
Universally Composable Multiparty Computation with Partially
Isolated Parties

Ivan Damg̊ard1, Jesper Buus Nielsen1 and Daniel Wichs2

1 University of Aarhus, Denmark
2 New York University, USA

Abstract. It is well known that universally composable multiparty computation cannot, in general,
be achieved in the standard model without setup assumptions when the adversary can corrupt an
arbitrary number of players. One way to get around this problem is by having a trusted third party
generate some global setup such as a common reference string (CRS) or a public key infrastructure
(PKI). Recently, an alternative solution was proposed by Katz in [K07], suggesting that one may
rely on physical assumptions rather than trusted third parties. Concretely, the solution assumed it
physically possible to construct tamper proof hardware tokens which can be run in complete isolation
from the surrounding environment. Here we improve upon the work of [K07] by constructing a scheme
in which the tokens only need to be partially isolated and may have some limited communication with
the environment. In addition we improve on Katz’s work by presenting a scheme which is secure against
adaptive adversaries and is based on general cryptographic assumptions. We also consider an alternative
scenario, in which there are some trusted third parties but no single such party is trusted by all of the
players. This compromise allows us to limit the use of the physical set-up and hence might be preferred
in practice.
Key words: universally composable security, public-key infrastructure

1 Introduction

Traditionally, the security of cryptographic protocols was considered in the stand-alone setting
where a single run of the protocol executes in isolation. In the real world, when many copies
of related protocols may be executing concurrently, security in the stand-alone setting becomes
insufficient.

The universal composability (UC) framework was introduced by Canetti in [Can01] to fix this
problem and allow us to prove the security of protocols in the real-world setting without resorting to
intractably complicated proofs. The initial work of Canetti gave hope that UC security is achievable
by showing that any multiparty computation (MPC) can be realized in the UC framework assuming
a strict majority of the players are honest. Unfortunately, this work was followed by results showing
that many natural functionalities cannot be UC realized without an honest majority, including
essentially all non-trivial two party computations such as commitments and zero knowledge proofs
[CKL03].

To get around these negative results, one can require the existence of additional setup infras-
tructure available to the parties, but which the parties are unable to create themselves from scratch
in a UC secure manner. For example, a common reference string (CRS) which is honestly sampled
from some pre-defined distribution allows us to UC realize any two-party and multiparty function-
ality with any number of (adaptively) corrupted parties [CLOS02]. Alternatively, we can rely on
a public key infrastructure (PKI) where a trusted certificate authority (CA) is given a public key
/secret key pair and verifies that the registrant knows the secret key corresponding to the public
key being registered [BCNP04]. Both of the above setup assumptions require a trusted party to

initialize the infrastructure. For example, no security guarantees are given when the CRS is gen-
erated maliciously. Similarly, security is lost if the CA leaks the secret key of the key pair being
registered.

A recent novel approach, proposed by Katz in [K07], suggests relying on physical assumptions
instead of trusting a third party. Concretely, Katz uses the physical assumption of tamper proof
hardware tokens that give a user only protocol access to their implemented functionality. These
tokens are used to isolate a party from the environment during a portion of the computation. The
party P places some arbitrary functionality (which might be malicious if P is malicious) inside
a tamper proof hardware token and sends the token to a receiving party P ′. The receiving party
runs the hardware token in an isolated setting, ensuring that the token has no available channel of
communication to the outside world. The notion of isolation is crucial in simulating the interaction
as it allows us to rewind the functionality of the hardware token without needing to rewind the
environment as well. The tamper-resistance property, on the other hand, ensures that access to
a hardware token does not give P ′ more power than having protocol access to a functionality
implemented remotely by P . Using these two physical assumptions, [K07] shows that one can UC
realize the multiple commitment ideal functionality FMCOM (see Fig. 3) in the presence of an active
static adversary under the DDH assumption. Using the result of [CLOS02], this in turn allows us
to UC realize any multiparty functionality under the same conditions.

This work improves upon that of [K07] in several respects. Most notably, we weaken the isolation
requirement and allow the hardware token to communicate with the outside world as long as the
number of communicated bits is below some pre-defined threshold. We argue that this relaxation
might make it significantly simpler to securely implement the required physical setup. In addition,
the work of [K07] leaves two open problems: constructing a protocol which is secure against adaptive
adversaries and constructing a protocol which is based on general cryptographic assumptions, rather
than relying on DDH. We present a scheme which meets both of these requirements.

From a technical standpoint, our construction has little in common with that of Katz. In our
construction, the hardware token implements the prover functionality in a proof of knowledge
(PoK) protocol. We use a protocol which ensures that one can extract a witness as long as the
prover’s communication with the outside world is limited. This problem is studied in a companion
paper [DNW07] where we show how to construct an Isolated Proof of Knowledge (IPoK) compiler
that takes as input a communication threshold ` and compiles a protocol in which a witness can
be extracted from any cheating prover who communicates at most ` bits with its environment.
Although such a protocol cannot be zero knowledge (ZK) when the receiving party is not isolated,
we will show that the weaker notion of witness indistinguishability (WI) suffices. The parties in our
protocol set up a PKI between themselves. Each player chooses a public key that he sends to every
other player along with a hardware token which gives a WI proof of knowledge of the corresponding
secret key. Our main technical contribution is showing how to implement the multiple commitment
functionality FMCOM using such a PKI.

We also propose an alternative approach to setting up such a PKI, by relying on some trusted
Certificate Authorities but not requiring that any such authority is trusted by all of the players.
Each player can safely register keys with arbitrary untrusted CAs, but trusts his own CA to correctly
verify and distribute other players’ public keys. The setting considered by Katz, in which there are
no trusted third parties, becomes a special case of this scenario in which each player acts as his
own CA and trusts nobody else. However, every player has to register a public key with every other
player (which requires physical assumptions that may be expensive to realize) so there is a benefit

2

to having fewer partially-trusted CAs. An additional benefit, even if players choose to have only
one trusted CA between them, is that the CA receives no sensitive information. This means that
the protocol is secure against attacks by passive adversaries on the CA. It also gives us a form of
forward security in the sense that it is useless for an adversary to corrupt the CA after all keys
have been registered and retrieved by all players in the protocol.

In Section 2 we present a formal model of partially isolated tamper proof hardware tokens and
multiple semi-trusted certificate authorities. In Section 3 we give some background on proofs of
knowledge (PoK) and isolated proofs of knowledge (IPoK). In Section 4 we outline and prove our
construction.

2 The Formal Model of Our Setting

2.1 Isolation and Black-Box Access

In this section we formalize the physical assumptions we need for our construction. Namely, we
assume that a player P can encapsulate some arbitrary functionality and deliver it to a player P ′

such that:

1. The player P ′ only has black-box protocol access to the functionality.
2. There is some threshold ` such that the functionality cannot send/receive more than ` bits of

communication to/from any entity other then P ′.

We assume familiarity with the UC framework. We model the features of partial isolation using an
ideal functionality Fisolate described in Fig. 1.

