J = accept and outputs
w = Dsk(C). In the above process, the extractor X interacts with an internal copy of P ∗ in
a manner that is indistinguishable from the interaction with an honest verifier and hence the
environment can distinguish the real world interaction from interacting with an extractor with at
most negligible probability. In addition, since the proof given by P ∗ is 0-IPoK, it in particular
has soundness. This implies that w = Dsk(C) will be a correct witness with all but negligible
probability when J = accept.

We prove that the protocol is `-IZK. The simulator S runs the first three steps honestly, and
then sends C = Epk(ε; s). Then it simulates the `-IZK proof. To prove that this is simulation is
indistinguishable we need to appeal to the IND-CPA security of Epk. We do this through a series
of games argument:

1. We let game 1 be the execution with an environment Z, an honest prover P and a cheating
verifier V ∗.

2. In game 1, in step 1 of the protocol, the verifier V ∗ (while communicating with the environ-
ment Z) is able to run a 0-IPoK proof of knowledge of (v, r) such that c = commit(v; r). We

19

can think of (Z, V ∗) as one machine and hence there is a PoK extractor (in the standard
sense) which extracts a witness (v, r) with all but negligible probability. This extractor here
gets the internal state of Z and can rewind it but we are only using it to prove a reduction
rather than as a part of the simulation itself. Let game 2 be defined as game 1 except that
we replace P with P ′ which gets as input a random challenge public key pk, and in step 2
sends p = pk⊕ v so that p⊕ v = pk. This game has the same distribution as game 1 accept
for the possibility of the extractor failing, which is negligible.

3. We define game 3, which proceeds as game 2, except that now the proof of step 3 is simulated
by S rather than a real proof. The simulator is still given the instance C = Epk(w; s). Game
3 and game 2 are indistinguishable by the indistinguishability of the simulation.

4. Lastly we define game 4 in which, in addition, the ciphertext C is created as C = Epk(ε; s)
and the simulator for step 5 uses C as the instance. Game 4 and game 3 are indistinguishable
by the IND-CPA security of the encryption scheme. Game 4 is also equivalent to the process
run by the simulator.

This shows that the real world execution is indistinguishable from the simulation as we wanted.
QED

Note that if we use the constant-round 0-IPoK `-IZK from Section 5.3, then the above protocol
also is constant-round. This gives us the following corollary:

Corollary 8 Assuming the existence of a collision resistent hash-function, a perfectly binding
commitment scheme and an IND-CPA secure dense public-key encryption scheme, there exists a
constant-round IPoK + IZK compiler for any relations in NP.

5.5 Constant-Overhead, Constant-Round IPoK for NP using a Random Ora-
cles

In Section 4.3 we showed that non-black-box techniques are needed to construct a constant-round
IPoK compiler. We now present a very efficient constant round protocol using random oracles.
Later we discuss how to instantiate the random oracle using a non-black-box assumption.

As before, let R be an NP-relation, and let Σ be a Σ-protocol for R. We describe a constant
round protocol Σ+, which is intended to be a witness indistinguishable IPoK for R, constructed
from Σ. We assume an oracle H that takes inputs of size 3κ + ` bits and outputs κ bits. The
protocol is given in Fig. 13.

1. First V sends a uniformly random string r of length κ + ` bits to P .

2. Then P starts running κ instances of Σ. It sends the first messages a1, ..., aκ to V .

3. For i = 1, . . . , κ, P computes zi,0, zi,1, where zi,e is the prover’s response to the first message ai

and the challenge bit e in Σ. The prover then chooses random strings ri,0, ri,1 of length κ and
sets (si,0, si,1) = (H(r, ri,0, zi,0),H(r, ri,1, zi,1)) and sends (si,0, si,1) to V .

4. V sends random challenge bits e1, ..., eκ to P .

5. For i = 1, . . . , κ, P sends zi,ei
, ri,ei

to V . By calling H, V checks that si,ei
= H(r, ri,ei

, zi,ei
),

and also that (ai, ei, zi,ei) is an accepting conversation for Σ.

Figure 13: A WI IPoK from a Random Oraclec

20

Theorem 9 The proof system Σ+ is `-IPoK for R. The overhead is O(1) for large enough `. In
addition Σ+ is WI if Σ is WI.

Proof: As for the overhead, the communication is that of κ runs of the Σ-protocol (which is
poly(κ)) plus the sending of r, a total of ` + poly(κ). This gives an overhead of 1 + poly(κ)/`
which is O(1) for a large enough `. In fact, the overhead achieved is 1 + o(1). The protocol runs
in 4 rounds.

The required extractor simply looks at all oracle calls made by P ∗ and tests if there exists
two calls specifying inputs of form (r, ri,0, zi,0), (r, ri,1, zi,1) where the outputs were used by P ∗ to
form a pair (si,0, si,1) and where V would accept both zi,0 and zi,1. If so, it computes the witness
using the special soundness property of Σ, otherwise it gives up.

