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Abstrat. Standard seurity notions for enryption shemes do not guarantee any seurityif the enrypted messages depend on the seret key. Yet it is exatly the stronger notionof seurity in the presene of key-dependent messages (KDM seurity) that is required in anumber of appliations: most prominently, KDM seurity plays an important role in analyzingryptographi multi-party protools in a formal alulus. But although often assumed, themere existene of KDM seure shemes is an open problem. The only previously knownonstrution was proven seure in the random orale model.We present symmetri enryption shemes that are KDM seure in the standard model (i.e.,without random orales). The prie we pay is that we ahieve only a relaxed (but still useful)notion of key-dependent message seurity. Our work answers (at least partially) an openproblem posed by Blak, Rogaway, and Shrimpton. More onretely, our ontributions are asfollows:1. We present a (stateless) symmetri enryption sheme that is information-theoretiallyseure in fae of a bounded number and length of enryptions for whih the messagesdepend in an arbitrary way on the seret key.2. We present a stateful symmetri enryption sheme that is omputationally seure in faeof an arbitrary number of enryptions for whih the messages depend only on the respe-tive urrent seret state/key of the sheme. The underlying omputational assumption isminimal: we assume the existene of one-way funtions.3. We give evidene that the only previously known KDM seure enryption sheme annotbe proven seure in the standard model (i.e., without random orales).Keywords: Key-dependent message seurity, seurity proofs, symmetri enryption shemes.



1 IntrodutionProofs of seurity are a good and sound way to establish on�dene in an enryptionsystem. However, �proof� is a bit misleading here: usually, a seurity proof is not an absolutestatement, but merely shows that under ertain assumptions, the sheme is resistant againsta ertain lass of attaks. Nothing is guaranteed if the assumptions are invalidated or attaksoutside the onsidered lass take plae. Therefore, it is ruial that� the underlying assumptions are plausible, and� the onsidered lass of attaks is as general as possible.Additionally, enryption shemes are most often used only as a building blok in a largerprotool ontext, and thus� the onsidered lass of attaks should allow for meaningful and general analysis of theenryption sheme in a larger protool ontext.Indistinguishability of iphertexts. The most established lass of attaks onsists ofattaks targeted against the indistinguishability of iphertexts (IND-CPA [14℄, resp. IND-CCA [19℄ attaks). Here, adversary A's goal is to win the following game: �rst, A hoosestwo messagesm0;m1, then gets the enryption b ofmb (for a random b 2 f0; 1g), and �nallyoutputs a guess b0 for b. Now A wins if b = b0, i.e., if it guessed orretly whih messagewas enrypted. The sheme is seure if no adversary wins (signi�antly) more often thanin half of the ases. Intuitively, seurity in this sense implies that �one iphertext looks likeany other.�The IND-CPA and IND-CCA notions have been tremendously suessful and evenproved equivalent to a number of alternative and arguably not less appealing notions(f. [5, 6, 9, 17℄). At the same time, IND-CPA and IND-CCA seurity an be ahievedunder various plausible number-theoreti assumptions [14, 12, 10℄.Key-dependent message seurity. However, there is one seurity property that is usefuland important in many appliations, yet is not overed by IND-CPA or IND-CCA seurity:seurity in presene of key-dependent messages. More onretely, imagine a senario in whihthe adversary an request enryptions of arbitrary (but e�iently evaluatable) funtions ofthe seret deryption key. In other words, the adversary hooses a funtion g and gets theenryption of g(K) under seret key K. Note that this is something the adversary may notbe able to generate on its own, not even in the publi-key setting. The adversary's goalis now to distinguish suh a key-dependent enryption from an enryption of a randommessage. Seurity of an enryption is a useful notion to onsider sine� in relevant pratial settings, this notion is neessary: onsider, e.g., enrypting yourhard drive (whih may ontain the seret key, e.g., on the swap partition, or in a �lethat ontains your seret keyring), 1