The ideal functionality Fisolate captures the two requirements of black-box access and isolation.
When the party P wants to give another party P ′ black-box access to some functionality described
by an ITM M , it uses the create command of Fisolate to encapsulate M . The party P ′ can only
interact with M as it would with any remote party, by sending protocol messages to M through
Fisolate. The encapsulated functionality also has access to secret communication with its creator P ,
but Fisolate ensures that communication in either direction does not exceed ` bits. In our protocols
there will not be any communication between the honest parties and the functionalities they encap-
sulate. This is because we consider such secret communication a flaw we are forced to allow rather
than a feature for legitimate use. Lastly, we do not assume that the encapsulated functionality
has a source of randomness. This is without loss of generality since the machine M can be picked
randomly by P and have the randomness “hardcoded” into it. In general, we do assume that the
encapsulated functionality is able to keep local state (i.e., is not resettable). Alternatively, we could
have allowed resets but insisted that the functionality has a source of randomness and can generate
new randomness upon being reset. We chose the former option as it is simpler and seems easier
to achieve in practice. We will see that in theory we can also get security with resettable (or even
stateless) hardware tokens by using resettable-ZK proofs of knowledge [BGGL01]. In practice such
protocols would be highly inefficient.

There are many possible ways one could attempt to instantiate the model in the real world using
physical assumptions. The work of Katz, which introduced the idea of using physical assumptions
for UC security, proposed the assumption that tamper-resistant hardware tokens can be created
to encapsulate any functionality. However, the paper did not mention how one would guarantee
isolation. In reality it might be difficult to ensure that such a hardware token does not contain an

3

The Fisolate ideal functionality is parametrized by an isolation parameter `, a security parameter κ and a poly-
nomial p.

Creation: On input (create, sid, P, P ′, M) from P , if there is already a stored tuple of the form (P, P ′, ·, ·, ·, ·)
then ignore the command. Otherwise:
1. Parse the string M as the description of an ITM with four communication tapes; two tapes (“in” and

“out”) for regular protocol communication with P ′ and two tapes for secret communication with P .
In addition, there is a random tape which we assume is initialized by the sender and is part of the
description of M and, lastly, there is a blank work tape.

2. Let the value state encode the initial state of M (including the values of all the tapes). Set the values
inCom := 0, outCom := 0 and store the tuple (P, P ′, M, state, inCom, outCom).

3. Send (create, sid, P) to P ′.
Execution: On input (run, sid, P, P ′, msg) from P ′, retrieve the tuple (P, P ′, M, state, inCom, outCom). If there

is no such tuple then ignore the command.
1. Place the string msg on the “in” tape designated for P and run M for p(κ) steps.
2. If there is any value msg′ on the output tape for P ′ then send the message (reply, sid, P, msg′) to P ′.
3. If there is any value msg′ on the output tape for P and outCom + |msg′| < ` then send the message

(secretCom, sid, P ′, P, msg′) to P and update outCom := outCom + |msg′|.
4. Update the value of state in the stored tuple to encode the updated state of M and the values of its

tapes.
Communication: On input (secretCom, sid, P, P ′, msg) from P , if there is no tuple of the form

(P, P ′, M, inCom, outCom) then ignore. Also if the tuple has inCom + |msg| > ` then ignore the command.
Otherwise
1. Update inCom := inCom + |msg|, place msg on the “in” tape for P and run M for p(κ) steps.
2. Proceed with steps 2,3,4 of the execution command.

Fig. 1. The Fisolate Ideal Functionality

antenna or have access to some hidden communication channel. As an extreme solution, we could
require that the receiving party interacts with the token inside of a Faraday cage to prevent com-
munication with the outside world. However, by allowing some limited amount of communication,
we might be able to use significantly simpler solutions. For example, if the hardware token is a
smart-card which is too small to have its own power supply, then the receiving party can observe
(and limit) its power consumption to limit communication. A study by [BA03] shows that one bit of
wireless communication by a smart-card has the same power consumption as 1000 32-bit elementary
operations and hence this could be a practical solution in limiting the amount of communication
that is possible. Alternatively, the physical distance between the token and the party that executes
it might give the token a significantly higher communication capability with the legitimate user
than with any other party. Possibly, the fixed speed of light alone could be enough to partially
isolate the token.

We may even imagine a setting where P simply brings a laptop into an office administered by P ′

who ensures that there is no wireless or wired internet access available at the location. The player P
can then connect the laptop to a machine administered by P ′ with a cable. It should be reasonable
to assume that the laptop has significantly less bandwidth in communicating with the outside world
via any hidden channels compared with the bandwidth between the two connected machines. In
this setting it is easy to ensure black-box access without relying on tamper proof hardware tokens.
More generally, by requiring only incomplete isolation, we might make it significantly easier to
simultaneously achieve black-box access.

4

For the rest of the paper we will assume the existence of a physical setup which allows us to
implement the ideal functionality Fisolate for some isolation parameter ` without worrying about
the specifics of the setup.

2.2 PKI and Certificate Authorities

We use the ideal functionality Fisolate to setup a public key infrastructure without requiring fully
trusted certificate authorities. In the general multiparty computation setting, there are many parties
which will register keys and try to implement ideal functionalities among them. We denote these
parties by P1, . . . , Pn. Each party Pi trusts some certificate authority CAi and many parties may
trust the same certificate authority. We also allow the case where a player acts as his own certificate
authority (i.e. Pi = CAi) and does not trust any other party. Any player Pj who wishes to interact
with Pi needs to register a key with CAi.

Since key registration uses a physical realization of the Fisolate functionality, which might be an
expensive step, we make sure that our construction has a single key registration stage and afterward
the parties can perform any number of arbitrary multiparty computations. An honest player will
register the same public key with each authority for efficiency. However, this is not required and
corrupted players may register a different public key with each CA.

We model the certificate authorities as additional players in the game. In the ideal world, the
certificate authorities have no inputs and receive no outputs. We define a certificate authority trust
structure as the mapping of players to the certificate authority they trust, and we assume that each
player trusts at least one CA. The group of players who trust a single CA is called the certificate
authority’s trust group. To model the notion of trust, we assume that when an adversary actively
corrupts a certificate authority he also actively corrupts all of the players in the authority’s trust
group. The adversary may actively corrupt an arbitrary number of real players Pi and an arbitrary
number of certificate authorities subject to the above restriction. We call any such adversarial
corruption strategy a legal corruption strategy. An adversary can also passively corrupt any CAs at
will. For simplicity, we will just require that an honest CA makes all of its interactions public so
such corruptions are unnecessary.

2.3 Statement of Result

We are now ready to state the main theorem of our paper.

Theorem 1. Assume the existence of one-way permutations and dense public key, IND-CPA secure
encryption schemes with pseudorandom ciphertexts. Then any polynomial time ideal functionality
can be UC realized in the Fisolate-hybrid model under any certificate authority trust structure. We
assume an active and adaptive adversary who can corrupt any number of players and certificate
authorities using a legal corruption strategy.

We can instantiate the theorem with the trust structure in which each player acts as his own
certificate authority and trusts nobody else. This shows that, as a special case of Theorem 1, any
polynomial time ideal functionality can be UC realized in the Fisolate-hybrid model without any
additional certificate authority parties and with an adaptive and active adversary corrupting any
number of players.