This works since P ∗ can send at most ` bits to the external entity, and so this entity will have
at least κ bits of uncertainty about r. Therefore all calls to H where r appears in the input must
have been made by P ∗, except with negligible probability. Furthermore, since oracle outputs are
κ bits long, they cannot be guessed except with negligible probability. Hence, any value si,bi

that
is checked by V in stage 5 of the protocol, must have been generated by P ∗ calling H on an input
r, ri,ei , zi,ei that V would accept. We say that such an element si,ei = H(r, ri,ei , zi,ei) generated
by P ∗ calling H is well formed.

It follows that, except with negligible probability, the only way in which P ∗ can construct a
set of pairs {(si,0, si,1)} that will make V accept and the extractor fail is if every pair (si,0, si,1)
contains exactly 1 well formed element. But then V accepts with probability only 2−κ.

If the underlying Σ-protocol is witness indistinguishable, than so are polynomially many
repetitions of the protocol run in parallel. The only additional information the cheating verifier
gets here are the hashes si,ēi = H(r, ri,ēi , zi,ēi) where ēi = 1− ei is the bit which the verifier did
not pick as a challenge in stage 4 of the protocol. However, these hashes look random (even if the
verifier knows a witness w and can guess zi,ēi) unless the verifier guesses ri,ēi which only happens
with negligible probability. Hence the protocol is indeed WI.

Modifying the above protocol so that the κ instances of Σ are run sequentially rather than
concurrently, would give us a 0-IZK protocol with O(κ) rounds of communication and the same
communication complexity as the above protocol. QED

We have stated the above result in the random oracle model for simplicity. But actually, we
only use the oracle in a limited way. We do not need a “programmable” oracle, i.e., the technique
where the security reduction gets to decide what the oracle should output. Therefore, using our
protocol does represent progress, in that one could not use our oracle to instead set up a common
reference string, which allows ∞-IPoK, ∞-IZK protocols, as this requires programmability.

We do use the fact that a random oracle outputs do not reveal information on the inputs.
However, the prover adds his own randomness when computing the hash and hence we should
be able to achieve this hiding property under standard assumptions. We rely on the random
oracle model to ensure that an output cannot be computed in a distributed fashion between
two parties, each having only some portion of the input (i.e. the cheating prover knowing r
and the environment knowing zi,e). We believe it should be possible to instantiate our oracle
with a concrete function and a well defined non-black-box assumption (such as the knowledge of
exponent assumption) rather than basing ourselves on a heuristic.

5.6 From IPoK + WI to IPoK + IZK

For theoretical interest we include the following construction of an IPoK + IZK from a WI IPoK.
In practice, this is only useful if we are in a situation where both the prover and the verifier can
be assumed to be isolated.

21

Given any WI IPoK protocol we can use the FLS paradigm [FLS99] to get a protocol which
is simultaneously IPoK and IZK for NP.

Theorem 10 Assuming the existence a perfectly binding, computationally hiding commitment
scheme, there exists an IPoK + IZK compiler for every relation in NP.

Proof: Let R be any NP relation. The verifier sends two commitments C0 = commit(m0; r0) and
C1 = commit(m1; r1) to κ-bit random elements m0 and m1 using randomizers r0 and r1 respec-
tively. Then V gives a WI `-IPoK of (m, r) such that C1 = commit(m; r) or C2 = commit(m; r).
It selects which witness (m1, r1) or (m2, r2) to use uniformly at random. If the proof is accepting,
then P gives a WI `-IPoK of (m, r,w) such that C0 = commit(m; r) or C1 = commit(m; r) or
(x,w) ∈ R.

To show that the protocol is `-IZK, the simulator runs V ∗ with Z until the first WI IPoK
ends. If it is accepting, then since V ∗ is `-isolated the simulator can apply the extractor to get
some (m, r) for which C0 = commit(m; r) or C1 = commit(m; r). Then the simulator runs the
second WI IPoK using the witness (m, r, ε), and `-IZK follows from WI.

To show that the protocol is `-IPoK, the extractor simply runs the extractor on the second
`-IPoK to get some (m, r,w) such that C0 = commit(m; r) or C1 = commit(m; r) or (x,w) ∈ R.
Using a standard argument we see that C0 = commit(m; r) and C1 = commit(m; r) happen with
only negligible probability and hence (x, w) ∈ R happens with all but negligible probability. If
the extractor extracts a witness (m, r) for C0 or C1 then, with probability close to 1

2 , this differs
from the witness used in the first `-IPoK (by witness indistinguishability) and hence the prover
and extractor together break the hiding property of the commitment scheme. QED

Using the constant overhead WI IPoK for NP described in Section 5.2, we get the following
corollary.

Corollary 11 If there exists a perfectly binding, computationally hiding commitment scheme,
then every NP relation R has an IPoK + IZK compiler with a constant overhead.

