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Abstra
t. Standard se
urity notions for en
ryption s
hemes do not guarantee any se
urityif the en
rypted messages depend on the se
ret key. Yet it is exa
tly the stronger notionof se
urity in the presen
e of key-dependent messages (KDM se
urity) that is required in anumber of appli
ations: most prominently, KDM se
urity plays an important role in analyzing
ryptographi
 multi-party proto
ols in a formal 
al
ulus. But although often assumed, themere existen
e of KDM se
ure s
hemes is an open problem. The only previously known
onstru
tion was proven se
ure in the random ora
le model.We present symmetri
 en
ryption s
hemes that are KDM se
ure in the standard model (i.e.,without random ora
les). The pri
e we pay is that we a
hieve only a relaxed (but still useful)notion of key-dependent message se
urity. Our work answers (at least partially) an openproblem posed by Bla
k, Rogaway, and Shrimpton. More 
on
retely, our 
ontributions are asfollows:1. We present a (stateless) symmetri
 en
ryption s
heme that is information-theoreti
allyse
ure in fa
e of a bounded number and length of en
ryptions for whi
h the messagesdepend in an arbitrary way on the se
ret key.2. We present a stateful symmetri
 en
ryption s
heme that is 
omputationally se
ure in fa
eof an arbitrary number of en
ryptions for whi
h the messages depend only on the respe
-tive 
urrent se
ret state/key of the s
heme. The underlying 
omputational assumption isminimal: we assume the existen
e of one-way fun
tions.3. We give eviden
e that the only previously known KDM se
ure en
ryption s
heme 
annotbe proven se
ure in the standard model (i.e., without random ora
les).Keywords: Key-dependent message se
urity, se
urity proofs, symmetri
 en
ryption s
hemes.



1 Introdu
tionProofs of se
urity are a good and sound way to establish 
on�den
e in an en
ryptionsystem. However, �proof� is a bit misleading here: usually, a se
urity proof is not an absolutestatement, but merely shows that under 
ertain assumptions, the s
heme is resistant againsta 
ertain 
lass of atta
ks. Nothing is guaranteed if the assumptions are invalidated or atta
ksoutside the 
onsidered 
lass take pla
e. Therefore, it is 
ru
ial that� the underlying assumptions are plausible, and� the 
onsidered 
lass of atta
ks is as general as possible.Additionally, en
ryption s
hemes are most often used only as a building blo
k in a largerproto
ol 
ontext, and thus� the 
onsidered 
lass of atta
ks should allow for meaningful and general analysis of theen
ryption s
heme in a larger proto
ol 
ontext.Indistinguishability of 
iphertexts. The most established 
lass of atta
ks 
onsists ofatta
ks targeted against the indistinguishability of 
iphertexts (IND-CPA [14℄, resp. IND-CCA [19℄ atta
ks). Here, adversary A's goal is to win the following game: �rst, A 
hoosestwo messagesm0;m1, then gets the en
ryption 
b ofmb (for a random b 2 f0; 1g), and �nallyoutputs a guess b0 for b. Now A wins if b = b0, i.e., if it guessed 
orre
tly whi
h messagewas en
rypted. The s
heme is se
ure if no adversary wins (signi�
antly) more often thanin half of the 
ases. Intuitively, se
urity in this sense implies that �one 
iphertext looks likeany other.�The IND-CPA and IND-CCA notions have been tremendously su

essful and evenproved equivalent to a number of alternative and arguably not less appealing notions(
f. [5, 6, 9, 17℄). At the same time, IND-CPA and IND-CCA se
urity 
an be a
hievedunder various plausible number-theoreti
 assumptions [14, 12, 10℄.Key-dependent message se
urity. However, there is one se
urity property that is usefuland important in many appli
ations, yet is not 
overed by IND-CPA or IND-CCA se
urity:se
urity in presen
e of key-dependent messages. More 
on
retely, imagine a s
enario in whi
hthe adversary 
an request en
ryptions of arbitrary (but e�
iently evaluatable) fun
tions ofthe se
ret de
ryption key. In other words, the adversary 
hooses a fun
tion g and gets theen
ryption of g(K) under se
ret key K. Note that this is something the adversary may notbe able to generate on its own, not even in the publi
-key setting. The adversary's goalis now to distinguish su
h a key-dependent en
ryption from an en
ryption of a randommessage. Se
urity of an en
ryption is a useful notion to 
onsider sin
e� in relevant pra
ti
al settings, this notion is ne
essary: 
onsider, e.g., en
rypting yourhard drive (whi
h may 
ontain the se
ret key, e.g., on the swap partition, or in a �lethat 
ontains your se
ret keyring), 1