� ertain protools use key-dependent message seurity expliitly as a tehnial tool [8℄,and, possibly most importantly from a theoretial perspetive,� key-dependent message seurity is a key ingredient for showing that seurity results thatare proven in a formal alulus are also omputationally sound.This latter reason may ome a bit surprising, hene we explain it in more detail.Formal seurity proofs. The idea to automate seurity proofs an be traed bak to theseminal work of Dolev and Yao [13℄, who desribed a formal alulus to analyze seurityprotools. To make the alulus aessible to automati provers, however, base primitiveslike enryption (or, later, signatures) had to be over-idealized, disonneting them fromtheir onrete omputational implementations. What was missing for almost 20 years was asoundness result, i.e., a result that essentially states �whatever an be proven in the abstratalulus holds as well in the ryptographi world, where the ideal enryption operator isimplemented with an enryption sheme.�But �nally, the soundness result by Abadi and Rogaway [1℄ onneted the formal,mahine-aessible world with the ryptographi world. However, with standard enryp-tion shemes, only a ertain subset of possible protools ould be onsidered, namely thosethat only ontain expressions whih ful�l a ertain �ayliity� ondition.3 To ahieve fullgenerality, a stronger requirement (seurity in the presene of key-dependent messages) onthe enryption sheme was needed. This is not a peuliarity of the approah of Abadi andRogaway; similar problems our in related approahes, e.g. [18, 2, 4℄. In partiular, Adãoet al. [2℄ show that in a ertain sense, key-dependent message seurity is a neessity forformal soundness.
1.1 Related work.Around the time when the need for key-dependent seurity had been realized, formal har-aterizations of the seurity notion were given in [8, 7℄. Moreover, [7℄ showed a simple sym-metri enryption sheme to be seure with respet to their notion. However, their shemewas proven in the random orale model, and the proof made heavy use of the �ideal� natureof the random orale (more details on this in Setion 3). Blak et al. posed the question ofahieving key-dependent seurity in the standard model.Bakes et al. [3℄ onsider several strengthenings of the de�nition from [7℄. They provestrutural results among the notions (inluding a way to �path� a sheme that is seure inthe sense of [7℄ to math the notions from [3℄). However, Bakes et al. do not give an atualonstrution of a seure sheme.3 They also did only prove seurity against passive adversaries. However, ative seurity was ahieved bysubsequently by [18, 2, 4℄. 2



1.2 Our work.Our goal is to ahieve key-dependent message seurity, as de�ned by Blak et al., in thestandard model. We present several results:� a (stateless) symmetri enryption sheme that is information-theoretially seure infae of a bounded number and length of enryptions for whih the messages depend inan arbitrary way on the seret key.� a stateful symmetri enryption sheme that is omputationally seure in fae of anarbitrary number of enryptions for whih the messages depend only on the respetiveurrent seret state/key of the sheme. The underlying omputational assumption isminimal: we assume the existene of one-way funtions.We also stress the stritness of key-dependent message seurity:� We give evidene that the only previously known KDM seure enryption sheme annotbe proven seure in the standard model (i.e., without random orales).Note. A few days ago, we learned about the (onurrent and independent) work [15℄ ofHalevi and Krawzyk. They prove several results in the standard model in the ontext ofkey-dependent seurity: they give� a sheme that is seure in the presene of messages that do not depend on a detahedpart (the �salt�) of the seret key, and� a sheme that is seure in the presene of messages that do depend in a very spei�way on the (full) seret key.In both ases, the tehnial handle to manage the dependeny on the seret key is to on-�ne the lass of allowed dependenies. In ontrast, we strive for seurity against arbitrarydependenies.4. The handle we use to overome the dependenies is a bound on the numberof allowed messages, or, alternatively, trusted erasures. Interestingly, although indepen-dently, Halevi and Krawzyk use tehniques similar to ours: namely, universal hashing andpseudorandom number generation (resp., pseudorandom funtions).
2 PreliminariesBasi notation. Throughout the paper, k 2 N denotes the seurity parameter of a givenonstrution. Intuitively, a larger seurity parameter should provide more seurity, but asheme's e�ieny is also allowed to degrade with growing k. A negligible funtion vanishesfaster than any given polynomial. The statistial distane between two random variablesX and Y is denoted by Æ(X ; Y ). The Rényi entropy H2(X) of a random variable X is4 However, neither our shemes nor the shemes of [15℄ an handle the important ase of non-trivial keyyles, that is, yli hains of enryptions of key Ki under key Ki+1 mod n3



de�ned asH2(X) := �Px log2 Pr [X = x℄2. Two families (Xk) and (Yk) of random variablesare omputationally indistinguishable (written X � Y ) if for every PPT (probabilistipolynomial-time) algorithm A, the funtion jPr [A(Xk) = 1℄� Pr [A(Yk) = 1℄j is negligiblein k.We will further need a strengthened version of the leftover hash lemma that takes intoaount additional information S about the randomness K and some additional informa-tion Q unrelated to K.
Lemma 1 (Leftover Hash Lemma, extended). Let K, Q, S, and U be random vari-ables over bitstrings of �xed length. Let UHF be a family of universal hash funtions. Let hbe uniformly distributed over UHF . Assume that U is uniformly distributed. Assume thatU and (h; S;Q) are independent, that K and Q are independent, and that h and K areindependent given (S;Q). Assume that jU j = jh(K)j. Then the following bound holds:

Æ(h; h(K); S;Q ; h;U; S;Q) � 2jSj+jh(K)j=2�H2(K)=2�1:
Proof. In the following, s; q; k range over all values taken by S, Q, K, respetively. Byapplying the de�nition of the statistial distane, we have
" := Æ(h; h(K); S;Q ; h;U; S;Q)=Xs;q Pr[S = s;Q = q℄ Æ(h; h(K)jS = s;Q = q ; h;U jS = s;Q = q): (1)