6 Applications of WI IPoK

6.1 Preventing “Man-in-the-Middle” Attacks on Identification Schemes

An identification scheme is an interactive protocol where one party acts as a prover to securely
prove its identity to another party acting as a verifier. Each prover has a public key which is known
to all others. The usual solution has the prover perform a witness hiding proof of knowledge of
the corresponding secret key. A “man-in-the-middle” attack on an identification scheme involves
a cheating party simultaneously acting as a verifier for party A and a prover for party B. By
simply acting as a channel and redirecting messages between A and B the adversary is able to
claim A’s identity and successfully convince the party B. A previous solution for preventing such
attacks, outlined in [CD97] requires a PKI in a strong sense: all the verifiers must have registered
public keys for which they are guaranteed to know the secret keys. Each prover then customizes
his proof to a specific verifier by proving knowledge of either his or the verifier’s secret key in
a witness indistinguishable fashion. The verifier is then unable to redirect the proof to another
party. Apart from requiring a strong PKI, in practice this also requires that the prover checks
the identity of the verifier that is being communicated with. For instance, if you use your mobile
phone to do a proof of identity and get access to some resource R, the phone must display the
identity of R, so you can verify that you actually meant to access R.

As an alternative solution, we propose using the physical assumption that the prover is `-
isolated from all parties aside from the verifier. We already discussed in the introduction scenarios

22

where this could be a reasonable assumption. The prover uses a witness indistinguishable `-IPoK
to prove knowledge of the witness for one of two hard problems (e.g. knowledge of the discrete log
of one of two randomly chosen group elements). By standard arguments, such a proof is witness
hiding. On the other hand, for any `-isolated prover that successfully runs such a proof, we have
an extractor that can extract a witness, so if any cheating prover can impersonate an honest
player, this breaks the hardness of the underlying problem (e.g. discrete log). This solution only
requires that the verifier knows the correct public key for the prover, and for this a standard
PKI suffices. In addition, the responsibility of not being fooled by man-in-the-middle attacks now
falls, not on the prover, but on the verifier who must ensure that any prover he is interacting
with is properly isolated. This places the burden on the physical design of the apparatus and so
is much less prone to human mistakes.

6.2 Setting Up a PKI for General UC MPC

It is known that general multiparty computation secure in the UC model is not possible without
an honest majority and without any additional setup assumptions [CKL03]. To remedy this,
previous work used reasonable setup assumptions such as the presence of a common reference
string (CRS) or the existence of a public key infrastructure (PKI) where players are guaranteed
to know the secret key corresponding to their registered public key. Both of the above assumptions
require a trusted third party to initialize the setup. It is desirable to eliminate (or at least reduce)
the level of trust required. For example, if the PKI is initialized by having players give their secret
key/public key pair to a certificate authority (CA) then even a CA controlled by an honest-but-
curious party would break the security of the system. It is interesting to note that we could
initialize the PKI by having players provide a proof using the ∞-IPoK, HVZK protocol in Fig. 8,
and thus allow Certificate Authorities which are controlled by an honest-but-curious party (or
alternatively, a CA that acts honestly but makes all its communications public). However, the
protocol is trivially insecure if the CA is actively malicious.

We instead propose using the physical assumption that a player can be partially isolated during
a portion of the computation. A variant of this setting was previously considered in [Katz07],
which showed that one can implement arbitrary multiparty computation in the UC framework
without any trusted third parties using tamper proof hardware tokens. In particular, such a token
is assumed to be able to interact with another player while being completely isolated from its
owner. With `-IPoK protocols, we can weaken the physical setup and only require that a party
can be partially isolated from the environment during a portion of the computation. The parties
register public keys with each other and provide proofs of knowledge of the corresponding secret
keys using an `-IPoK protocol where the prover functionality is `-isolated from the environment.
In a companion paper [DNW07], we show that this setup can be used as basis for UC secure
multiparty computation tolerating an arbitrary number of adaptive corruptions. Note that, in
particular, those results show that the witness hiding property of the registration proof is sufficient
and zero-knowledge is not required. This is an essential point, as in most settings it is unreasonable
to assume that both of the interacting parties are isolated from the environment and we showed
that one cannot achieve ZK without isolating the verifier to some extent.

7 Future Directions

The most interesting future research would be to improve the efficiency of the constructions we
gave. In particular, it would be nice to have a smaller constant overhead than what we achieve in
Section 5.2. Perhaps one could even find a black-box construction with an overhead of 1 + o(1)
or show that such constructions are impossible. In addition, it would be interesting to come up

23

with a specific reasonable non-black-box assumption (along the lines of the knowledge of exponent
assumption) under which one could prove the security of the protocol in Fig. 13 or some similar
protocol which runs in a constant number of rounds and has an overhead of 1 + o(1).

24

References

[Bar] Boaz Barak. How to go beyond the black-box simulation barrier. In Proc. 42nd Annual
Symposium on Foundations of Computer Science, pages 106-115. Las vegas, NV, USA,
14–17 October 2001 IEEE.

[BG92] Mihir Bellare and Oded Goldreich. On defining proofs of knowledge. In Ernest F.
Brickell, editor, Advances in Cryptology - Crypto ’92, pages 390–420, Berlin, 1992.
Springer-Verlag. Lecture Notes in Computer Science Volume 740.