� 
ertain proto
ols use key-dependent message se
urity expli
itly as a te
hni
al tool [8℄,and, possibly most importantly from a theoreti
al perspe
tive,� key-dependent message se
urity is a key ingredient for showing that se
urity results thatare proven in a formal 
al
ulus are also 
omputationally sound.This latter reason may 
ome a bit surprising, hen
e we explain it in more detail.Formal se
urity proofs. The idea to automate se
urity proofs 
an be tra
ed ba
k to theseminal work of Dolev and Yao [13℄, who des
ribed a formal 
al
ulus to analyze se
urityproto
ols. To make the 
al
ulus a

essible to automati
 provers, however, base primitiveslike en
ryption (or, later, signatures) had to be over-idealized, dis
onne
ting them fromtheir 
on
rete 
omputational implementations. What was missing for almost 20 years was asoundness result, i.e., a result that essentially states �whatever 
an be proven in the abstra
t
al
ulus holds as well in the 
ryptographi
 world, where the ideal en
ryption operator isimplemented with an en
ryption s
heme.�But �nally, the soundness result by Abadi and Rogaway [1℄ 
onne
ted the formal,ma
hine-a

essible world with the 
ryptographi
 world. However, with standard en
ryp-tion s
hemes, only a 
ertain subset of possible proto
ols 
ould be 
onsidered, namely thosethat only 
ontain expressions whi
h ful�l a 
ertain �a
y
li
ity� 
ondition.3 To a
hieve fullgenerality, a stronger requirement (se
urity in the presen
e of key-dependent messages) onthe en
ryption s
heme was needed. This is not a pe
uliarity of the approa
h of Abadi andRogaway; similar problems o

ur in related approa
hes, e.g. [18, 2, 4℄. In parti
ular, Adãoet al. [2℄ show that in a 
ertain sense, key-dependent message se
urity is a ne
essity forformal soundness.
1.1 Related work.Around the time when the need for key-dependent se
urity had been realized, formal 
har-a
terizations of the se
urity notion were given in [8, 7℄. Moreover, [7℄ showed a simple sym-metri
 en
ryption s
heme to be se
ure with respe
t to their notion. However, their s
hemewas proven in the random ora
le model, and the proof made heavy use of the �ideal� natureof the random ora
le (more details on this in Se
tion 3). Bla
k et al. posed the question ofa
hieving key-dependent se
urity in the standard model.Ba
kes et al. [3℄ 
onsider several strengthenings of the de�nition from [7℄. They provestru
tural results among the notions (in
luding a way to �pat
h� a s
heme that is se
ure inthe sense of [7℄ to mat
h the notions from [3℄). However, Ba
kes et al. do not give an a
tual
onstru
tion of a se
ure s
heme.3 They also did only prove se
urity against passive adversaries. However, a
tive se
urity was a
hieved bysubsequently by [18, 2, 4℄. 2



1.2 Our work.Our goal is to a
hieve key-dependent message se
urity, as de�ned by Bla
k et al., in thestandard model. We present several results:� a (stateless) symmetri
 en
ryption s
heme that is information-theoreti
ally se
ure infa
e of a bounded number and length of en
ryptions for whi
h the messages depend inan arbitrary way on the se
ret key.� a stateful symmetri
 en
ryption s
heme that is 
omputationally se
ure in fa
e of anarbitrary number of en
ryptions for whi
h the messages depend only on the respe
tive
urrent se
ret state/key of the s
heme. The underlying 
omputational assumption isminimal: we assume the existen
e of one-way fun
tions.We also stress the stri
tness of key-dependent message se
urity:� We give eviden
e that the only previously known KDM se
ure en
ryption s
heme 
annotbe proven se
ure in the standard model (i.e., without random ora
les).Note. A few days ago, we learned about the (
on
urrent and independent) work [15℄ ofHalevi and Kraw
zyk. They prove several results in the standard model in the 
ontext ofkey-dependent se
urity: they give� a s
heme that is se
ure in the presen
e of messages that do not depend on a deta
hedpart (the �salt�) of the se
ret key, and� a s
heme that is se
ure in the presen
e of messages that do depend in a very spe
i�
way on the (full) se
ret key.In both 
ases, the te
hni
al handle to manage the dependen
y on the se
ret key is to 
on-�ne the 
lass of allowed dependen
ies. In 
ontrast, we strive for se
urity against arbitrarydependen
ies.4. The handle we use to over
ome the dependen
ies is a bound on the numberof allowed messages, or, alternatively, trusted erasures. Interestingly, although indepen-dently, Halevi and Kraw
zyk use te
hniques similar to ours: namely, universal hashing andpseudorandom number generation (resp., pseudorandom fun
tions).
2 PreliminariesBasi
 notation. Throughout the paper, k 2 N denotes the se
urity parameter of a given
onstru
tion. Intuitively, a larger se
urity parameter should provide more se
urity, but as
heme's e�
ien
y is also allowed to degrade with growing k. A negligible fun
tion vanishesfaster than any given polynomial. The statisti
al distan
e between two random variablesX and Y is denoted by Æ(X ; Y ). The Rényi entropy H2(X) of a random variable X is4 However, neither our s
hemes nor the s
hemes of [15℄ 
an handle the important 
ase of non-trivial key
y
les, that is, 
y
li
 
hains of en
ryptions of key Ki under key Ki+1 mod n3



de�ned asH2(X) := �Px log2 Pr [X = x℄2. Two families (Xk) and (Yk) of random variablesare 
omputationally indistinguishable (written X � Y ) if for every PPT (probabilisti
polynomial-time) algorithm A, the fun
tion jPr [A(Xk) = 1℄� Pr [A(Yk) = 1℄j is negligiblein k.We will further need a strengthened version of the leftover hash lemma that takes intoa

ount additional information S about the randomness K and some additional informa-tion Q unrelated to K.
Lemma 1 (Leftover Hash Lemma, extended). Let K, Q, S, and U be random vari-ables over bitstrings of �xed length. Let UHF be a family of universal hash fun
tions. Let hbe uniformly distributed over UHF . Assume that U is uniformly distributed. Assume thatU and (h; S;Q) are independent, that K and Q are independent, and that h and K areindependent given (S;Q). Assume that jU j = jh(K)j. Then the following bound holds:

Æ(h; h(K); S;Q ; h;U; S;Q) � 2jSj+jh(K)j=2�H2(K)=2�1:
Proof. In the following, s; q; k range over all values taken by S, Q, K, respe
tively. Byapplying the de�nition of the statisti
al distan
e, we have
" := Æ(h; h(K); S;Q ; h;U; S;Q)=Xs;q Pr[S = s;Q = q℄ Æ(h; h(K)jS = s;Q = q ; h;U jS = s;Q = q): (1)

Here Xj(S = s) stands for the distribution of X under the 
ondition S = s. Sin
e h and(S;Q) are independent, hj(S = s;Q = q) is a universal hash-fun
tion. And sin
e U isindependent of (S;Q; h), we have that U is uniformly distributed and independent of hgiven S = s;Q = q. Further, by assumption h and K are independent given S = s;Q = q.Thus the leftover hash lemma in its basi
 form [16℄ applies, and we get
Æ(h; h(K)jS = s;Q = q ; h;U jS = s;Q = q) � 2jh(K)j=2�H2(Kj(S=s;Q=q))=2�1:4



Combining this with (1) we get" �Xs;q Pr[S = s;Q = q℄ � 2jh(K)j=2�H2(Kj(S=s;Q=q))=2�1
=Xs;q Pr[S = s;Q = q℄ � 12q2jh(K)j �Xk Pr[K = kjS = s;Q = q℄2
�Xs;q Pr[Q = q℄ � 12q2jh(K)j �Xk Pr[S = sjQ = q℄2 � Pr[K = kjS = s;Q = q℄2
=Xs;q Pr[Q = q℄ � 12q2jh(K)j �Xk Pr[K = k; S = sjQ = q℄2
�Xs;q Pr[Q = q℄ � 12q2jh(K)j �Xk Pr[K = kjQ = q℄2(�)=Xs;q Pr[Q = q℄ � 12q2jh(K)j �Xk Pr[K = k℄2
=Xs;q Pr[Q = q℄ � 12p2jh(K)j � 2�H2(K)
=Xs;q Pr[Q = q℄ � 2jH(k)j=2�H2(K)�1
=Xs 2jH(k)j=2�H2(K)�1 = 2jSj+jH(k)j=2�H2(K)�1:

Here (�) uses that Q and K are independent. utKey-dependent message se
urity. For formalizing key-dependent message se
urity, weuse a variation on the de�nition of Bla
k et al. [7℄:De�nition 2 (KDM se
urity, standard model, symmetri
 setting). Let � = (K; E ;D)be a symmetri
 en
ryption s
heme, let K := (K1; : : : ;Kn) be se
ret keys (where n is poly-nomial in the se
urity parameter), and let A be an adversary. Let� RealK be the ora
le that on input g; � returns C  E(1k;K�; g(K)), and� FakeK be the ora
le that on input g returns C  E(1k;K�; U) for an independentlyuniformly sele
ted fresh U 2 f0; 1gjg(K)j.In both 
ases, g is en
oded as a 
ir
uit.5 The KDM advantage of an adversary A is de�nedas AdvKDM� (A) := ���Pr hK $ K : ARealK(�) = 1i� Pr hK $ K : AFakeK(�) = 1i���Here K $ K means that ea
h key Ki is 
hosen independently using K.5 This has the side-e�e
t that for a polynomial-time adversary A, the fun
tion g is also polynomial-time
omputable. 5



We say that � is KDM se
ure i� for every PPT adversary A and every polynomial n,the advantage fun
tion AdvKDM� (A) is negligible in the se
urity parameter. We require thatA only queries its ora
le with �xed-length fun
tions g, i.e., jg(K)j is the same for all valuesof K.The relation to real-or-random se
urity. De�nition 2 bears a great resemblan
e to thereal-or-random (ROR-CPA) de�nition for en
ryption s
hemes from [5℄. The main di�eren
eis that De�nition 2 equips the adversary with an ora
le that delivers en
ryptions of key-dependent messages (i.e., evaluations) g(K). The way in whi
h these messages depend onthe keys is 
ompletely up to the adversary; the only 
onstraint is that g must be e�
ientlyevaluatable and have a �xed output length.On a
hieving KDM se
urity and a
tive KDM se
urity. Using the equivalen
e ofROR-CPA and IND-CPA se
urity from [5℄, it is easy to see that De�nition 2 is stri
tlystronger than IND-CPA se
urity. A natural adaption of De�nition 2 to a
tive atta
ks�su
h a notion is 
alled AKDM se
urity in [3℄�
onsists in equipping the adversary witha de
ryption ora
le that is restri
ted in the usual sense to prevent trivial atta
ks. Andsimilarly to the passive 
ase, it is easy to see that AKDM se
urity is stri
tly stronger thanIND-CCA se
urity. On the other hand, on
e a s
heme is KDM se
ure, it 
an be easily andwithout (mu
h) loss of e�
ien
y upgraded to AKDM se
urity, as formalized and provedin [3℄. Hen
e, the main di�
ulty lies in �nding a s
heme that is KDM se
ure in the �rstpla
e. In the following, this will be our fo
us.
3 The s
heme of Bla
k et al.De�nition 2 is very hard to a
hieve. In fa
t, the only 
onstru
tion that is known, due toBla
k et al. [7℄, to a
hieve De�nition 2 is in the random ora
le model. It will be very usefulto take a 
loser look at their s
heme. We will argue that in a very 
on
rete sense, nothingless than a random ora
le will do for their s
heme. Hen
e, their 
onstru
tion merely showshow powerful random ora
les are, but does not give a hint on how to a
hieve KDM se
urityin the standard model. This 
onstitutes one motivation for our up
oming weakening ofKDM se
urity.S
heme 3 (The s
heme ver). De�ne the symmetri
 en
ryption s
heme ver = (K; E ;D)with se
urity parameter k 2 N, message spa
e f0; 1gk and key spa
e f0; 1gk through� K(1k) outputs a uniform random key K 2 f0; 1gk.� E(1k;K;M) 
hooses R 2 f0; 1gk uniformly and outputs the 
iphertext (R;H(KjjR)�M).� D(1k;K; (R;D)) outputs the message H(KjjR)�D.