Here Xj(S = s) stands for the distribution of X under the ondition S = s. Sine h and(S;Q) are independent, hj(S = s;Q = q) is a universal hash-funtion. And sine U isindependent of (S;Q; h), we have that U is uniformly distributed and independent of hgiven S = s;Q = q. Further, by assumption h and K are independent given S = s;Q = q.Thus the leftover hash lemma in its basi form [16℄ applies, and we get
Æ(h; h(K)jS = s;Q = q ; h;U jS = s;Q = q) � 2jh(K)j=2�H2(Kj(S=s;Q=q))=2�1:4



Combining this with (1) we get" �Xs;q Pr[S = s;Q = q℄ � 2jh(K)j=2�H2(Kj(S=s;Q=q))=2�1
=Xs;q Pr[S = s;Q = q℄ � 12q2jh(K)j �Xk Pr[K = kjS = s;Q = q℄2
�Xs;q Pr[Q = q℄ � 12q2jh(K)j �Xk Pr[S = sjQ = q℄2 � Pr[K = kjS = s;Q = q℄2
=Xs;q Pr[Q = q℄ � 12q2jh(K)j �Xk Pr[K = k; S = sjQ = q℄2
�Xs;q Pr[Q = q℄ � 12q2jh(K)j �Xk Pr[K = kjQ = q℄2(�)=Xs;q Pr[Q = q℄ � 12q2jh(K)j �Xk Pr[K = k℄2
=Xs;q Pr[Q = q℄ � 12p2jh(K)j � 2�H2(K)
=Xs;q Pr[Q = q℄ � 2jH(k)j=2�H2(K)�1
=Xs 2jH(k)j=2�H2(K)�1 = 2jSj+jH(k)j=2�H2(K)�1:

Here (�) uses that Q and K are independent. utKey-dependent message seurity. For formalizing key-dependent message seurity, weuse a variation on the de�nition of Blak et al. [7℄:De�nition 2 (KDM seurity, standard model, symmetri setting). Let � = (K; E ;D)be a symmetri enryption sheme, let K := (K1; : : : ;Kn) be seret keys (where n is poly-nomial in the seurity parameter), and let A be an adversary. Let� RealK be the orale that on input g; � returns C  E(1k;K�; g(K)), and� FakeK be the orale that on input g returns C  E(1k;K�; U) for an independentlyuniformly seleted fresh U 2 f0; 1gjg(K)j.In both ases, g is enoded as a iruit.5 The KDM advantage of an adversary A is de�nedas AdvKDM� (A) := ���Pr hK $ K : ARealK(�) = 1i� Pr hK $ K : AFakeK(�) = 1i���Here K $ K means that eah key Ki is hosen independently using K.5 This has the side-e�et that for a polynomial-time adversary A, the funtion g is also polynomial-timeomputable. 5