[CD97] Ronald Cramer, Ivan Damg̊ard. Fast and Secure Immunization Against Adaptive
Man-in-the-Middle Impersonations In W. Fummy, editor, Advances in Cryptology -
EuroCrypt ’97, pages 75–87, Berlin, 1997. Springer-Verlag. Lecture Notes in Computer
Science Volume 1233.

[CDS94] Ronald Cramer, Ivan Damg̊ard, and Berry Schoenmakers. Proofs of partial knowledge
and simplified design of witness hiding protocols. In Yvo Desmedt, editor, Advances in
Cryptology - Crypto ’94, pages 174–187, Berlin, 1994. Springer-Verlag. Lecture Notes
in Computer Science Volume 839.

[CKL03] Ran Canetti, Eyal Kushilevitz, and Yehuda Lindell. On the limitations of universally
composable two-party computation without set-up assumptions. In Eli Biham, editor,
Advances in Cryptology - EuroCrypt 2003, pages 68–86, Berlin, 2003. Springer-Verlag.
Lecture Notes in Computer Science Volume 2656.

[CC06] Hao Chen and Ronald Cramer. Algebraic Geometric Secret Sharing Schemes and
Secure Multi-Party Computations over Small Fields In C. Dwork, editor, Advances
in Cryptology - Crypto 2006, pages 521–536, Berlin, 2006. Springer-Verlag. Lecture
Notes in Computer Science Volume 4117.

[CCGHV07] Hao Chen Ronald Cramer Shafi Goldwasser, Robbert de Haan and Vinod Vaikun-
tanathan. Secure Computation from Random Error Correcting Codes In M. Naor, ed-
itor, Advances in Cryptology - EuroCrypt 2007, pages 291–310, Berlin, 2007. Springer-
Verlag. Lecture Notes in Computer Science Volume 4515.

[DNW07] Ivan Damg̊ard, Jesper Buus Nielsen and Daniel Wichs. Universally Composable Mul-
tiparty Computation with Partially Isolated Parties. To Appear on ePrint

[FLS99] Uriel Feige, Dror Lapidot and Adi Shamir. Multiple Non-Interactive Zero-Knowledge
Proofs Under General Assumptions. In SIAM Journal on Computing, Volume 29, Issue
1, pages 1–28. Philadelphia, 1999. Society for Industrial and Applied Mathematics.

[GMR85] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of
interactive proof-systems (extended abstract). In Proceedings of the Seventeenth An-
nual ACM Symposium on Theory of Computing, pages 291–304, Providence, Rhode
Island, 6–8 May 1985.

[Katz07] Jonathan Katz. Universally Composable Multi-party Computation Using Tamper-
Proof Hardware. In Proceedings of EuroCrypt 2007, pages 115-128, Springer Verlag
LNCS 4515.

25

A A Computational Σ-Protocol for any PPT Relation

By a perfect binding and computationally hiding commitment scheme we mean a function commit(m; r),
where commit(m; r) = commit(m′; r′) implies that m = m′, and where commit(m; r) and commit(m′; r′)
are computationally indistinguishable when r and r′ are uniformly random. Sometimes such
schemes are defined in context of a key-generator pk = gen(s) and the commitment function
defined by commitpk(m; r); This is especially true when realized based on the RSA assumption
or the DDH or DL assumption. In this case perfect binding is required for all pk = gen(s) and
computational hiding required when s is uniformly random. The key and none-keyed notions are
however equivalent, as the later form allows the first form. To commit, sample pk = gen(s) and
C = commitpk(m; r) and send C ′ = (pk, C). To open, send (m, r, s) and let the receiver check
that C ′ = (gen(s), commitpk(m; r)). The following theorem has been used implicitly or explicitly
in several places in the literature.

Theorem 12 Assume that there exists a commitment scheme commit, which is perfectly binding
and computationally hiding. Then there exists a computational Σ-protocol for all NP relations R.

Proof: For any (x,w) ∈ R we can use the NP reduction to Hamiltonian Path to compute, in
PPT, a graph G = G(x) = {(i, j)} on n nodes and a Hamiltonian path P = P (x,w) = (i1, . . . , in)
in G(x). Furthermore, given G = G(x) and any Hamiltonian path P in G(x) one can in PPT
compute w such that (x,w) ∈ R.