The proof of the above theorem spans the remainder of the paper. As in [K07], we will only
show how to UC-realize the ideal functionality for multiple commitments and the rest follows from
the work of [CLOS02].

5

3 Proofs of Knowledge and Isolated Proofs of Knowledge

Our construction relies heavily on proofs of knowledge (PoK). Here we review some terminology

and results. Recall that an NP relation R is a set of pairs (x,w) where (x, w)
?
∈ R can be checked

in poly-time in the length of x. For such a relation we define the witnesses for an instance WR(x) =
{w|(x,w) ∈ R} and the language L(R) = {x|WR(x) 6= ∅}. Given an NP relation R, a PoK is an
interactive protocol between two parties called a Prover P and a Verifier V . The protocol is specified
by the PPT ITMs (P, V) where P is given an input (x,w) ∈ R and V is given the instance x. The
parties run the protocol and, at the end, the verifier outputs a judgment J = accept or J = reject.
We require two properties of the PoK protocol:

Completeness: When the prover and verifier are honest then the interaction between P and V
results in V outputting the judgment J = accept with all but negligible probability.

Knowledge Soundness: Informally, whenever the prover succeeds in convincing the verifier there
exists an efficient extractor procedure which is given the internal state of the prover and recovers
a witness.

In our setting, the prover may also communicate with the environment but this communication
is limited to some pre-defined bound of ` bits. The verifier, on the other hand, has unbounded
communication with the environment. This setting is considered in a companion paper [DNW07]
which defines the notion of an `-Isolated Proof of Knowledge (`-IPoK) protocol where soundness
holds even if the prover and the environment can exchange up to ` bits of communication. Formally,

Setup: First E is run to produce x which it sends to P ∗ and V . At this stage P ∗ and E can communicate
arbitrarily.

Execution: Then for r = 1, . . . , ρ the verifier V is activated to produce a message v(r) that is input to P ∗ which
is activated to produce a message p(r) that is input to V . In addition, P ∗ can at any point send a message
y to E and receive a response z from E . However, the total number of bits sent and the total number of bits
received during the execution stage are both bounded by `. At the conclusion of the ρ rounds, the verifier V
produces a judgment J ∈ {accept, reject}.

Extraction: If J = reject then X wins the extraction game. Otherwise we construct the view σ to be the
description of P ∗, its initial random tape, the messages v(r), p(r) exchanged between P ∗ and V , and the
transcript of the communication between P ∗ and E . We let w = X (κ, σ). If w ∈ WR(x), then X wins the
game; otherwise it looses.

Fig. 2. Knowledge soundness extraction game.

knowledge soundness of an `-IPoK protocol is defined by requiring that for any environment given
by a PPT ITM E and any adversarial prover given by a PPT ITM P ∗, there exists a PPT extractor
X which wins the knowledge soundness extraction game outlined in Fig. 2 with all but negligible
probability.

It was shown in [DNW07] that there exists an Isolated Proof of Knowledge compiler (called an
IPoK) which, for any NP relation R and any ` polynomial in the security parameter, produces a
protocol that is an `-IPoK for R. In addition, the protocol is witness indistinguishable (WI). This
means that for any malicious verifier V ∗, and any two pairs (x,w1) ∈ R, (x,w2) ∈ R the verifier
cannot distinguish between a prover that uses the witness w1 and a prover that uses the witness

6

w2, even when given w1 and w2. Formally, letting Exec(P (x,w), V (x)) denote the transcript of
the execution between P and V where P uses the witness w for the instance x, we require that for
any PPT cheating verifier V ∗

(Exec(P (x,w1), V ∗(x)), w1, w2) ≈ (Exec(P (x,w2), V ∗(x)), w1, w2)

This notion is significantly weaker than zero knowledge (ZK) but [DNW07] shows that one can-
not achieve ZK without isolating the verifier as well and hence we will have to rely on witness
indistinguishability only.

Although the IPoK compiler generates an `-IPoK protocol for any pre-defined threshold `, the
cost of a large ` is a large communication complexity of the generated protocol. The efficiency
measured as the ratio of the communication complexity C to the secret communication threshold
` of the compiled protocol can be as low as C/` = O(1). This means that as long as the prover’s
secret communication capability with the environment is bounded by a constant fraction of its
communication capability with the verifier, the setting admits a WI protocol where an extractor
can extract a witness from the prover.

When the prover is completely isolated (i.e., ` = 0), the notion of a 0-IPoK and standard PoK
are essentially equivalent. In particular, we can use the resettable-ZK PoK protocol of [BGGL01]
which remains witness indistinguishable even when the verifying party can reset the prover and
force it to run multiple instances of a proof with the same random coins. This means that we can
securely use hardware tokens which do not have the ability to keep long-term state and can be reset
at will by the receiving party. The techniques of [BGGL01] can also be extended to the general case
of ` > 0 and [DNW07] gives an informal overview of how to construct an IPoK compiler so that
the compiled protocols remain witness indistinguishable even when implemented by a resettable
prover.

4 Construction

We use the results of [CLOS02] which show that one can UC-realize arbitrary MPC given the ideal
functionality for multiple commitments FMCOM which we review in Fig. 3.

Commit Phase: On input (commit, sid, ssid, Pj , m) from Pi, if there is already a stored tuple of the form
(sid, ssid, Pi, Pj , ·) then ignore the command. Otherwise store the tuple (sid, ssid, Pi, Pj , m) and send a receipt
(receipt, sid, ssid, Pi) to Pj .

Reveal Phase: On input (reveal, sid, ssid, Pj) from Pi, if a tuple (sid, ssidPi, Pj , m) is stored then send a
message (reveal, sid, ssid, Pi, m) to Pj . Otherwise, ignore the command.

Fig. 3. The FMCOM Ideal Functionality

There are several challenges in UC realizing the FMCOM functionality. Obviously, we need a
commitment scheme which is hiding and binding. In addition, the simulator needs to be able to
generate commitments for honest parties before knowing the message being committed to and later
be able to decommit to any specified message. A scheme with this property is called equivocal.
Worse yet, the simulator needs to be able to simulate the corruption of an honest party and thus

7

reveal all of the randomness used to generate such simulated commitments as though they were
generated honestly. This means that the simulator needs to produce a fake commitment c, then
receive a message m, and come up with a valid decommitment to m and also all of the randomness
that explains how c was honestly produced as a commitment for m. We call this strong equivocality.
Lastly, the simulator needs to extract the message contained in any valid commitment even if it
was adversarially generated. This is called extractability.

Luckily, the result of [CLOS02] contains just such a scheme. It relies on two public keys, an
extraction key and an equivocation key, that are generated randomly and placed in a CRS. The
corresponding secret keys, which are known by the simulator but not the players in the real world,
give it the power of strong equivocality and extractability.