6



The se
urity of ver with a random ora
le. Bla
k et al. proveTheorem 4 (Se
urity of ver [7℄). If H is a random ora
le, then ver is KDM se
ure.The main idea of the proof is to 
onsider an event bad, where bad o

urs i�1. the adversary queries H at any point KjjR that was previously used for en
ryption, or2. one of the fun
tions g submitted to the en
ryption ora
le queries H at the 
urrentlyused point KjjR.If bad does not o

ur, the adversary's view is identi
al in the Real and Fake experiments,thanks to the fa
t that di�erent random ora
le queries H(X);H(Y ) (X 6= Y ) are statisti-
ally independent: ea
h message is padded with 
ompletely fresh and message-independentrandomness. Hen
e, by showing (with an indu
tive argument) that bad o

urs only withsmall probability, [7℄ show the s
heme ver KDM se
ure.The inse
urity of ver without a random ora
le. Put informally, the proof of verutilizes one essential property of the random ora
le H: knowledge about arbitrary manyvalues H(Yi) (with Yi 6= X) does not yield any information about H(X). This use ofa random ora
le as a provider of statisti
al independen
e is what makes the proof fail
ompletely with any 
on
rete hash fun
tion used in pla
e of the random ora
le. There isno hope for the proof strategy to su

eed without random ora
les. A little more formally,we 
an show that in the random ora
le model, there exists a spe
i�
 hash fun
tion H thathas a number of generally very useful properties: H is 
ollision-resistant, one-way, 
an beinterpreted as a pseudorandom fun
tion (in a way 
ompatible with ver), and H makesver IND-CPA. But H makes ver 
ompletely inse
ure in the presen
e of key-dependentmessages. Hen
e, there 
an be no fully bla
k-box KDM se
urity proof for ver that relies onthese properties of H alone.Theorem 5 (Inse
urity of ver). Relative to a random ora
le, there exists a fun
tion Hsu
h that1. H is 
ollision-resistant,2. for any fun
tion p(k) 2 k�(1), H is one-way w.r.t. the uniform input distribution onf0; 1gp(k),3. the fun
tion FK(R) := H(KjjR) is a pseudorandom fun
tion with seed K,4. the s
heme ver, instantiated with H, is IND-CPA se
ure, but5. the s
heme ver, instantiated with H, is not KDM se
ure.Proof (sket
h). Assume for simpli
ity that the se
urity parameter k is even. Say that therandom ora
le RO maps arbitrary bitstrings to k-bit strings. Then denote by RO`(x) the�rst k=2 bits of RO(x). Now 
onsider the fun
tion H : f0; 1g� ! f0; 1gk with
H(x) := (RO(x) for jxj 6= 2k;RO(x`)� (RO`(x)jjRO`(RO`(x))) for x = x`jjxr and jx`j = jxrj = k:We show the 
laimed properties for H: 7



1. H is 
ollision-resistant. It is 
lear that 
ollisions H(x) = H(y) (with x 6= y) 
annotbe found e�
iently if x 6= 2k or y 6= 2k. So assume x = x`jjxr and y = y`jjyr for jx`j =jxrj = jy`j = jyrj = k. Collisions of this form imply RO`(x`)�RO`(x) = RO`(y`)�RO`(y)and thus RO`(x`)�RO`(y`) = RO`(x)�RO`(y): (2)If x` = y`, then this 
onstitutes a 
ollision in RO`, so we may assume x` 6= y`. Butthe distributions of RO` on k-bit strings and on 2k-bit strings are independent and bothuniform. Hen
e, �nding x and y to satisfy (2) requires a superpolynomial number of queriesto RO` (resp. RO) with overwhelming probability.
2. H is one-way w.r.t. the uniform distribution on f0; 1gk. For p(k) = 2k, thisfollows from 
ollision-resistan
e and the fa
t that H is 
ompressing: Sin
e the preimages ofH are not unique, if we are able to �nd a preimage x0 of H(x) for random x 2 f0; 1g2k,with noti
eable probability we will have x 6= x0. This allows to �nd 
ollisions e�
iently. Fordetails see [11℄. For p(k) 6= 2k, this follows by de�nition of H and the fa
t that the randomora
le is one-way.
3. FK(R) := H(KjjR) is a pseudorandom fun
tion. Consider an adversary A that hasora
le a