We say that � is KDM seure i� for every PPT adversary A and every polynomial n,the advantage funtion AdvKDM� (A) is negligible in the seurity parameter. We require thatA only queries its orale with �xed-length funtions g, i.e., jg(K)j is the same for all valuesof K.The relation to real-or-random seurity. De�nition 2 bears a great resemblane to thereal-or-random (ROR-CPA) de�nition for enryption shemes from [5℄. The main di�ereneis that De�nition 2 equips the adversary with an orale that delivers enryptions of key-dependent messages (i.e., evaluations) g(K). The way in whih these messages depend onthe keys is ompletely up to the adversary; the only onstraint is that g must be e�ientlyevaluatable and have a �xed output length.On ahieving KDM seurity and ative KDM seurity. Using the equivalene ofROR-CPA and IND-CPA seurity from [5℄, it is easy to see that De�nition 2 is stritlystronger than IND-CPA seurity. A natural adaption of De�nition 2 to ative attaks�suh a notion is alled AKDM seurity in [3℄�onsists in equipping the adversary witha deryption orale that is restrited in the usual sense to prevent trivial attaks. Andsimilarly to the passive ase, it is easy to see that AKDM seurity is stritly stronger thanIND-CCA seurity. On the other hand, one a sheme is KDM seure, it an be easily andwithout (muh) loss of e�ieny upgraded to AKDM seurity, as formalized and provedin [3℄. Hene, the main di�ulty lies in �nding a sheme that is KDM seure in the �rstplae. In the following, this will be our fous.
3 The sheme of Blak et al.De�nition 2 is very hard to ahieve. In fat, the only onstrution that is known, due toBlak et al. [7℄, to ahieve De�nition 2 is in the random orale model. It will be very usefulto take a loser look at their sheme. We will argue that in a very onrete sense, nothingless than a random orale will do for their sheme. Hene, their onstrution merely showshow powerful random orales are, but does not give a hint on how to ahieve KDM seurityin the standard model. This onstitutes one motivation for our upoming weakening ofKDM seurity.Sheme 3 (The sheme ver). De�ne the symmetri enryption sheme ver = (K; E ;D)with seurity parameter k 2 N, message spae f0; 1gk and key spae f0; 1gk through� K(1k) outputs a uniform random key K 2 f0; 1gk.� E(1k;K;M) hooses R 2 f0; 1gk uniformly and outputs the iphertext (R;H(KjjR)�M).� D(1k;K; (R;D)) outputs the message H(KjjR)�D.
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The seurity of ver with a random orale. Blak et al. proveTheorem 4 (Seurity of ver [7℄). If H is a random orale, then ver is KDM seure.The main idea of the proof is to onsider an event bad, where bad ours i�1. the adversary queries H at any point KjjR that was previously used for enryption, or2. one of the funtions g submitted to the enryption orale queries H at the urrentlyused point KjjR.If bad does not our, the adversary's view is idential in the Real and Fake experiments,thanks to the fat that di�erent random orale queries H(X);H(Y ) (X 6= Y ) are statisti-ally independent: eah message is padded with ompletely fresh and message-independentrandomness. Hene, by showing (with an indutive argument) that bad ours only withsmall probability, [7℄ show the sheme ver KDM seure.The inseurity of ver without a random orale. Put informally, the proof of verutilizes one essential property of the random orale H: knowledge about arbitrary manyvalues H(Yi) (with Yi 6= X) does not yield any information about H(X). This use ofa random orale as a provider of statistial independene is what makes the proof failompletely with any onrete hash funtion used in plae of the random orale. There isno hope for the proof strategy to sueed without random orales. A little more formally,we an show that in the random orale model, there exists a spei� hash funtion H thathas a number of generally very useful properties: H is ollision-resistant, one-way, an beinterpreted as a pseudorandom funtion (in a way ompatible with ver), and H makesver IND-CPA. But H makes ver ompletely inseure in the presene of key-dependentmessages. Hene, there an be no fully blak-box KDM seurity proof for ver that relies onthese properties of H alone.Theorem 5 (Inseurity of ver). Relative to a random orale, there exists a funtion Hsuh that1. H is ollision-resistant,2. for any funtion p(k) 2 k�(1), H is one-way w.r.t. the uniform input distribution onf0; 1gp(k),3. the funtion FK(R) := H(KjjR) is a pseudorandom funtion with seed K,4. the sheme ver, instantiated with H, is IND-CPA seure, but5. the sheme ver, instantiated with H, is not KDM seure.Proof (sketh). Assume for simpliity that the seurity parameter k is even. Say that therandom orale RO maps arbitrary bitstrings to k-bit strings. Then denote by RO`(x) the�rst k=2 bits of RO(x). Now onsider the funtion H : f0; 1g� ! f0; 1gk with
H(x) := (RO(x) for jxj 6= 2k;RO(x`)� (RO`(x)jjRO`(RO`(x))) for x = x`jjxr and jx`j = jxrj = k:We show the laimed properties for H: 7



1. H is ollision-resistant. It is lear that ollisions H(x) = H(y) (with x 6= y) annotbe found e�iently if x 6= 2k or y 6= 2k. So assume x = x`jjxr and y = y`jjyr for jx`j =jxrj = jy`j = jyrj = k. Collisions of this form imply RO`(x`)�RO`(x) = RO`(y`)�RO`(y)and thus RO`(x`)�RO`(y`) = RO`(x)�RO`(y): (2)If x` = y`, then this onstitutes a ollision in RO`, so we may assume x` 6= y`. Butthe distributions of RO` on k-bit strings and on 2k-bit strings are independent and bothuniform. Hene, �nding x and y to satisfy (2) requires a superpolynomial number of queriesto RO` (resp. RO) with overwhelming probability.
2. H is one-way w.r.t. the uniform distribution on f0; 1gk. For p(k) = 2k, thisfollows from ollision-resistane and the fat that H is ompressing: Sine the preimages ofH are not unique, if we are able to �nd a preimage x0 of H(x) for random x 2 f0; 1g2k,with notieable probability we will have x 6= x0. This allows to �nd ollisions e�iently. Fordetails see [11℄. For p(k) 6= 2k, this follows by de�nition of H and the fat that the randomorale is one-way.
3. FK(R) := H(KjjR) is a pseudorandom funtion. Consider an adversary A that hasorale aess to RO and to FK for uniformly hosen K. We denote A's i-th query to FK byRi. Without loss of generality, assume that A never asks for the same FK evaluation twie,so the Ri are pairwise distint. Furthermore, let Xi := KjjRi, and Yi := RO`(KjjRi). Welaim that A doesn't query RO with K or any of the values Xi; Yi, exept with negligibleprobability.We prove our laim indutively as follows. Let Ei denote the event that A queries ROwith a value that starts with K prior to the i-th FK query. Clearly, E1 happens withexponentially small probability. So �x an i � 1. To omplete our proof, it is su�ientto show that under ondition :Ei, the probability for Ei+1 to happen is bounded by anegligible funtion that does not depend on i.Assume that :Ei holds. That means that, given A's view up to and inluding the (i�1)-th FK query, the key K is uniformly distributed among all k-bit values (or k-bit pre�xes of2k-bit values) not yet queried by A. By the polynomiality of A, this means that, from A'spoint of view, K is uniformly distributed on an exponentially-sized subset of 0; 1k. But thismeans that until the i-th FK query, A has only an exponentially small hane to query oneof K;Xj; Yj (j < i). Hene Ei+1 j :Ei happens only with exponentially small probability.Summing up, A never queries RO with K or any of the Xi; Yi, exept with negligibleprobability. Hene, FK an be substituted with a truly random funtion without A notiing,and the laim follows.
4. ver with H is IND-CPA. Follows immediately from 3.8