We use the basic idea of [CLOS02] but modify it to fit our setting where players choose the
keys themselves. As a first attempt, we could have each party choose and register an extraction
key and an equivocation key. To commit, the sender would use his extraction public key and the
receiver’s equivocation public key. The simulator would have the corresponding secret keys and thus
be able to equivocate commitments made to a corrupt receiver by an honest sender and extract
commitments made by a corrupt sender to an honest receiver. There are two problems with the
above idea. Firstly, if the honest sender knows his own extraction secret key (and cannot erase
it) then the adversary learns this key when the sender is corrupted. This allows the adversary to
distinguish if previous commitments sent by the sender were generated honestly (as is done in the
real world) or if they were equivocated (as is done by the simulator in the ideal world). To get
around this issue, we have the sender and receiver do a coin-flip to generate the extraction public
key so that neither party knows the corresponding secret key. To simulate the coin-flip, it is enough
to have a strongly equivocal commitment scheme and so players only register their equivocation
public keys. The second problem arises from the fact that the sender’s commitments can only be
extracted (and in general are only binding) when the sender has no information about the receiver’s
equivocation key. However, in our setting the adversary gets to run as a verifier in a WI `-IPoK
of the equivocation secret key, which might potentially leak useful information. We show how to
modify the original scheme so that it remains extractable even with respect to an adversary that
sees such proofs.

We begin by formalizing an abstraction which captures the properties achieved by the scheme
of [CLOS02]. Then we show how to turn any scheme which has those properties into one that is
secure after an adversary sees (possibly many) runs of WI proofs of knowledge of the equivocation
secret keys.

4.1 The Commitment Scheme

A Two Key Extractable and Strongly Equivocal Commitment Scheme has two key generation algo-
rithms (pkE , skE) ← genE(1k), (pkX , skX) ← genX(1κ) for the equivocation and extraction keys
respectively. The commitment algorithm takes as input the two public keys and a message m and
produces a commitment C = commitpkE ,pkX

(m; r) using the randomness r. To decommit, the sender

simply sends (m; r) and the receiver verifies C
?= commitpkS ,pkR

(m; r).3 In addition, we require that

3 Because we consider adaptive security where the environment can always corrupt the sender to learn all the
randomness r used to commit, there is no reason to consider commitment scheme where the decommitment does
not consist of sending all this randomness: If the simulator can produce it to simulate a corruption of the sender,
it can also produce it to simulate a decommitment.

8

there is an NP relation R such that, given any (pkE , skE) ← genE(1κ), we have (pkE , skE) ∈ R.
We allow the relation to have more elements.

Lastly, we require that the extraction keys are dense. More precisely, for (pkX , skX)← genX(1κ),
the element pkX is a random bitstring in {0, 1}n for some n. The security of the scheme is defined
by the following three properties:

1. Extractability: We define an extraction game between an adversary and a challenger as follows:

1. The challenger generates random (pkE , skE) ← genE(1κ), (pkX , skX) ← genX(1κ) and the
adversary is given pkE , pkX , skX .

2. The adversary specifies a commitment C and a pair (m′, r′) and sends these to the challenger.
3. Let m = extractpkE ,pkX ,skX

(C). If m′ 6= m and C = commitpkE ,pkX
(m′; r′) then the adversary

wins the extraction game.

We say that the commitment scheme is extractable if there exists a PPT algorithm extract such
that the probability that a PPT adversary wins the extraction game is negligible in κ. We note
that extractability implies binding as long as the public keys pkE , pkX are generated honestly. This
is because an adversary who breaks binding can come up with a commitment C with two openings
(m1, r1), (m2, r2) one of which differs from the extracted m. However, we want to guarantee that
binding holds no matter how pkX is chosen. To do so, we have the following additional property.

2. Binding Under All Extraction Keys: We define an binding game between an adversary and
a challenger as follows:

1. The challenger generates a random (pkE , skE)← genE(1κ) and the adversary is given pkE .
2. The adversary generates some public key pkX ∈ {0, 1}n. In addition, the adversary specifies a

commitment C and two pairs (m, r), (m′, r) and sends these to the challenger.
3. The adversary wins the binding game if m 6= m′, C = commitpkE ,pkX

(m; r) and
C = commitpkE ,pkX

(m′; r′).

We say that the commitment scheme is binding under all extraction keys if the probability that a
PPT adversary wins the binding game is negligible in κ.

3. Strong Equivocality/Hiding: We define the commitment game:

1. The challenger generates a random (pkX , skX)← genX(1κ) and gives pkX to the adversary.
2. The adversary specifies (pkE , wE) ∈ R, and a message m.
3. The challenger computes C = commitpkE ,pkX

(m; r) where r is chosen randomly and gives (C, r)
to the adversary.

We define the equivocation game:

1. The challenger generates a random (pkX , skX)← genX(1κ) and gives pkX to the adversary.
2. The adversary specifies (pkE , wE) ∈ R, and a message m.
3. The challenger computes (C, aux) = ecommitpkE ,pkX ,wE

(), r ← equivocatepkE ,pkX ,wE
(C, aux,m)

and gives (C, r) to the adversary.

9

We say that the commitment scheme is strongly equivocal if there exists PPT ecommit and PPT
equivocate such that no PPT adversary can distinguish between the commitment game and the
equivocation game. We note that strong equivocality implies hiding since commitpkE ,pkX

(m) ≈
ecommitpkE ,pkX ,wE

() ≈ commitpkE ,pkX
(m′).

The commitment scheme of [CLOS02] meets all three of the security requirements and hence is
a two key extractable and strongly equivocal commitment scheme. The public key pkX is simply a
public key for a CPA secure encryption scheme (actually for a CRS based scheme, CCA-2 security
was needed but for us CPA suffices, as each player has its own key) with pseudorandom ciphertexts.
We need to make an additional assumption that the encryption scheme is dense public key. The
equivocation secret key, on the other hand, is a random string w and the equivocation public key
is f(w) for some one-way function f . The relation R consisting of pairs (f(w), w) is indeed in
NP. Also, any pre-image of f(w) allows for equivocation which is indistinguishable from honestly
generated commitments. The observation that the scheme meets the given security requirements
was essentially already made in [BCNP04]. For completeness, we include a short description of the
scheme in Appendix A.

For the UC proof we will need to show that a commitment C is binding, even for an adversary
who sees an equivocation of C. We define the simulation-sound binding game:

1. The challenger generates a random (pkE , skE)← genE(1κ), and gives pkE to the adversary.
2. The adversary specifies a public key pkX and a message m
3. The challenger computes (C, aux) = ecommitpkE ,pkX ,skE

(), r ← equivocatepkE ,pkX ,skE
(C, aux,m)

and gives (C, r) to the adversary.
4. The adversary specifies (m′, r′). If m′ 6= m and C = commitpkE ,pkX

(m′; r′), then the adversary
wins the game.

We say that the commitment scheme is simulation-sound binding if it holds for all PPT adversaries
that they win the simulation-sound binding game with negligible probability.

Lemma 1. A two key commitment scheme which is extractable and strongly equivocal is also
simulation-sound binding.