In the first message P (x,w) use commit to commit to a random permutation, φ(G(x)) =
{(φ(i), φ(j)}, of G(x): For all possible edges (i, j), if (i, j) ∈ φ(G(x)), then send Ci,j = commit(1),
otherwise, send Ci,j = commit(0). The message a consist of φ and the commitments {Ci,j}. Then
V returns a one-bit challenge e ∈ {0, 1}. If e = 0 then P opens all commitments and sends the
permutation φ. If e = 1 then P reveals the Hamiltonian path (j1, . . . , jn) = (φ(i1), . . . , φ(in)) in
φ(G(x)) by sending (j1, . . . , jn) and opening Cj1,j2 , . . . , Cjn,j1 . If e = 0 then V checks that φ is a
permutation and that Ci,j opens to 1 iff (i, j) ∈ φ(G(x)). If e = 1 then V checks that (j1, . . . , jn)
visits all nodes once and that Cj1,j2 , . . . , Cjn,j1 all opened to 1. This is clearly complete. As
for special knowledge soundness, assume that for a fixed a = (φ, {Ci,j}), the prover can reply
accepting to e = 0 and e = 1. This gives an opening of {Ci,j} to φ(G(x)) plus an opening of
Cj1,j2 , . . . , Cjn,j1 to 1. Since φ is a permutation and the commitment scheme is perfect binding,
this gives a Hamiltonian path (φ−1(j1), . . . , φ−1(jn)) in G(x), which in turn yields w such that
(x,w) ∈ R. As for computational honest verifier zero-knowledge, assume that (x, e) is given. If
e = 0, then S generates a and z honestly. If e = 1, then S let Ci,j = commit(1) for all (i, j),
and picks a random Hamiltonian path (j1, . . . , jn) (the committed graph is complete) and opens
Cj1,j2 , . . . , Cjn,j1 to 1. The only difference from the protocol is that when e = 1, then some of
the commitments which are not opened contain 0 in the protocol but contain 1 in the simulation.
This is indistinguishable by the computational hiding of commit(·; ·). QED

B Σ-Protocols with Large Challenge Space are `-IPoK for Very
Small `

We show that a Σ-protocol for a relation R is a expected (`Z , `P)-IPoK as long as the channel
between Z and P ∗ is trivial, in the sense that `Z = c log(κ) or `P = c log(κ) for some constant c.
We consider the cases `Z = c log(κ) and `P = c log(κ) separately.

In both cases, P ∗ and Z are restricted from when P ∗ sends a until it sends z. Between
these two points P ∗ and Z can communicate as they want, as long as entity X sends at most
`X bits. We can assume, without loss of generality, that all such communication takes place

26

after P ∗ gets e and before it sends out z. Also without loss of generality, the transcript of the
communication is an ordered sequence of messages T = (m(1)

P ,m
(1)
Z , . . . ,m

(n)
P ,m

(n)
Z) where m

(i)
X is

the message sent by the party X and the number of messages is bounded by n ≤ c log(κ). We let
TX = (m(1)

X , . . . ,m
(n)
X) denote the portion of the transcript that was sent by the party X.

We first consider the case `P = c log(κ). Assume V accepts a conversation (x, a, e, z) for which
the communication between P ∗ and Z is given by the transcript (m(1)

P ,m
(1)
Z , . . . ,m

(n)
P ,m

(n)
Z). The

extractor is outlined in Fig. 14.

1. The extractor X rewinds P ∗ to the point where it received e and inputs a new uniformly random
challenge e′.

2. For i = 1, . . . , n: The extractor X runs P ∗ until it sends m̂
(i)
P to Z. If m̂

(i)
P 6= m

(i)
P , then X

aborts the attempt to run P ∗ on e′ and starts again in step 1. Otherwise X gives the response
m

(i)
Z to P ∗.

3. The cheating prover P ∗ outputs z′. If (x, a, e′, z′) is not accepting, then X goes back to step 1.
Otherwise X computes w using the special knowledge soundness property of Σ.

Figure 14: Strong knowledge soundness extractor.

For fixed randomness rZ of Z and fixed randomness rP of P ∗, each challenge e completely
determines the communication between P ∗ and Z , giving us a specific transcript T (e). Since the
random coins are fixed, the transcript T (e) is completely determined by the messages sent by P ∗

to Z and hence TP ∗(e) completely determines T (e). The total length of the messages contained in
TP ∗(e) is c log(κ) and hence there are 2c log(κ) = κc possibilities for the bits that make up TP ∗(e).
For any such possibility, there are 2c log(κ) = κc ways to break up the bits into n = c log(κ)
messages and hence the number of transcripts is bounded by κ2c. This means we can divide the
challenges e ∈ {0, 1}κ into sets ST = {e ∈ {0, 1}κ|T (e) = T}, where, on the challenge e ∈ ST , the
conversation between P ∗ and Z is given by the transcript T . We can partition each such set ST

into two disjoint sets RT and AT , where e ∈ AT makes P ∗ generate an accepting conversation
and e ∈ RT makes P ∗ generate a rejecting conversation. Let T0 = (m(1)

P ,m
(1)
Z , . . . ,m

(n)
P ,m

(n)
Z)

be the transcript given to the extractor at the conclusion of an accepting conversation between
P ∗ and V . It can be seen that X is essentially sampling uniformly random challenges e′ until
it finds some e′ ∈ AT0 . Hence the expected running time of X is 2κ/|AT0 |. This expectation is
taken over the random coins of X alone. However, now taking the expectation over the random
original challenge e produced by V , we want to compute the expected running time of X given
that e is accepting. Let A be the set of challenges which produce accepting conversations. Let
T (e) be the transcript produced by the challenge e. Then the expected running time of X given
that e ∈ A is given by ∑

e∈A

1
|A|

2κ

|AT (e)|
=

2κ

|A|
∑
e∈A

1∣∣AT (e)