5. ver with H is not KDM seure. A suessful KDM adversary A on ver is thefollowing: A asks its enryption orale for an enryption of RO(K) (e.g., using g withg(x) = RO(x) as input to the orale). In the real KDM game, the iphertext will be(R;H(KjjR)�RO(K)) = (R;RO`(KjjR)jjRO`(RO`(KjjR)));and hene of the form (R; tjjRO`(t)) for some t, whih an be easily reognized by A.But in the fake KDM game, the iphertext will have the form (R;U) for a uniformly andindependently distributed U , whih is generally not of the form (R; tjjRO`(t)). Hene, Aan suessfully distinguish real enryptions from fake ones. ut
4 Information-theoreti KDM seuritySine key-dependent message seurity is very hard to ahieve, we start with two simpleshemes that do not ahieve full KDM seurity, but serve to explain some important on-epts.
4.1 The general idea and a simple sheme (informal presentation)First observe that the usual one-time padC = M �K (C iphertext, M message, K key)does not ahieve KDM seurity. Enryption ofM = K results in an all-zero iphertext thatis learly indistinguishable from a random enryption. However, the slight tweakC = (h;M � h(K)) (h independently drawn universal hash funtion)does ahieve a ertain form of key-dependent message seurity: the pad h(K) that is distilledfrom K looks like uniform and independent randomness, even if h and some arbitrary (butbounded) information M = M(K) about K is known. (When using suitable bitlengths jKjand jM j, this an be shown using the leftover hash lemma [16℄.) So the enryptionM�h(K)of one single message M = M(K) looks always like uniform randomness. Hene the shemeis KDM seure in a setting where the enryption orale is only used one (but on the otherhand, information-theoreti seurity against unbounded adversaries is ahieved).
4.2 A more formal generalization of the simple shemeOf ourse, one would expet that by expanding the key, the sheme stays seure even aftermultiple (key-dependent) enryptions. This is true, but to show this, a hybrid argument andmultiple appliations of the leftover hash lemma are neessary. We formalize this statementnow. 9



Sheme 6 (The sheme p-BKDM (for �p-bounded KDM�)). Let p 2 Z[k℄ be apositively-valued polynomial, let `(k) := (2p(k)+3)k, and let UHF be a family of universalhash funtions that map `(k)-bit strings to k-bit strings. De�ne the symmetri enryptionsheme p-BKDM = (K; E ;D) with seurity parameter k 2 N, message spae f0; 1gk, andkey spae f0; 1g`(k) through� K(1k) outputs a uniform random key K 2 f0; 1g`(k).� E(1k;K;M) samples h $ UHF and outputs the iphertext C = (h; h(K)�M).� D(1k;K; (h;D)) outputs the message h(K)�D.De�nition 7 (Bounded KDM seurity). Let p 2 Z[k℄ be a positively-valued polynomial.Then a symmetri enryption sheme � is p-bounded KDM seure if it is KDM seureagainst PPT adversaries that query the enryption orale at most p(k) times. Further, �is information-theoretially p-bounded KDM seure if it is KDM seure against arbitrary(i.e., omputationally unbounded) adversaries that query the enryption orale at most p(k)times.Theorem 8 (Bounded KDM seurity of p-BKDM). The sheme p-BKDM is information-theoretially p-bounded KDM seure.Proof. In the following, we abbreviate xi; : : : ; xj with xi;j for all variables x. Let n be thenumber of keys used.Let an adversary A be given that queries the enryption orale at most p(k) times.Without loss of generality we an assume the adversary to be deterministi (by �xing therandom tape that distinguishes best) and that it performs exatly p(k) queries. In the i-thenryption in the real experiment, let �i denote the index of the key that has been used,let hi be the hash funtion hosen by the enryption funtion, let mi be the message thatis enrypted, and let i be the seond omponent of the resulting iphertext (i.e., (hi; i)is the i-th iphertext). Sine the adversary is deterministi, mi depends deterministiallyfrom the keys K1;n and the iphertexts 1;i�1; h1;i�1, i.e., there are deterministi funtionsf̂i withmi = f̂i(K1;n; 1;i�1; h1;i�1). Similarly, there are deterministi funtions �̂i suh that�i = �̂i(1;i�1).Let Ui be independent uniformly distributed random variables on f0; 1gk that are inde-pendent of all random variables de�ned above.Let "i := Æ(h1;i; 1;i ; h1;i; U1;i)To show that the sheme is information-theoretially p-bounded KDM seure, i.e., that theadversary annot distinguish the real and the fake experiment, it is su�ient to show that"p(k) is negligible sine the view of A an be deterministially omputed from h1;p(k); 1;p(k).Fix some i 2 f1; : : : ; p(k)g. Let K := K�i , Q := h1;i�1, S := (mi; 1;i�1), h := hi andlet U be uniformly distributed on f0; 1gk and independent of (K;Q; S; h). The followingonditions hold by onstrution: 10