Proof. By the assumption that the scheme is strongly equivocal we can replace Step 3 in the
simulation-sound binding game by

3. The challenger computes C = commitpkE ,pkX
(m; r) where r is chosen randomly and gives (C, r)

to the adversary.

while changing the success probability of the adversary at most negligibly. Since the adversary
knows m, we can however remove this step completely from the game and simply let the adversary
compute C = commitpkE ,pkX

(m; r) itself and output both (m, r) and (m′, r′). This will not change
its probability of success, and might in fact make it larger as it can now pick (m, r) as it desires,
as long as m 6= m′. That the adversary wins this last game only with negligible probability follows
from the fact that the scheme is binding under all extraction keys.

4.2 Security After WI Proofs

In our setting, the adversary also has access to a prover running a WI `-IPoK of the equivocation
secret key. Since this proof is not ZK, it is possible that the adversary might gain some additional

10

knowledge about the equivocation secret key. An adversary with this additional capability might
be able to win the extraction game or the binding game. We show how to convert any two key
extractable and strongly equivocal commitment scheme defined by

(genE , genX , commit, extract, ecommit, equivocate)

and equivocation key relation R into a scheme secure after WI proofs (i.e., secure in the above
setting).

We let gen′E generate two equivocation keys (pk
(0)
E , sk

(0)
E)← genE(1κ), (pk

(1)
E , sk

(1)
E)← genE(1κ)

and let pk′E = (pk
(0)
E , pk

(1)
E), sk′E = sk

(0)
E . We define the relation

R′ := R∨R =
{(

pk
(0)
E , pk

(1)
E , wE

) ∣∣∣ (
pk

(0)
E , wE

)
∈ R or

(
pk

(1)
E , wE

)
∈ R

}
It is clear that this is an NP relation and that (pk′E , sk′E) = (pk

(0)
E , pk

(1)
E , sk

(0)
E) ∈ R′. We let gen′X

be the same as genX so the extraction keys are generated as in the original scheme.
Now assume that the message space is an additively written finite group, like {0, 1}κ with

bitwise xor of strings. To commit to m, let m(0) = m − m(1) for a uniformly random m(1). The
sender computes

C(0) = commit
pk

(0)
E ,pkX

(m(0); r(0))

C(1) = commit
pk

(1)
E ,pkX

(m(1); r(1))
(1)

and sends C = (C(0), C(1)).
To open the commitment, the sender sends (m, r) = (m, (m(1), r(0), r(1))). The receiver checks

that C(0), C(1) were correctly computed using equation (1).

Equivocality/Hiding We use a series of games arguments to show that the above scheme is
strongly equivocal. Let us define Game 1 to be the commitment game for the above scheme.

In Step 2 of the game, the challenger gets (pk′E , wE) = (pk
(0)
E , pk

(1)
E , wE) ∈ R′ such that

(pk
(b)
E , wE) ∈ R for b = 0 or b = 1. In addition, since the relation R is in NP, it is easy to

check which is the case (if both, we let b = 0). Let b̄ = 1 − b. We define Game 2 which proceeds
as Game 1 accept that the challenger computes the commitment by choosing m(b̄) randomly and
setting m(b) = m−m(b̄). Games 1 and 2 have identical distributions and so are indistinguishable.

We define Game 3 which proceeds as Game 2, but the challenger computes C(b) and r(b) using
(C(b), aux) = ecommit

pk
(b)
E ,pkX ,wE

() and r(b) = equivocate
pk

(b)
E ,pkX ,wE

(C(b),m(b), aux). The strong
equivocality of the original scheme ensures that Game 2 and 3 are indistinguishable via a simple
reduction.

In Game 3, the commitments C(0), C(1) are computed independently of the message m and
hence Game 3 implicitly defines the functions ecommit′ and equivocate′. Since Games 1 and 3 are
indistinguishable the equivocality/hiding property holds for the new scheme.

Extractability and Binding We show that the extractability property for the new scheme
holds even when the adversary has unlimited protocol access to a prover P running a witness
indistinguishable proof for the relation R. The argument that binding under all extraction keys
holds as well proceeds in almost exactly the same way and hence we skip it.

11

Let’s assume that there is an adversary A′ which wins the extraction game for the above scheme
with non-negligible probability. This time, the adversary is also given protocol access to a prover
P running a WI proof for the relation R′ using the instance pk′E =

(
pk

(0)
E , pk

(1)
E

)
and the witness

sk′E = sk
(0)
E . We construct an adversary A which wins the extraction game for the original scheme.

The adversary A gets a challenge pkE , pkX , skX generated randomly by its challenger. It will
pick a bit b at random and choose (pk

(b)
E , sk

(b)
E) ← genE(1κ) and set pk

(1−b)
E = pkE . Then it sends

pk′E = (pk
(0)
E , pk

(1)
E), pkX , skX as a challenge to A′. In addition, it will act as a prover for the

instance (pk
(0)
E , pk

(1)
E) using the witness sk

(b)
E . This is different from the original game where the

witness sk
(0)
E is always used. However, since the proof is WI, the success probability of A′ can be

affected at most negligibly.
Next A′ generates some commitment C = (C(0), C(1)) and some decommitment (m′, r′) =

(m′, (m′(1), r(0), r(1))). Define m′(0) = m′ − m′(1). The adversary A sends (m′(1−b), r(1−b)) to its
challenger.

Let
m(0) = extract

pk
(0)
E ,pkX ,skX

(C(0)) , m(1) = extract
pk

(1)
E ,pkX ,skX

(C(1))

and
m = extract′pkE ,pkX ,skX

(C(0), C(1)) = m(0) + m(1) .

Then, if A′ wins the extraction game, m 6= m′ and so mb̂ 6= m′b̂ for some b̂ ∈ {0, 1}. Since b was
only used in choosing which witness to use in the WI proof, with probability negligibly close to 1/2
we have b̂ = 1− b. If this is the case, then A wins the original extraction game. Hence the success
probability of A is negligibly close to half the success probability of A′ which is non-negligible.

4.3 The Protocol

Let (genS , genR, commit, extract, ecommit, equivocate) be a two key extractable and strongly equivo-
cal commitment scheme secure after WI proofs with equivocation key relationR and with extraction
keys in {0, 1}n. We use such a scheme to UC realize the FMCOM functionality in the Fisolate-hybrid
model with isolation parameter `. We label the players involved P1, . . . , Pn. We also have some
certificate authorities CA1, . . . , CAm and some certificate authority trust structure. Our protocol
has a key registration phase and a commitment phase.

Key Registration: Each party Pi chooses an equivocation public/secret key pair (pk(E,i), sk(E,i))←
genE(1k). Before a player Pi is able to interact with a player Pj , he needs to register the public key
pk(E,i) with the certificate authority CAj trusted by Pj (and possibly Pj acts as his own CA). To do
so, Pi generates the PPT ITM M implementing the prover functionality of a WI `-IPoK protocol
for the relation R using the instance pk(E,i) and the witness sk(E,i). In addition, Pi initializes the
random tape of M with fresh random coins (enough to run one proof). The machine M is set to
run a single proof and, at its conclusion, goes into an inactive state in which it produces no further
output. The player Pi sends (create, sid, Pi, CAj ,M) to the ideal functionality Fisolate and a key
registration request (register, sid, Pi, CAj , pk(E,i)) to CAj .