ess to RO and to FK for uniformly 
hosen K. We denote A's i-th query to FK byRi. Without loss of generality, assume that A never asks for the same FK evaluation twi
e,so the Ri are pairwise distin
t. Furthermore, let Xi := KjjRi, and Yi := RO`(KjjRi). We
laim that A doesn't query RO with K or any of the values Xi; Yi, ex
ept with negligibleprobability.We prove our 
laim indu
tively as follows. Let Ei denote the event that A queries ROwith a value that starts with K prior to the i-th FK query. Clearly, E1 happens withexponentially small probability. So �x an i � 1. To 
omplete our proof, it is su�
ientto show that under 
ondition :Ei, the probability for Ei+1 to happen is bounded by anegligible fun
tion that does not depend on i.Assume that :Ei holds. That means that, given A's view up to and in
luding the (i�1)-th FK query, the key K is uniformly distributed among all k-bit values (or k-bit pre�xes of2k-bit values) not yet queried by A. By the polynomiality of A, this means that, from A'spoint of view, K is uniformly distributed on an exponentially-sized subset of 0; 1k. But thismeans that until the i-th FK query, A has only an exponentially small 
han
e to query oneof K;Xj; Yj (j < i). Hen
e Ei+1 j :Ei happens only with exponentially small probability.Summing up, A never queries RO with K or any of the Xi; Yi, ex
ept with negligibleprobability. Hen
e, FK 
an be substituted with a truly random fun
tion without A noti
ing,and the 
laim follows.
4. ver with H is IND-CPA. Follows immediately from 3.8



5. ver with H is not KDM se
ure. A su

essful KDM adversary A on ver is thefollowing: A asks its en
ryption ora
le for an en
ryption of RO(K) (e.g., using g withg(x) = RO(x) as input to the ora
le). In the real KDM game, the 
iphertext will be(R;H(KjjR)�RO(K)) = (R;RO`(KjjR)jjRO`(RO`(KjjR)));and hen
e of the form (R; tjjRO`(t)) for some t, whi
h 
an be easily re
ognized by A.But in the fake KDM game, the 
iphertext will have the form (R;U) for a uniformly andindependently distributed U , whi
h is generally not of the form (R; tjjRO`(t)). Hen
e, A
an su

essfully distinguish real en
ryptions from fake ones. ut
4 Information-theoreti
 KDM se
uritySin
e key-dependent message se
urity is very hard to a
hieve, we start with two simples
hemes that do not a
hieve full KDM se
urity, but serve to explain some important 
on-
epts.
4.1 The general idea and a simple s
heme (informal presentation)First observe that the usual one-time padC = M �K (C 
iphertext, M message, K key)does not a
hieve KDM se
urity. En
ryption ofM = K results in an all-zero 
iphertext thatis 
learly indistinguishable from a random en
ryption. However, the slight tweakC = (h;M � h(K)) (h independently drawn universal hash fun
tion)does a
hieve a 
ertain form of key-dependent message se
urity: the pad h(K) that is distilledfrom K looks like uniform and independent randomness, even if h and some arbitrary (butbounded) information M = M(K) about K is known. (When using suitable bitlengths jKjand jM j, this 
an be shown using the leftover hash lemma [16℄.) So the en
ryptionM�h(K)of one single message M = M(K) looks always like uniform randomness. Hen
e the s
hemeis KDM se
ure in a setting where the en
ryption ora
le is only used on
e (but on the otherhand, information-theoreti
 se
urity against unbounded adversaries is a
hieved).
4.2 A more formal generalization of the simple s
hemeOf 
ourse, one would expe
t that by expanding the key, the s
heme stays se
ure even aftermultiple (key-dependent) en
ryptions. This is true, but to show this, a hybrid argument andmultiple appli
ations of the leftover hash lemma are ne
essary. We formalize this statementnow. 9



S
heme 6 (The s
heme p-BKDM (for �p-bounded KDM�)). Let p 2 Z[k℄ be apositively-valued polynomial, let `(k) := (2p(k)+3)k, and let UHF be a family of universalhash fun
tions that map `(k)-bit strings to k-bit strings. De�ne the symmetri
 en
ryptions
heme p-BKDM = (K; E ;D) with se
urity parameter k 2 N, message spa
e f0; 1gk, andkey spa
e f0; 1g`(k) through� K(1k) outputs a uniform random key K 2 f0; 1g`(k).� E(1k;K;M) samples h $ UHF and outputs the 
iphertext C = (h; h(K)�M).� D(1k;K; (h;D)) outputs the message h(K)�D.De�nition 7 (Bounded KDM se
urity). Let p 2 Z[k℄ be a positively-valued polynomial.Then a symmetri
 en
ryption s
heme � is p-bounded KDM se
ure if it is KDM se
ureagainst PPT adversaries that query the en
ryption ora
le at most p(k) times. Further, �is information-theoreti
ally p-bounded KDM se
ure if it is KDM se
ure against arbitrary(i.e., 
omputationally unbounded) adversaries that query the en
ryption ora
le at most p(k)times.Theorem 8 (Bounded KDM se
urity of p-BKDM). The s
heme p-BKDM is information-theoreti
ally p-bounded KDM se
ure.Proof. In the following, we abbreviate xi; : : : ; xj with xi;j for all variables x. Let n be thenumber of keys used.Let an adversary A be given that queries the en
ryption ora
le at most p(k) times.Without loss of generality we 
an assume the adversary to be deterministi
 (by �xing therandom tape that distinguishes best) and that it performs exa
tly p(k) queries. In the i-then
ryption in the real experiment, let �i denote the index of the key that has been used,let hi be the hash fun
tion 
hosen by the en
ryption fun
tion, let mi be the message thatis en
rypted, and let 
i be the se
ond 
omponent of the resulting 
iphertext (i.e., (hi; 
i)is the i-th 
iphertext). Sin
e the adversary is deterministi
, mi depends deterministi
allyfrom the keys K1;n and the 
iphertexts 
1;i�1; h1;i�1, i.e., there are deterministi
 fun
tionsf̂i withmi = f̂i(K1;n; 
1;i�1; h1;i�1). Similarly, there are deterministi
 fun
tions �̂i su
h that�i = �̂i(
1;i�1).Let Ui be independent uniformly distributed random variables on f0; 1gk that are inde-pendent of all random variables de�ned above.Let "i := Æ(h1;i; 
1;i ; h1;i; U1;i)To show that the s
heme is information-theoreti
ally p-bounded KDM se
ure, i.e., that theadversary 
annot distinguish the real and the fake experiment, it is su�
ient to show that"p(k) is negligible sin
e the view of A 
an be deterministi
ally 
omputed from h1;p(k); 
1;p(k).Fix some i 2 f1; : : : ; p(k)g. Let K := K�i , Q := h1;i�1, S := (mi; 
1;i�1), h := hi andlet U be uniformly distributed on f0; 1gk and independent of (K;Q; S; h). The following
onditions hold by 
onstru
tion: 10