� h is a universal hash funtion.� U is uniformly distributed and independent of (h; S;Q).� K and Q are independent.� h is independent of (K;S;Q).So the onditions for Lemma 1 are ful�lled and we haveÆ(h; h(K); S;Q ; h;U; S;Q) � 2jSj+jh(K)j=2�H2(K)=2�1 = 2ik+k=2�`(k)=2�1 � 2�kand thusÆ(h1;i; i; 1;i�1 ; h1;i; Ui; 1;i�1) � Æ(h1;i; hi(K�i);mi; 1;i�1 ; h1;i; U;mi; 1;i�1) � 2�kSine (hi; Ui) is independent of (h1;i�1; 1;i�1; U1;i�1) by onstrution, from (4.2) we haveÆ(h1;i; Ui; 1;i�1 ; h1;i; Ui; U1;i�1) = "i�1 and hene using (4.2) and the triangle inequalityfor the statistial distane, we have"i = Æ(h1;i; i; 1;i�1 ; h1;i; Ui; U1;i�1) � 2�k + "i�1:Sine "0 = 0, it follows that "0 � p(k) � 2�k is negligible. ut
4.3 DisussionThe usefulness of bounded KDM seurity. Our sheme p-BKDM an be used in anyprotool where the total length of the enrypted messages does not depend on the length ofthe key. At a �rst glane, this restrition seems to defeat our purpose to be able to handlekey yles: it is not even possible to enrypt a key with itself. However, a loser inspetionreveals that key dependent messages our in two kinds of settings. In the �rst setting, aprotool might make expliit use of key yles in its protool spei�ation, e.g., it mightenrypt a key with itself (we might all this intentional key yles). In this ase, p-BKDMannot be used. In the seond setting, a protool does not expliitly onstrut key yles,but just does not exlude the possibility that�due, e.g., to some leakage of the key�somemessages turn out to depend on the keys (we might all this unintentional key yles). Inthis ase, the protool does not itself onstrut key yles (so the restrition of p-BKDMthat a message is shorter than the key does not pose a problem), but only requires thatif key yles our the protool is still seure. But this is exatly what is guaranteed byp-BKDM. So for the�possibly muh larger�lass of protools with unintentional keyyles the p-BKDM sheme an be used.Multiple sessions of p-BKDM. Theorem 8 guarantees that even in the ase of multiplesessions, the sheme p-BKDM is seure assuming that at most p(k) enryptions are per-formed in all sessions together. In some appliations, espeially if the number of sessionsannot be bounded in advane, one might need the stronger property that we may enryptp(k)messages with eah key. Intuitively, we might argue that when we reeive an enryption11