∣∣
=

2κ

|A|
∑
T

 ∑
e∈AT

1
|AT |

≤ 2κ

|A|
κ2c (4)

where (4) follows because the number of possible transcripts is bounded by κ2c. The above
expectation is taken for some set randomness of P ∗ and Z. Each such randomness r produces a

27

different set Ar of accepting challenges. Hence the overall expectation is∑
r

2κ

|Ar|
κ2c Pr[r | r produced an accepting proof] = κ2c

∑
r

2κ

|Ar|
Pr[r]

|Ar|
2κ

1
α

= κ2c 1
α

where α is the overall success probability of P ∗ and Z producing an accepting conversation. We
see that the above expectation is then polynomial in κ as long as α is non-negligible in κ.

Since the execution of P ∗ and X is expected poly-time and all e′ are sampled uniformly at
random, it follows that the probability that e′ = e is ever sampled is negligible. This in particular
holds for the e′ in the second accepting conversation (x, a, e′, z′) produced by Z, meaning that X
will be able to compute w with all but negligible probability. This shows the following lemma.

Lemma 13 A Σ-protocol with large challenge space for R is a black-box, expected (∞, log(κ))-
IPoK for R.

We then consider the case where `Z = c log2(κ) for some c ∈ N. If V accepts a conversation
(x, a, e, z), then X rewinds P ∗ to the point where e was input to P ∗ and inputs a new uniformly
random e′. Then X tries all possible transcripts that Z can communicate with P ∗. In other
words, for each possible value of the TZ (all possible communication from Z to P ∗), the extractor
X responds to P ∗ using the messages in TZ . As we saw before there are only κ2c such possible
transcripts. If in one of these runs P ∗ outputs z′ such that (x, a, e′, z′) is acceptable, then X stops.
Otherwise X picks a new e′ and tries again. When a new acceptable (x, a, e′, z′) is generated,
then X computes w if e′ 6= e and otherwise gives up.

For any randomness r of P ∗ and Z we can define the set of challenges Ar such that e ∈ Ar iff
P ∗ and Z produce an accepting conversation when given the challenge e. It is easy to see that
expected running time is given by:∑

r

2κ

|Ar|
κ2c Pr[r | r produced an accepting proof] = κ2c 1

α

where α is defined as in the proof of Lemma 13. In fact, the remainder of the proof is equivalent
to that of Lemma 13 and hence we get the following:

Lemma 14 A Σ-protocol with Large Challenge Space for R is a black-box, expected (log(κ),∞)-
IPoK for R.

The above lemmas show an expected black-box IPoK for any trivial channel between Z and P ∗.
In Theorem 3 we show that black-box extraction is impossible for any constant round protocol
once the channel capacity becomes θ(κ).

We now argue that, there exists a Σ protocol which is not a black-box strict 0-IPoK.

Lemma 15 If there exist perfectly binding, computationally hiding commitments, then a Σ-
protocol with large challenge space for R need not be a black-box, strict 0-IPoK for R.

We assume that there exists a semantic symmetric encryption where given one valid encryption
C = EK(m) one cannot produce a new valid ciphertext C ′ 6= C, except with negligible probability.
We also assume that there exists a relation R and a computational Σ-protocol for R such that
one can efficiently sample (x,w) ∈ R such that the probability of computing w from x in PPT
after seeing receiving a Σ-proof for x using witness w is negligible. Finally, we assume that there
exist pseudo-random functions. All these assumptions are implied by the assumption that there
exists perfect binding, computationally hiding commitment.

28

We prove the lemma by giving a class of environments ZK′ indexed by K ′ and a class of
cheating provers P ∗

K such that no black-box extractor can extract all P ∗
K in the context of all

ZK′ . In particular, any X will fail when ZK′ is chosen uniformly at random (i.e., K ′ is chosen
uniformly at random) and P ∗

K is chosen such that K = K ′.
We first describe the environment ZK′ . Its first action is to sample (x,w) ∈ R using the

hard sampler assumed above. Then it sends EK′(w, g, L, r) to P ∗, where E is the encryption
algorithm for the symmetric cryptosystem assumed above, g ∈R {0, 1, . . . , κ} is sampled uniformly
at random, L ∈R {0, 1}κ is sampled uniformly at random and r is a uniformly random string for
producing a first message a = A(x,w; r) in the Σ-protocol for R.

The cheating prover P ∗
K works as follows: It receives x as input. Then it waits for a message

C from Z. If C is not a valid ciphertext for key K, then P ∗
K terminates. Otherwise, it computes

(w, g, L, r) = DK(C). If (x,w) 6∈ R or g 6∈ {0, 1, . . . , κ} or L 6∈ {0, 1}κ or r is not sufficiently
long to act as randomness for computing the first message in the Σ-protocol, then P ∗

K terminates.
Otherwise, it uses the key L to define a pseudo-random function FL : {0, 1}κ → {1, . . . , 2κ}, uses
r and (x, w) to compute a = A(x, w; r) and sends a to V . Then it receives e and responds with
an acceptable z iff FL(e) ≤ 2κ−g.