� h is a universal hash fun
tion.� U is uniformly distributed and independent of (h; S;Q).� K and Q are independent.� h is independent of (K;S;Q).So the 
onditions for Lemma 1 are ful�lled and we haveÆ(h; h(K); S;Q ; h;U; S;Q) � 2jSj+jh(K)j=2�H2(K)=2�1 = 2ik+k=2�`(k)=2�1 � 2�kand thusÆ(h1;i; 
i; 
1;i�1 ; h1;i; Ui; 
1;i�1) � Æ(h1;i; hi(K�i);mi; 
1;i�1 ; h1;i; U;mi; 
1;i�1) � 2�kSin
e (hi; Ui) is independent of (h1;i�1; 
1;i�1; U1;i�1) by 
onstru
tion, from (4.2) we haveÆ(h1;i; Ui; 
1;i�1 ; h1;i; Ui; U1;i�1) = "i�1 and hen
e using (4.2) and the triangle inequalityfor the statisti
al distan
e, we have"i = Æ(h1;i; 
i; 
1;i�1 ; h1;i; Ui; U1;i�1) � 2�k + "i�1:Sin
e "0 = 0, it follows that "0 � p(k) � 2�k is negligible. ut
4.3 Dis
ussionThe usefulness of bounded KDM se
urity. Our s
heme p-BKDM 
an be used in anyproto
ol where the total length of the en
rypted messages does not depend on the length ofthe key. At a �rst glan
e, this restri
tion seems to defeat our purpose to be able to handlekey 
y
les: it is not even possible to en
rypt a key with itself. However, a 
loser inspe
tionreveals that key dependent messages o

ur in two kinds of settings. In the �rst setting, aproto
ol might make expli
it use of key 
y
les in its proto
ol spe
i�
ation, e.g., it mighten
rypt a key with itself (we might 
all this intentional key 
y
les). In this 
ase, p-BKDM
annot be used. In the se
ond setting, a proto
ol does not expli
itly 
onstru
t key 
y
les,but just does not ex
lude the possibility that�due, e.g., to some leakage of the key�somemessages turn out to depend on the keys (we might 
all this unintentional key 
y
les). Inthis 
ase, the proto
ol does not itself 
onstru
t key 
y
les (so the restri
tion of p-BKDMthat a message is shorter than the key does not pose a problem), but only requires thatif key 
y
les o

ur the proto
ol is still se
ure. But this is exa
tly what is guaranteed byp-BKDM. So for the�possibly mu
h larger�
lass of proto
ols with unintentional key
y
les the p-BKDM s
heme 
an be used.Multiple sessions of p-BKDM. Theorem 8 guarantees that even in the 
ase of multiplesessions, the s
heme p-BKDM is se
ure assuming that at most p(k) en
ryptions are per-formed in all sessions together. In some appli
ations, espe
ially if the number of sessions
annot be bounded in advan
e, one might need the stronger property that we may en
ryptp(k)messages with ea
h key. Intuitively, we might argue that when we re
eive an en
ryption11