(h; h(K) +m) of a message m, the entropy of K dereases by jh(K) +mj, but as long asenough entropy remains in K, we do not learn anything about m, and neither about thekeys m depends on. This leads to the following onjeture:Conjeture 9. The sheme p-BKDM is KDM-seure if the adversary performs at most p(k)enryptions with eah key Ki. This holds even if di�erent keys have di�erent assoiatedpolynomials pi (i.e., the key Ki has length O(pi(k)k) and we enrypt pi times using Ki).Unfortunately, it is not lear how to formally de�ne what it means that the entropy of agiven key dereases while the entropy of the others does not, so we leave this onjeture asan open problem.
5 Computational KDM seurity5.1 MotivationThe dilemma with hybrid arguments. The disussion in Setion 4.3 does not onlyapply to our sheme p-BKDM. There seems to be a general problem with proving KDMseurity with a hybrid argument. Starting with the real KDM game, substituting the �rstenryption with a fake one �rst is not an option: the later enryptions annot be properlysimulated. But to substitute the last real enryption �rst is not easy either: for this, there�rst of all has to be a guarantee that at that point, the last key has not already leakedompletely to the adversary. In our ase, with a bounded overall number of enryptions,we an give an information-theoreti bound on the amount of information that has beenleaked before the last enryption. But if there is no suh bound, information theory annotbe used to derive suh a bound. Instead, a omputational assumption must be used. Yet,there seems to be no straightforward way to derive a useful statement (e.g., about theomputational key leakage) that reahes aross a polynomial number of instanes from asingle omputational assumption without using a hybrid argument. Of ourse, this exludesertain interative assumptions, whih essentially already assume seurity of the shemein the �rst plae. We do not believe that it is useful or interesting to investigate suhonstrutions and assumptions.Stateful KDM seurity. To nonetheless get a sheme that is seure in fae of arbitrarilymany enryptions of key-dependent messages, we propose to stateful enryption shemes.In a stateful enryption sheme, the seret key (i.e., the internal state) is updated oneah enryption. (Deryption must then be synhronized with enryption: we assume thatiphertexts are derypted in the order they got produed by enryption.) For suh a statefulenryption sheme, there are essentially two interpretations of KDM seurity:� the message may depend on the urrent seret key (i.e., state) only, or� the message may depend on the urrent and all previously used seret keys (i.e., on theurrent and all previous states). 12



We all the �rst notion weak stateful KDM seurity, and the seond strong stateful KDMseurity. Weak stateful KDM seurity an be thought of as KDM seurity in a setting inwhih erasures are trusted, and strong stateful KDM seurity mandates that erasures arenot trusted (in the most adversarial sense).De�nition 10 (Weak and strong stateful KDM seurity). A stateful symmetri en-ryption sheme � is seure in the sense of weak stateful KDM seurity i� � is ful�llsDe�nition 2, where the enryption queries are interpreted as a funtion in the urrent stateof the enryption algorithm. Further, � is seure in the sense of strong stateful KDM seu-rity i� � satis�es De�nition 2, where the enryption queries are interpreted as a funtionin the urrent and all previous states of the enryption algorithm.Below we will give a sheme that irumvents the hybrid argument dilemma usingpreisely the fat that there is a hanging state.Relation to Blak et al.'s notion of �stateful KDM seurity�. Blak et al. [7℄ alreadyonsider the potential KDM seurity of a stateful symmetri enryption sheme. They showthat there an be no stateful KDM seurity. However, they this showed under the assump-tion that enryption is deterministi. In our de�nition, enryption is still probabilisti, eventhough stateful. We use the state update mehanism in addition to using randomness, notinstead of it. Their argument does not apply to our de�nition of stateful KDM seurity,neither to our weak nor to our strong variant.Weak vs. strong stateful KDM seurity. For some appliations, strong stateful KDMseurity is neessary: enrypting your hard drive (that may ontain the seret key) annotbe done in a provably seure way with weak stateful KDM seurity. (One the seret keygets to be proessed by the sheme, the state may have already been updated, so thatthe message now depends on a previous state.) Also, the notion of key yles (i.e., keyKi is enrypted under Ki+1 mod n) does not make sense with weak stateful KDM seureshemes. In these ases, the use of a strong stateful KDM sheme is �ne. However, it seemstehnially muh more di�ult to onstrut a strong stateful KDM seure sheme.
5.2 A seure shemeWe do not know how to ful�ll strong stateful KDM seurity. (The issues that arise aresimilar as in the stateless ase.) However, we an present a sheme that is seure in thesense of weak stateful KDM seurity.Idea of the onstrution. Our sheme is a omputational variant of p-BKDM (althoughits analysis will turn out to be ompletely di�erent). Namely, the main problem of p-BKDMis that the seret key runs out of entropy one too many KDM enryptions are requested.Only as long as there is enough entropy left in K, a suitably independent random pad13