Assume that there exists an extractor which works for all PPT P ∗ and all PPT X . Then it
also works for P ∗

K and ZK , where K is chosen uniformly at random.
When X is to extract a witness w from P ∗

K , then it is given C = EK(w, g, L, r), and is given
rewinding black-box access to P ∗

K . Having rewinding black-box access to P ∗
K gives X the following

powers:

1. If X rewinds P ∗
K to a point after it got input e and reruns it, then P ∗

K will output the same
z, which is useless.

2. If X rewinds P ∗
K to a point after it sent a and before it got e as input, then X can supply

a new challenge e′, in which case it gets a new response z′ iff FL(e′) ≤ 2g.

3. If X rewinds P ∗
K to a point after it received C and before it sent a, then P ∗

K sends the same
a, reducing to the above case.

4. If X rewinds P ∗
K to a point before it received C, then can send C∗. If it sends C∗ = C, it

reduces to the above case. If it sends C∗ 6= C, then by the assumptions on the cryptosystem
P ∗

K will terminate, except with negligible probability.

By the semantic security of C = EK(w, g, L, r), it follows that we can assume that X received
C = EK(0) instead. Therefore L can be assumed to be independent of the view of X , meaning
that we can replace FL with a uniformly random function {0, 1}κ → {1, . . . , 2κ} for the sake of
argument. It can then be seen that the only way that X can use P ∗

K for something useful is
rewind it to the point where it sent a, and then rerun P ∗

K on a new e′ for which FL(e′) < 2g. Now
consider any X running in time κc, and let d = c log2(κ) such that 2d = κc. If d + 1 ≤ g ≤ d + 2,
then κc ≤ 1

22g, meaning that X has time to run P ∗
K on at most 1

22g different e′. Since Pr[FL(e′) ≤
2κ−g] = 2κ−g/2κ = 2−g, independently for each e′ 6= e, it follows that the probability that X runs
P ∗ on e′ 6= e where FL(e′) ≤ 2κ−g is at most 1

2 . This means that when d+1 ≤ g ≤ d+2 and the first
conversation accepts, then X must with probability at least 1

2 extract without getting any other
useful information but the accepting conversation. The probability that d + 1 ≤ g ≤ d + 2 is at
least 1/(κ+1) and the probability that the first conversation is accepting when d+1 ≤ g ≤ d+2
is 2κ−g/2κ = 2−g ≥ 2−d−2 = 1

4κc. So, with probability at least 1
2(κ + 1)−1 1

4κc the extractor
extracts an acceptable conversation without any further useful information, which is easily seen
to contradict the assumed witness hiding property, as 1

2(κ + 1)−1 1
4κc is polynomial in κ.

29

C Proof of Theorem 3

We start with any protocol having ρ rounds of communication and let q = b`/ρc. Let f :
{0, 1}∗ × {0, 1}m → {0, 1}q be a pseudorandom function with keys of size m. The existence of
pseudorandom functions follows from that of one way functions which are guaranteed to exist if
witness hiding proofs of knowledge exist at all. We define a class of provers with (hardcoded)
values r, s ∈ {0, 1}m and (x,w) ∈ R. For each such prover we have the corresponding environment
with the (hardcoded) value r (which acts as a shared key between environment and prover) and
the hardcoded instance x. A prover P ∗ and the corresponding environment Z are chosen randomly
from this class.

Let us specify the interaction between P ∗, Z and the verifier V . Essentially, P ∗ acts as the
honest prover but checks in with the environment to make sure it has not been rewound. The
interaction is outlined in Fig. 15.

The prover P ∗ begins by setting view to be the empty string. For i = 1, . . . , ρ:

1. The verifier sends v(i) to P ∗.

2. P ∗ sets view← view||v(i), computes σ
(i)
s ← f(view; s), and sends σ

(i)
s to Z.

3. Z sends σ
(i)
r ← f((σ(i)

s , i); r) to P ∗.

4. P ∗ verifies σ
(i)
r = f((σ(i)

s , i); r). If not then P ∗ quits. Otherwise P ∗ computes the response p(i)

and sends it to V .

In the above interaction, Z has a counter to keep track of the round i. After it reaches i = ρ and sends
out σ

(ρ)
r , it aborts and stops responding to any incoming messages.

Figure 15: Interaction between P ∗ and Z during proof with V

The outlined interaction has P ∗ send q bits on every round and receive q bits on every round.
Since qρ ≤ `, the cheating prover is indeed `-isolated.

Assume that there is an extractor X which recovers a witness. Since the proof is witness
hiding, the extractor must be able to get some some more output from P ∗, other than just one
run of the protocol (even if X acts as a dishonest verifier). However, the only way to do so in a
black-box manner is to rewind P ∗ and get an additional response p′(i) for some round i. The only
way this is possible is by X finding a collision on f(·; s) or guessing the value of f(·; r) on some
point. This can be done in expected polynomial time if and only if q = O(log(κ)).