(h; h(K) +m) of a message m, the entropy of K de
reases by jh(K) +mj, but as long asenough entropy remains in K, we do not learn anything about m, and neither about thekeys m depends on. This leads to the following 
onje
ture:Conje
ture 9. The s
heme p-BKDM is KDM-se
ure if the adversary performs at most p(k)en
ryptions with ea
h key Ki. This holds even if di�erent keys have di�erent asso
iatedpolynomials pi (i.e., the key Ki has length O(pi(k)k) and we en
rypt pi times using Ki).Unfortunately, it is not 
lear how to formally de�ne what it means that the entropy of agiven key de
reases while the entropy of the others does not, so we leave this 
onje
ture asan open problem.
5 Computational KDM se
urity5.1 MotivationThe dilemma with hybrid arguments. The dis
ussion in Se
tion 4.3 does not onlyapply to our s
heme p-BKDM. There seems to be a general problem with proving KDMse
urity with a hybrid argument. Starting with the real KDM game, substituting the �rsten
ryption with a fake one �rst is not an option: the later en
ryptions 
annot be properlysimulated. But to substitute the last real en
ryption �rst is not easy either: for this, there�rst of all has to be a guarantee that at that point, the last key has not already leaked
ompletely to the adversary. In our 
ase, with a bounded overall number of en
ryptions,we 
an give an information-theoreti
 bound on the amount of information that has beenleaked before the last en
ryption. But if there is no su
h bound, information theory 
annotbe used to derive su
h a bound. Instead, a 
omputational assumption must be used. Yet,there seems to be no straightforward way to derive a useful statement (e.g., about the
omputational key leakage) that rea
hes a
ross a polynomial number of instan
es from asingle 
omputational assumption without using a hybrid argument. Of 
ourse, this ex
ludes
ertain intera
tive assumptions, whi
h essentially already assume se
urity of the s
hemein the �rst pla
e. We do not believe that it is useful or interesting to investigate su
h
onstru
tions and assumptions.Stateful KDM se
urity. To nonetheless get a s
heme that is se
ure in fa
e of arbitrarilymany en
ryptions of key-dependent messages, we propose to stateful en
ryption s
hemes.In a stateful en
ryption s
heme, the se
ret key (i.e., the internal state) is updated onea
h en
ryption. (De
ryption must then be syn
hronized with en
ryption: we assume that
iphertexts are de
rypted in the order they got produ
ed by en
ryption.) For su
h a statefulen
ryption s
heme, there are essentially two interpretations of KDM se
urity:� the message may depend on the 
urrent se
ret key (i.e., state) only, or� the message may depend on the 
urrent and all previously used se
ret keys (i.e., on the
urrent and all previous states). 12



We 
all the �rst notion weak stateful KDM se
urity, and the se
ond strong stateful KDMse
urity. Weak stateful KDM se
urity 
an be thought of as KDM se
urity in a setting inwhi
h erasures are trusted, and strong stateful KDM se
urity mandates that erasures arenot trusted (in the most adversarial sense).De�nition 10 (Weak and strong stateful KDM se
urity). A stateful symmetri
 en-
ryption s
heme � is se
ure in the sense of weak stateful KDM se
urity i� � is ful�llsDe�nition 2, where the en
ryption queries are interpreted as a fun
tion in the 
urrent stateof the en
ryption algorithm. Further, � is se
ure in the sense of strong stateful KDM se
u-rity i� � satis�es De�nition 2, where the en
ryption queries are interpreted as a fun
tionin the 
urrent and all previous states of the en
ryption algorithm.Below we will give a s
heme that 
ir
umvents the hybrid argument dilemma usingpre
isely the fa
t that there is a 
hanging state.Relation to Bla
k et al.'s notion of �stateful KDM se
urity�. Bla
k et al. [7℄ already
onsider the potential KDM se
urity of a stateful symmetri
 en
ryption s
heme. They showthat there 
an be no stateful KDM se
urity. However, they this showed under the assump-tion that en
ryption is deterministi
. In our de�nition, en
ryption is still probabilisti
, eventhough stateful. We use the state update me
hanism in addition to using randomness, notinstead of it. Their argument does not apply to our de�nition of stateful KDM se
urity,neither to our weak nor to our strong variant.Weak vs. strong stateful KDM se
urity. For some appli
ations, strong stateful KDMse
urity is ne
essary: en
rypting your hard drive (that may 
ontain the se
ret key) 
annotbe done in a provably se
ure way with weak stateful KDM se
urity. (On
e the se
ret keygets to be pro
essed by the s
heme, the state may have already been updated, so thatthe message now depends on a previous state.) Also, the notion of key 
y
les (i.e., keyKi is en
rypted under Ki+1 mod n) does not make sense with weak stateful KDM se
ures
hemes. In these 
ases, the use of a strong stateful KDM s
heme is �ne. However, it seemste
hni
ally mu
h more di�
ult to 
onstru
t a strong stateful KDM se
ure s
heme.
5.2 A se
ure s
hemeWe do not know how to ful�ll strong stateful KDM se
urity. (The issues that arise aresimilar as in the stateless 
ase.) However, we 
an present a s
heme that is se
ure in thesense of weak stateful KDM se
urity.Idea of the 
onstru
tion. Our s
heme is a 
omputational variant of p-BKDM (althoughits analysis will turn out to be 
ompletely di�erent). Namely, the main problem of p-BKDMis that the se
ret key runs out of entropy on
e too many KDM en
ryptions are requested.Only as long as there is enough entropy left in K, a suitably independent random pad13