The authority CAj , upon receiving (register, sid, Pi, CAj , pk(E,i)) from Pi, runs the corre-
sponding verifier protocol with the prover functionality M by sending it challenge messages through

12

the interface provided by Fisolate. Since the certificate authorities get no sensitive information, we
let CAj broadcast the transcript of this protocol to all the players. At the end, if the conversation is
accepting, CAj sends the message (certify, sid, CAj , Pj , Pi, pk(E,i)) to every player Pj in its trust
group. Otherwise it does nothing. The party Pj ignores all messages from Pi unless it has received
a public key certification message for pk(E,i) from its trusted authority CAj .

In the ideal world, the certificate authorities are not involved in the protocol at all. They get
no inputs from the environment and receive no outputs. However, in the real world, parties cannot
use the commitment functionality without registering their keys first. We model this discrepancy
by adding a dummy registration phase to the ideal world functionality. In the ideal world a player
Pi sends the message (register, sid, Pi, CAj) to the ideal functionality FMCOM which forwards the
message to CAj . For each Pj in the trust group of CAj , the authority CAj responds by sending
(certify, sid, CAj , Pj , Pi) to FMCOM which in turn forwards it to Pj . An honest player Pi will
not produce (resp. receive) a commitment from (resp. to) Pj unless he sent a registration request
(register, sid, Pi, CAj) to CAj and received a registration confirmation (certify, sid, Pj , CAi, Pi)
from CAi. Technically speaking, we then show that for any ideal functionality F , we can UC
realize the the ideal functionality F ′ which includes the dummy registration step prior to any other
interaction. In practice this detail is not important.

Commitment: The first time that Pi wants to send a commitment to Pj they run a coin-flipping
protocol to decide on the extraction key pk(X,i,j). This protocol proceeds as follows:

1. Pi sends an initiation request to Pj to run a coin-flipping protocol.
2. Pj picks a random g1 ← {0, 1}n and a random extraction key (to which he does not know the

secret key) pk(X,j) ← {0, 1}n and sends pk(X,j) and C = commitpk(E,i),pk(X,j)
(g1; r) to Pi

3. Pi sends a random g2 ← {0, 1}n to Pj

4. Pj sends the opening (g1, r) to Pi and Pi verifies that C was generated correctly as a commitment
to g1. Both parties compute pk(X,i,j) = g1 ⊕ g2.

Subsequently, whenever Pi wants to commit to a message m, he simply computes
C = commitpk(X,i,j),pk(E,j)

(m; r) and sends C. Later, to open the commitment, Pi sends (m; r)

4.4 Outline of Proof of Theorem 1

We show that for any certificate authority trust structure, any environment E , and any real-world
adversary A attacking the above protocol using a valid corruption strategy, there exists an ideal-
world simulator S such that E cannot distinguish between interacting withA in the real-world versus
interacting with S and parties using the ideal functionality FMCOM. The simulator internally runs
a copy of A. It passes messages from E to its internal copy of A and outputs from A to E .

To simulate key registration, the simulator picks a random equivocation public key on behalf of
honest players and registers it honestly with each certificate authority. The adversary gets to see the
transcripts of such proofs and may even be able to choose the challenge messages if the certificate
authority is corrupted. When the adversary attempts key registration on behalf of dishonest players
the simulator gets the code of the prover machine M . If the prover succeeds in running an accepting
proof (with the simulator) while communicating at most ` bits with the environment, then the
simulator extracts the corresponding equivocation secret key.

13

To simulate the coin-flip, if Pj is honest and Pi corrupted (at that point) then the simulator
can equivocate the commitment made by Pj in Step 2 and open it in Step 4 so that the result of
the flip is an extraction public key for which the simulator has the corresponding secret key. If, on
the other hand, Pi is honest then the adversary controlling Pj does not have much control over
the result of the flip (can only choose to open the commitment or quit). We use the “coin tossing
lemma” [CDPW], which says that any indistinguishability task that is hard for a random public
key, is also hard for a public key derived through the coin-flip protocol above. In particular, the
commitment game and the equivocation game remain indistinguishable even when the extraction
key is chosen as above in a protocol with a corrupted Pj rather than randomly.

To simulate a commitment by an honest Pi to a corrupted Pj , the simulator simply uses ecommit
and opens the commitment using equivocate when the message is revealed. To simulate a commit-
ment by a corrupted Pi to an honest Pj the simulator simply uses the extraction secret key to
extract the contents of the commitment. The security of the extraction game ensures that the
adversary will be unable to later open the commitment differently.

The full simulation is written out and proved formally in Appendix B.

References

[BA03] K. Barr and K. Asanovic. Energy aware lossless data compression. In The International Conference on
Mobile Systems - MobiSys pages 231-244,San Francisco, CA, USA, 5–8 May 2003. ACM Press, 2003.

[BCNP04] Boaz Barak, Ran Canetti, Jesper Buus Nielsen, and Rafael Pass. Universally composable protocols with
relaxed set-up assumptions. In 45th Annual Symposium on Foundations of Computer Science, pages 186–
195, Rome, Italy, 17–19 October 2004. IEEE.

[BGGL01] Boaz Barak, Oded Goldreich, Shafi Goldwasser and Yehuda Lindell Resettably-Sound Zero-Knowledge
and its Applications In 42nd Annual Symposium on Foundations of Computer Science, Las Vegas, Nevada,
14–17 October 2001. IEEE.

[Can] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. Cryptology
ePrint Archive 2000/067.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In 42nd An-
nual Symposium on Foundations of Computer Science, pages 136–145, Las Vegas, Nevada, 14–17 October
2001. IEEE. Full version in [Can].

[CDPW] Ran Canetti and Yevgeniy Dodis and Rafael Pass and Shabsi Walfish. Universally Composable Security
with Global Setup. Cryptology ePrint Archive 2006/042. Published Version in [CDPW07].

[CDPW07] Ran Canetti and Yevgeniy Dodis and Rafael Pass and Shabsi Walfish. Universally Composable Secu-
rity with Global Setup. In Theory of Cryptography Conference - TCC 2007, Proceedings, pages 61–85,
Amsterdam 2007. Springer-Verlag. Lecture Notes in Computer Science Volume 4392/2007.

[CKL03] Ran Canetti, Eyal Kushilevitz, and Yehuda Lindell. On the limitations of universally composable two-
party computation without set-up assumptions. In Eli Biham, editor, Advances in Cryptology - EuroCrypt
2003, pages 68–86, Berlin, 2003. Springer-Verlag. Lecture Notes in Computer Science Volume 2656.

[CLOS02] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally composable two-party and
multi-party secure computation. In Proceedings of the Thirty-Fourth Annual ACM Symposium on the
Theory of Computing, pages 494–503, Montreal, Quebec, Canada, 2002.

[DNW07] Ivan Damg̊ard, Jesper Buus Nielsen, Daniel Wich. Isolated Proofs of Knowledge and Isolated Zero Knowl-
edge. Cryptology ePrint Archive 2007/331.

[K07] Jonathan Katz. Universally Composable Multi-party Computation Using Tamper-Proof Hardware. In
Proceedings of EuroCrypt 2007, pages 115-128, Springer Verlag LNCS 4515.