D Technical Lemmas for the Proof of Theorem 5

In this section we analyze the three probabilities Pr[A∩I], Pr[A∩F] and Pr[A∩L] corresponding
to invalid, faulty and lossy executions respectively. We show each of the probabilities is upper
bounded by 2−κ.

Lemma 16 The probability of an invalid accepting execution is upper bounded by Pr[A∩I] ≤ 2−κ

Proof: An invalid execution which is accepting has κ epochs in which one of the commitments
is invalid (is for some message z′ which is not a correct response in an accepting conversation of
Σ). In each of these κ epochs, the verifier chose to open the commitment which is not invalid. To
analyze the probability of such an even occurring we consider the following related game.

The game runs in M rounds and, in the beginning, your score is initialized to 0. At each
round you have the option of getting a point by specifying a bit b ∈ {0, 1}. If you choose that

30

option then a bit b̂ is chosen randomly and you loose if b = b̂. If you choose not to get a point
then you just proceed to the next round. You only win if you manage to get κ points. It is clear
that an optimal strategy in the above game is to choose to get a point on the first κ rounds but
not afterwards. The winning probability of such a strategy is 2−κ.

It is easy to see the connection between the above game and a prover producing invalid
executions. The bit b in the game corresponds to a prover committing to a response z

(e)
m which

does not lead to an accepting conversation. The bit b̂ corresponds to the challenge chosen by
the verifier. For an execution to be in A ∩ I it must be accepting and must contain at least
k epochs where the prover chooses to take the risk of committing to an invalid response. This
shows that a prover strategy which is able to produce an invalid yet accepting execution with
probability p amounts to a strategy which can win the above game with probability p and hence
Pr[A ∩ I] ≤ 2−κ.

We will use this proof technique in the subsequent analysis as well. The games abstract away
many of the details of the protocol and serve to simplify our proofs. QED

Lemma 17 The probability of a faulty accepting execution is upper bounded by Pr[A∩F] ≤ 2−κ

Proof: For an execution to be in A ∩ F , the prover has to make sure that there are βF κ epochs,
each with at least one round n in which at least one of the challenges e = 0 or e = 1 gives
an incorrect share. For each such epoch the verifier has at least α/2 chance of choosing such a
challenge e in round n. In the verification phase it then has an independent chance of a 1/2 of
asking for the opening to the commitment c

(e)
m . This means that for each such epoch the verifier

will reject at the end of the epoch with probability α/4.
Consider the following related game which runs in M rounds. At the beginning your score is

initialized to s = 0. In each of the rounds m ∈ 1, . . . ,M you can choose to collect a point in which
case you score is updated to s := s + 1, but also a random experiment is performed in which you
immediately loose the game with probability α/4. If you choose not to collect a point the game
goes on to the next round. You win if you collect βF κ points.

It is easy to see that the optimal strategy is to collect a point on the first βF κ rounds and
not afterwards. The probability of winning the game is then upper bounded by (α/4)βF κ =
(α/4)(−1/ log(α/4))κ = 2−κ.

This shows that Pr[A ∩ F] ≤ 2−κ.
QED

Lemma 18 The probability of a lossy accepting execution is upper bounded by Pr[A ∩ L] ≤ 2−κ

Proof: We prove the stronger statement that Pr[L] ≤ 2−κ. In order for an execution to be in
the set L, there have to be βLκ epochs m in which at least one of the codewords Z

(e)
m has at

least αN loss symbols. This means that the execution has at least βLκαN rounds n in which
the verifier communicates with the environment on at least one of the challenges e ∈ {0, 1}. For
each such round there is a probability of at least α/2 that the verifier chooses such an e and so
the prover communicates during that round. However, the total number of communicated bits is
always upper bounded by `. Let w = βLκαN

Consider the following game which runs in MN rounds. At the beginning you score is initial-
ized to s = 0 and a penalty count is initialized to c = 0. In each round you can decide whether
you want to collect a point or not. If you chose to collect a point, then we update your score to
s := s + 1 but also a random experiment is performed in which your penalty count is updated to
c ← c + 1 with probability α/2. If you chose not to collect a point in some round, then s and c
are left unchanged. You win the game if you make s ≥ w and c ≤ `.

31

It is again clear that an optimal strategy is to collect a point in each of the w first rounds and
then collect no points in the rest of the rounds.

The probability of getting a penalty point in each of the rounds where you collect a coin, is
α/2. So, the expected value of c is given by C = (α/2)w = α2/2βLκN . Using equations (1), (3)
we have

` ≤ 4ακN = α2/4βLκN = 2−1C

We use the Chernoff bound to conclude

Pr[c ≤ `] ≤ Pr[c ≤ 2−1C] ≤ e−C/8 ≤ e−α2βLκN/16 ≤ 2−k

since βL = 16α−1 log(e) and N ≥ α−1 This means that the success probability of the above game
is bounded by 2−k which in turn implies that Pr[A ∩ L] ≤ 2−κ.

QED

Using the above three lemmas we see that Pr[A ∩ B] ≤ 3(2−κ) which is indeed negligible.

32