an be distilled for en
ryption. However, in a 
omputational setting, randomness 
an beexpanded with a pseudorandom generator, and some distilled, high-quality randomness 
anbe used to generate more (pseudo-)randomness as a new key. More 
on
retely, 
onsider thefollowing s
heme:S
heme 11 (The s
heme sKDM (for �stateful KDM�)). Let UHF be a family of uni-versal hash fun
tions that map 5k-bit strings to k-bit strings, and let G be a pseudorandomgenerator (against uniform adversaries) that maps a k-bit seed to a 6k-bit string. De�ne thestateful symmetri
 en
ryption s
heme sKDM = (K; E ;D) with se
urity parameter k 2 N,message spa
e f0; 1gk, and key spa
e f0; 1g5k through� K(1k) outputs a uniform random initial key (i.e., state) K0 2 f0; 1g5k.� E(1k;Kj;Mj) pro
eeds as follows:1. sample hj $ UHF ,2. set Sj := hj(Kj),3. set (Kj+1; Pj) := G(S),4. output Cj := (hj; Pj �Mj).Ciphertext is Cj , and new key (i.e., state) is Kj+1.� D(1k;Kj; (hj ;Dj)) pro
eeds as follows:1. set Sj := hj(Kj),2. set (Kj+1; Pj) := G(S),3. output Mj := Pj �Dj .Plaintext is Mj, and new key (i.e., state) is Kj+1.Theorem 12. If G is a pseudorandom generator, then sKDM satis�es weak stateful KDMse
urity.Proof. Fix an adversary A that atta
ks sKDM in the sense of weak stateful KDM se-
urity. Say that, without loss of generality, A makes pre
isely p(k) en
ryption queries fora positively-valued polynomial p 2 Z[k℄. Assume that A has an advantage that is notnegligible.Preparation for hybrid argument. For 0 � j � p(k), de�ne the hybrid game Game jas follows. Game j is the same as the weak stateful KDM game with adversary A, only that� the �rst j en
ryption ora
le queries are answered as in the fake weak stateful KDM game(i.e., with en
ryptions of uniform and independent randomness), and� the remaining queries are answered as in the real weak stateful KDM game (i.e., withen
ryptions of adversary-delivered fun
tions evaluated at the 
urrent se
ret key).Base step for hybrid argument. We will redu
e distinguishing between two adja
entgames to some 
omputational assumption. We will now �rst formulate this assumption. LetK 2 f0; 1g5k be uniformly distributed, and let M 2 f0; 1gk be arbitrary (in parti
ular, M14




an be a fun
tion of K). Then by Lemma 1 it follows that Æ(M;h; h(K) ; M;h;Uk) � 2�kfor independently sampled h $ UHF and independent uniform Uk 2 f0; 1gk. This impliesÆ(M;h;G(h(K)) ; M;h;G(Uk)) � 2�k;from whi
h the 
omputational indistinguishability 
hain(M;h;G(h(K)))| {z }=:DR � (M;h;G(U)) � (M;h;U6k)| {z }=:DF (3)
for independent uniform U6k 2 f0; 1g6k follows by assumption on G. For our hybrid ar-gument, it is important that (3) even holds when M is a fun
tion of K 
hosen by thedistinguisher.Hybrid argument. We will now 
onstru
t from adversary A an adversary B that 
on-tradi
ts (3) by distinguishing DR and DF . This 
ontradi
tion then 
on
ludes our proof.Let n denote the number of keys. Let �i denote the index of the key 
hosen by A for thei-th en
ryption. Let gi denote the fun
tion 
hosen by A in the i-th en
ryption. Then, theadversary B 
hooses some j 2 f1; : : : ; p(k)g uniformly at random and then performs thefollowing simulation for A:� The �rst j � 1 en
ryptions requested by A are simulated as fake en
ryptions (i.e., withrandom messages). This is possible without using the keys sin
e for a random message,hi(K�i) is information-theoreti
ally hidden in the 
iphertext.� For the j-th en
ryption, B 
hooses K� randomly for all � 6= �i and 
hooses M(K) :=gi(K1; : : : ;K�i�1;K;K�i+1; : : : ;Kn) and requests an input D =: (M;h; P;K) with thatM . (Note that D may be DR or DF .) Then B sets the new key K�i := K and gives(h;M � P ) as the 
iphertext to A.� For all further en
ryptions queries, B 
omputes the real 
iphertext using the keysK1; : : : ;Kn produ
ed in the pre
eding steps.� Finally, B outputs the output of A.It is now easy to verify that if B gets DR as input, B simulates the Game j � 1, and if Bgets DF as input, B simulates the Game j. Hen
ePr �B(DR) = 1�� Pr �B(DF ) = 1�= 1p(k) p(k)Xj=1 Pr [A = 1 in Game j � 1℄� 1p(k) p(k)Xj=1 Pr [A = 1 in Game j℄

= 1p(k)�Pr [A = 1 in Game 0℄� Pr [A = 1 in Game p(k)℄�:The right hand side is not negligible by assumption, thus the right hand side is not negligibleeither. This 
ontradi
ts (3) and thus 
on
ludes the proof.
15



5.3 The usefulness of stateful KDM se
urityIn a sense, strong stateful KDM se
urity is �just as good� as standard KDM se
urity.Arbitrarily large messages (in parti
ular keys) 
an be en
rypted by splitting up the messageinto parts and en
rypting ea
h part individually. The key-depen
ies of the message parts
an be preserved, sin
e the dependen
ies a
ross states (i.e., dependen
ies on earlier keys)are allowed. This te
hnique is generally not possible with weak stateful KDM se
urity. Weknow of no weakly stateful KDM se
ure s
heme with whi
h one 
ould se
urely en
rypt one'sown key (let alone 
onstru
t key 
y
les).But despite the drawba
ks of weak stateful KDM se
urity, we believe that this notion isstill useful: �rst, it serves as a stepping stone towards a
hieving strong stateful KDM se
u-rity (or even stateless KDM se
urity). Se
ond, it provides an alternative assumption to theassumption of absen
e of key 
y
les in the formal proto
ol analysis setting. Instead of as-suming the absen
e of key 
y
les (this assumption may not make sense in a s
heme in whi
hthe key spa
e is larger than the message spa
e), we 
an assume that the en
rypted termsdepend only on the 
urrent internal state of the en
ryption algorithm. This assumption isstill a strengthening of standard IND-CPA se
urity and makes sense, sin
e the en
ryptionalgorithm is only used to en
rypt.
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