14

A A Two Key Extractable and Strongly Equivocal Commitment Scheme

In this section4 we briefly describe the construction of a two key extractable and strongly equivocal
commitment scheme defined in [CLOS02]. Most of the observations here were already made in
[BCNP04]. For our purposes we only need to make a slight modification and use a dense public key
encryption scheme.

We start with a strongly equivocal, perfectly hiding commitment scheme which is not ex-
tractable. For example, we can use the Pedersen commitment scheme which is an efficient scheme
based on the DL assumption. Alternatively we can use the Feige-Shamir commitment scheme which
is based on the existence of one way permutations (OWP) alone. This is the approach taken by
[CLOS02] where it is shown that a small modification to the Feige-Shamir scheme makes it strongly
equivocal as well. In the Feige-Shamir scheme, the secret key skE is a random string w and the
public key pkE is f(w) where f is some one-way-function. We can define the relation R as the set
of elements (f(w), w) for some one way function f . For any such pair, the equivocated commit-
ments and honestly produced commitments have equivalent distributions. The message space of the
Feige-Shamir scheme is only 1-bit. The scheme has the property that knowledge of w allows one to
create equivocated commitments and openings which are indistinguishable from real commitments
and openings even if the adversary knows w as well. However, for an adversary that only sees f(w),
the scheme is binding.

To get extractability, we take a strongly equivocal, perfectly hiding commitment scheme and
restrict the message space to only 1-bit. Then we use a dense public key CPA secure encryption
scheme (gen,Enc,Dec) where the ciphertexts are pseudorandom elements in some easily sampleable
range C and where each ciphertext has only one valid decryption for any public key. To commit to
a bit b, the sender computes Ccom = commitpkE

(b; rcom), Cb = EncpkX
(C; renc) and C1−b ← C and

send the commitment C = (Ccom, C0, C1).

To equivocate using the secret key skE we simply compute (Ccom, aux) ← ecommitpkE ,skE
(),

r
(0)
com ← equivocatepkE ,skE

(Ccom, aux, 0), r
(1)
com ← equivocatepkE ,skE

(Ccom, aux, 1) and C0 = Enc(r(0)
com; r(0)

enc),

C1 = Enc(r(1)
com; r(1)

enc). To equivocate to a bit b send (b, r(b)
com, r

(b)
enc). It is easy to see that equivocality

is preserved because of CPA-security of the encryption scheme and the pseudorandomness of the
ciphertexts.

The extractability property holds because the values C0, C1 define the encrypted messages
r
(0)
com, r

(1)
com which can be decrypted using the encryption secret key. If both equations Ccom =

commitpkE
(0; r(0)

com) and Ccom = commitpkE
(1; r(1)

com) hold, then the adversary breaks the computa-
tional binding property of the original equivocal commitment scheme. If only one such equation
holds, say for the bit b, then b is the extracted message and the committer cannot produce a
decommitment for 1 − b. This is true even if the adversary knows the decryption key skX . Simi-
larly, binding under all encryption keys holds because of the computational binding property of the
original strongly equivocal commitment scheme.

4 This section fits within the 18 pages limit in llncs format and has been placed as an appendix only due to readability.
This part of the appendix will be included in a possible proceedings version.

15

B Simulation

In this section5 we give the full simulation proof for Theorem 1.

Simulating Key Registration: The environment decides when a player should perform the regis-
tration phase. In the real world, the party Pi receives a registration command (register, Pi, CAj)
from the environment. The first time it gets such a command, it chooses the equivocation keys
(pk(E,i), sk(E,i)) ← genE(1κ). It uses its secret key sk(E,i) to construct the PPT ITM M im-
plementing the prover functionality. Subsequently, it reuses the same public/secret keys when
registering with other CAs. It sends (create, sid, Pi, CAj ,M) to the functionality Fisolate and
(register, Pi, CAj , pk(E,i)) to CAj .6

We have four cases to consider: CAj can be corrupted or honest and Pi can be corrupted or
honest. If CAj is corrupted then so are all of the players in the trust group of CAj . Hence if Pi and
CAj are both corrupted then the entire process of key registration is just internal communication
of A and can be simulated trivially. We need only consider the following cases:

Honest Pi, corrupted CAj: In the ideal world, when the simulator sees the message (register, sid, Pi, CAj)
sent to the ideal functionality FMCOM on behalf of an honest party Pi, it acts just like an hon-
est party would in the real world. Namely it chooses an equivocation public/secret key pair
(pk(E,i), sk(E,i)) ← genE(1κ) and constructs the prover M (and sets its random tape) which it
sends to Fisolate. Since registration is independent of any inputs chosen by the environment, it is
easy to simulate honest parties by just honestly following the protocol. The simulator keeps a record
of the public/secret key pairs it generates for each party during this stage of the simulation. The
adversary A acting on behalf of the corrupted CAj is then free to interact with the encapsulated
prover functionality M by interacting with the Fisolate. This gives the corrupt CAj nothing more
than protocol access to the prover functionality. The simulation here is identical to the real world
interaction.

Corrupted Pi, honest CAj: When the adversaryA attempts key registration on behalf of a corrupted
party Pi, it sends (register, Pi, CAj , pk(E,i,j)) to CAj and (create, Pi, CAj ,M) to Fisolate. We note
that the equivocation public key might be different from other such public keys registered by Pi

with other certificate authorities. This is not a problem. The simulator S intercepts these messages
and recovers the machine M and pk(E,i,j). It runs the verifier protocol with M . If the protocol is
rejecting then the simulator ignores the registration request. If the protocol is accepting then it uses
the `-IPoK extractor X (Fig. 2) to extract a witness w(E,i,j) for the instance pk(E,i,j) in the relation
R. If the extractor is successful then the simulator sends (register, Pi, CAj) to FMCOM. If the
extractor fails then then simulation fails. The simulation is equivalent to the real world protocol
up to the negligible probability of the extractor failing.

In both of the cases, the simulator possesses a witness w(E,i,j) for the equivocation public key
pk(E,i,j) registered by any party Pi with any certificate authority CAj .
5 This section does not fit within the 18 pages limit in llncs format and has been included only to provide the

reviewer with the opportunity to verify Theorem 1. It will not be included in a possible proceedings version.
6 As Pi only uses sk(E,i) during registration, it could delete sk(E,i) after registration (along with the randomness used

in giving the proofs of knowledge of sk(E,i)). This would give the additional security that if Pi is later transiently
and passively corrupted, then the commitment functionality remains secure for Pi when it becomes uncorrupted.
This is easy to see, as the internal state of Pi after deleting sk(E,i) contains only values which are publicly known.
As transient faults are not in the focus here, we do not elaborate further on this issue.

16

Simulating the Coin-Flipping Protocol: In the real world, the first time that a party Pi wants
to send a commitment to a party Pj , it sends an initiation request to Pj to run a coin-flipping
protocol. In the ideal world, the first time that the environment sends (commit, sid, ssid, Pi, Pj ,m)
to FMCOM on behalf of an honest party Pi, the simulator needs to simulate the coin-flipping.
Alternatively, the adversary A can send a request on behalf of a corrupted party Pi to initiate a
coin-flip with another party Pj . The coin-flip is simulated as follows:

1. In the first step, Pi sends an initiation request to Pj to run a coin-flipping protocol. If Pi is
honest at this point, this request is made by the simulator S, otherwise it is sent by A on behalf
of Pi.