an be distilled for enryption. However, in a omputational setting, randomness an beexpanded with a pseudorandom generator, and some distilled, high-quality randomness anbe used to generate more (pseudo-)randomness as a new key. More onretely, onsider thefollowing sheme:Sheme 11 (The sheme sKDM (for �stateful KDM�)). Let UHF be a family of uni-versal hash funtions that map 5k-bit strings to k-bit strings, and let G be a pseudorandomgenerator (against uniform adversaries) that maps a k-bit seed to a 6k-bit string. De�ne thestateful symmetri enryption sheme sKDM = (K; E ;D) with seurity parameter k 2 N,message spae f0; 1gk, and key spae f0; 1g5k through� K(1k) outputs a uniform random initial key (i.e., state) K0 2 f0; 1g5k.� E(1k;Kj;Mj) proeeds as follows:1. sample hj $ UHF ,2. set Sj := hj(Kj),3. set (Kj+1; Pj) := G(S),4. output Cj := (hj; Pj �Mj).Ciphertext is Cj , and new key (i.e., state) is Kj+1.� D(1k;Kj; (hj ;Dj)) proeeds as follows:1. set Sj := hj(Kj),2. set (Kj+1; Pj) := G(S),3. output Mj := Pj �Dj .Plaintext is Mj, and new key (i.e., state) is Kj+1.Theorem 12. If G is a pseudorandom generator, then sKDM satis�es weak stateful KDMseurity.Proof. Fix an adversary A that attaks sKDM in the sense of weak stateful KDM se-urity. Say that, without loss of generality, A makes preisely p(k) enryption queries fora positively-valued polynomial p 2 Z[k℄. Assume that A has an advantage that is notnegligible.Preparation for hybrid argument. For 0 � j � p(k), de�ne the hybrid game Game jas follows. Game j is the same as the weak stateful KDM game with adversary A, only that� the �rst j enryption orale queries are answered as in the fake weak stateful KDM game(i.e., with enryptions of uniform and independent randomness), and� the remaining queries are answered as in the real weak stateful KDM game (i.e., withenryptions of adversary-delivered funtions evaluated at the urrent seret key).Base step for hybrid argument. We will redue distinguishing between two adjaentgames to some omputational assumption. We will now �rst formulate this assumption. LetK 2 f0; 1g5k be uniformly distributed, and let M 2 f0; 1gk be arbitrary (in partiular, M14



an be a funtion of K). Then by Lemma 1 it follows that Æ(M;h; h(K) ; M;h;Uk) � 2�kfor independently sampled h $ UHF and independent uniform Uk 2 f0; 1gk. This impliesÆ(M;h;G(h(K)) ; M;h;G(Uk)) � 2�k;from whih the omputational indistinguishability hain(M;h;G(h(K)))| {z }=:DR � (M;h;G(U)) � (M;h;U6k)| {z }=:DF (3)
for independent uniform U6k 2 f0; 1g6k follows by assumption on G. For our hybrid ar-gument, it is important that (3) even holds when M is a funtion of K hosen by thedistinguisher.Hybrid argument. We will now onstrut from adversary A an adversary B that on-tradits (3) by distinguishing DR and DF . This ontradition then onludes our proof.Let n denote the number of keys. Let �i denote the index of the key hosen by A for thei-th enryption. Let gi denote the funtion hosen by A in the i-th enryption. Then, theadversary B hooses some j 2 f1; : : : ; p(k)g uniformly at random and then performs thefollowing simulation for A:� The �rst j � 1 enryptions requested by A are simulated as fake enryptions (i.e., withrandom messages). This is possible without using the keys sine for a random message,hi(K�i) is information-theoretially hidden in the iphertext.� For the j-th enryption, B hooses K� randomly for all � 6= �i and hooses M(K) :=gi(K1; : : : ;K�i�1;K;K�i+1; : : : ;Kn) and requests an input D =: (M;h; P;K) with thatM . (Note that D may be DR or DF .) Then B sets the new key K�i := K and gives(h;M � P ) as the iphertext to A.� For all further enryptions queries, B omputes the real iphertext using the keysK1; : : : ;Kn produed in the preeding steps.� Finally, B outputs the output of A.It is now easy to verify that if B gets DR as input, B simulates the Game j � 1, and if Bgets DF as input, B simulates the Game j. HenePr �B(DR) = 1�� Pr �B(DF ) = 1�= 1p(k) p(k)Xj=1 Pr [A = 1 in Game j � 1℄� 1p(k) p(k)Xj=1 Pr [A = 1 in Game j℄

= 1p(k)�Pr [A = 1 in Game 0℄� Pr [A = 1 in Game p(k)℄�:The right hand side is not negligible by assumption, thus the right hand side is not negligibleeither. This ontradits (3) and thus onludes the proof.
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5.3 The usefulness of stateful KDM seurityIn a sense, strong stateful KDM seurity is �just as good� as standard KDM seurity.Arbitrarily large messages (in partiular keys) an be enrypted by splitting up the messageinto parts and enrypting eah part individually. The key-depenies of the message partsan be preserved, sine the dependenies aross states (i.e., dependenies on earlier keys)are allowed. This tehnique is generally not possible with weak stateful KDM seurity. Weknow of no weakly stateful KDM seure sheme with whih one ould seurely enrypt one'sown key (let alone onstrut key yles).But despite the drawbaks of weak stateful KDM seurity, we believe that this notion isstill useful: �rst, it serves as a stepping stone towards ahieving strong stateful KDM seu-rity (or even stateless KDM seurity). Seond, it provides an alternative assumption to theassumption of absene of key yles in the formal protool analysis setting. Instead of as-suming the absene of key yles (this assumption may not make sense in a sheme in whihthe key spae is larger than the message spae), we an assume that the enrypted termsdepend only on the urrent internal state of the enryption algorithm. This assumption isstill a strengthening of standard IND-CPA seurity and makes sense, sine the enryptionalgorithm is only used to enrypt.
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