2. In the second step, in the real world, Pj picks a random g1 ← {0, 1}n and a random extraction
key (to which he does not know the secret key) pk(X,j) and sends pk(X,j), C = commitpk(E,i),pk(X,j)

(g1; r)
to Pi. If Pj is honest at this points, the simulator chooses a random pk(X,j) and computes
(C, aux) = ecommitpk(E,i,j),pk(X,j),w(E,i,j)

(). It sends (pk(X,j), C) to Pi. Otherwise, if Pj is cor-
rupted, the internal adversary A computes (pk(X,j), C) on behalf of Pj .

3. In the third step, Pi sends a random g2 ← {0, 1}n to Pj . If Pi is honest at this point, this step is
simulated faithfully by the simulator, otherwise the internal adversary A generates g2 on behalf
of Pi.

4. In the fourth step Pj sends the opening (g1, r) to Pi. If Pj is still honest at this point,
then the simulator chooses (pk(X,i,j), sk(X,i,j)) ← gen(1κ). It computes g1 := pk(X,i,j) ⊕ g2 ,
r = equivocatepk(E,i,j),pk(X,j),w(E,i,j)

(C, aux, g1) and sends (g1, r) to Pi. In addition, the simulator
records (pk(X,i,j), sk(X,i,j)). Otherwise, if Pj is corrupted, the adversary A produces (g1, r) on
behalf of Pj .

The simulation has the following properties:

– The only places where the simulator veers from the real-execution is in Steps 2 and 4 where it
uses ecommit and equivocate instead of sending an honest commitment and opening to simulate
an honest Pj . Also, it chooses g1 using a key generation algorithm rather than randomly. By
the equivocality (and the fact that the key generation algorithm produces public keys which
are random strings), this modification is indistinguishable. If the adversary corrupts Pj after it
sends the commitment in Step 2 but before it sends the opening in Step 4, then the simulator
simply chooses a random g1 and computes r ← equivocatepk(E,i,j),pk(X,j),w(E,i,j)

(C, aux, g1). It sets
the internal state of Pj to look like the commitment C in Step 2 was computed using (g1, r).
If the adversary corrupts Pj after the end of Step 4, then the simulator sets the internal state
of Pj to look like C was generated using the pair (g1, r) sent in Step 4. Hence the simulation is
indistinguishable, even if the adversary corrupts Pj during the coin-flip or later on.

– When Pj is honest through the end of the protocol, the simulator knows an extraction secret
key sk(X,i,j) even if Pi is corrupted.

– If Pi is honest through the end of the protocol then the resulting extraction public key is
essentially random, even if Pj is malicious. We need to argue that the strong equivocality
property holds even when the extraction key is chosen through such a coin-flip protocol (with
a malicious Pj) rather than randomly. Intuitively, this is true because of the security of the
coin-flip which in turn holds by the binding property of the commitment scheme. This intuition
is formalized and proved by the “coin tossing lemma” in [CDPW].

17

Simulating “Commit” and “Reveal” where Sender is Honest: In the ideal world, the
environment sends (commit, sid, ssid, Pj ,m) to FMCOM on behalf of an honest Pi. The simulator
sees the public part of the message, namely (commit, sid, ssid, Pj). Upon seeing this, the simulator
computes (C, aux) = ecommitpk(X,i,j),pk(E,j,i),w(E,j,i)

() and sends (commit, sid, ssid, Pi, Pj , C) to Pj on
behalf of Pi. It remembers (sid, ssid, Pi, Pj , C, aux).

Later, if the environment sends (reveal, sid, ssid, Pi, Pj) to FMCOM on behalf of a (still) honest
player Pi, the simulator recovers the message m. The simulator recalls the tuple (sid, ssid, Pi, Pj , C, aux)
used for that commitment and computes r ← equivocatepk(E,j,i),pk(X,i,j),w(E,j,i)

(C, aux,m). The sim-
ulator sends (reveal, sid, ssid, Pi,m, r) to Pj .

If the adversary A corrupts the player Pi, then the simulator recovers the committed messages
m and recalls the corresponding stored tuples (sid, ssid, Pi, Pj , C, aux). It computes r using the
equivocate functionality as above and sets the internal state of Pi as though the commitment C
was generated using (m, r).

The simulated commit/reveal actions are indistinguishable from the real world by the indistin-
guishability of the commitment game and the equivocation game.

Simulating “Commit” Where Sender is Corrupted: When the internal copy of A generates
the commitment C on behalf of a corrupted player Pi by sending (commit, sid, ssid, Pj , C) and
Pj is corrupted then this is internal communication of A and can be simulated trivially. If Pj is
honest, then the simulator knows the extraction secret key sk(X,i,j). The simulator computes m =
extractpk(E,j,i),pk(X,i,j),sk(X,i,j)

(C). It then sends (commit, sid, ssid,m) to the functionality FMCOM in
the ideal world.

Simulating “Reveal” Where Sender is Corrupted: When the internal copy ofA generates the
decommitment (reveal, sid, ssid, Pj ,m

′, r′) on behalf of a corrupted Pi, where the corresponding
commitment C = commitpkE,j,i,pk(X,i,j)

(m′, r′), the simulator simply sends (reveal, sid, ssid, Pj) to
FMCOM. The functionality FMCOM will decommit to some message m. There are two options. The
commitment might have been made when the sender was honest, and then the sender got corrupted
later. In this case some message m was revealed to the simulator when the sender got corrupted.
Secondly the sender might have been corrupted at the time the commitment was made in which case
the simulator used extract to recover a message m and sent (commitsid, ssid,m) to the functionality
FMCOM. In the second case, it follows from the definition of the extraction game and the assumption
that the scheme is extractable, that m = m′, except with negligible probability.

The first case, is more involved as the following might have happened: 1) First C was computed
by the simulator using ecommit (while the sender was honest). 2) Then the sender was corrupted,
and the simulator used equivocate to open C to (m, r), where m is the message it received from
the ideal functionality. 3) The corruption of the sender was done before the decommitment to C
was computed by the simulator and delivered to the receiver. 4) The adversary instead sent the
decommitment (reveal, sid, ssid, Pj ,m

′, r′) to C.
In that case, however, it follows that m′ = m except with negligible probability from the fact

that the commitment scheme is simulation-sound binding (Lemma 1).

Indistinguishability of Simulation and Real World Interaction For each part of the simu-
lation, we gave an argument for why it is “legitimate”. We rely on the hybrid argument which can

18

be easily formalized from the arguments outlined in each of the above sections. Namely, we start
with the real world interaction. Then, in each of the above sections, we argued that the change
introduced by that portion of the simulation is indistinguishable from the simulation without that
change. Hence the hybrid argument ensures that the full simulation is indistinguishable from the
real world interaction.

19

